

Distribuições Multivariadas

Uma distribuição de probabilidade pode ser unidimensional ou n-dimensional. Distribuições n-dimensionais (n ≥ 2) são denominadas de distribuições multivariadas.

VA n-dimensional $Se \ X_1, \ X_2, \ ..., \ X_n \ forem "n" funções, cada uma associando um número real a cada resultado <math>s \in S$, denominaremos $(X_1, \ X_2, \ ..., \ X_n) \ de \ variável \ aleatória \ n-dimensional.$

Um caso especial de distribuição multivariada envolve uma variável aleatória bidimensional que é denominada de distribuição bivariada.

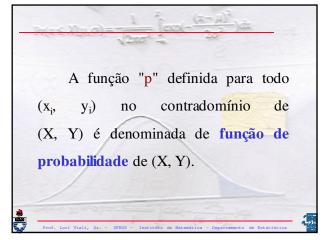
A variável (X, Y) será uma variável aleatória discreta bidimensional se os valores possíveis de (X, Y) forem finitos ou infinitos numeráveis, isto é, os valores possíveis são (x_i, y_j) com i = 1, 2, 3, ... e j = 1, 2, 3, ...

A função de probabilidade

A cada variável aleatória discreta bidimensional está associada uma função de probabilidade que satisfaz as seguintes condições:

(i)
$$p(x_i, y_j) \ge 0$$
 para i, $j = 1, 2, 3, ...$

(ii)
$$\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} p(x_i, y_j) = 1$$



A distribuição conjunta

A coleção dos pares:

 $[(x_i, y_j), p(x_i, y_j)], i, j = 1, 2, 3, ...$ é, denominada de distribuição de probabilidade conjunta da variável aleatória discreta bidimensional (X, Y).

Exemplo:

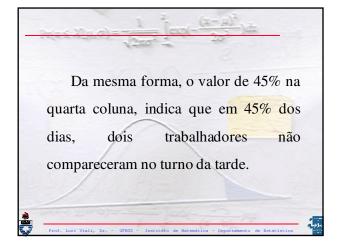
Uma pequena fábrica opera com dois turnos diários. Em um estudo sobre o padrão de ausências ao trabalho as duas variáveis aleatórias de interesse são: X = número de faltas no turno da manhã e Y = número de ausências no turno da tarde do mesmo dia.

Baseado numa longa série de registros, de funcionários, o diretor de pessoal, determinou a distribuição conjunta de X e Y mostrada na tabela (próxima lâmina).

120 -						
X	0	1	2	3	Σ	
0	0,05	0,05	0,10	0,00	0,20	
1	0,05	0,10	0,25	0,10	0,50	
2	0,00	0,15	0,10	0,05	0,30	
Σ	0,10	0,30	0,45	0,15	1,00	

Interpretação

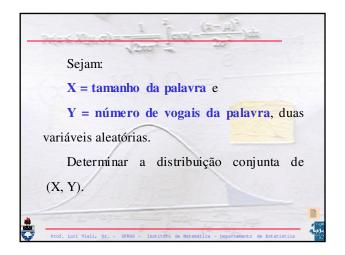
Na tabela o valor 0,25 da célula (X = 1, Y = 2) significa que em 25% dos dias um trabalhador faltou no turno da manhã e dois faltaram no turno da tarde. O valor de 20% da soma da primeira linha, indica que em 20% dos dias ninguém faltou no turno da manhã.

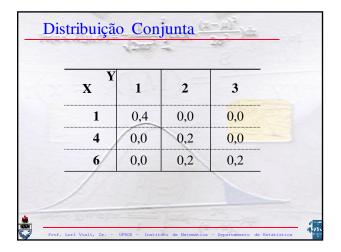


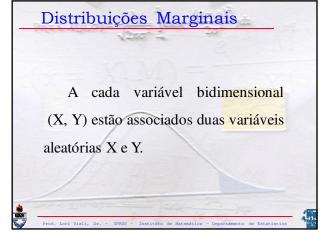
Exercício:

Suponha que uma palavra da frase:

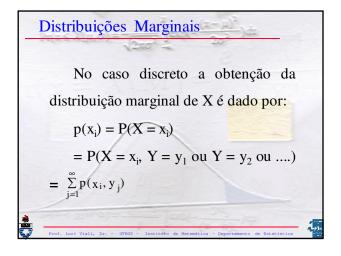
"O Grêmio é e sempre será o melhor
time gaúcho" é selecionada ao acaso.



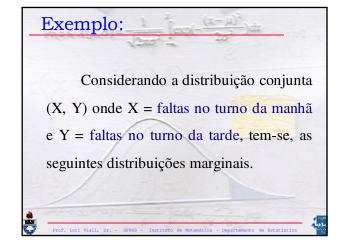




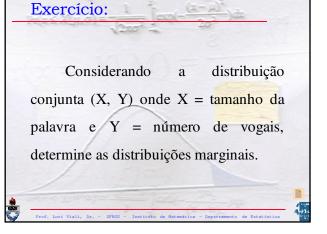
Os valores de X considerados em conjunto com as probabilidades que aparecem na última coluna à direita formam a distribuição marginal de X e os valores de Y considerados com as probabilidades da última linha da tabela formam a distribuição marginal de Y.



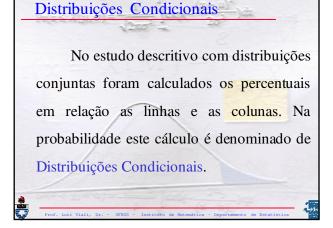
Definição: Se (X, Y) é uma VA discreta bidimensional, então as coleções de pares: [x, p(x) = P(X = x)] e [y, p(y) = P(Y = y)] são denominadas de **Distribuições**Marginais.

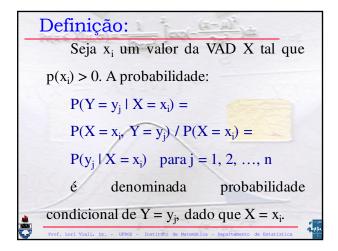


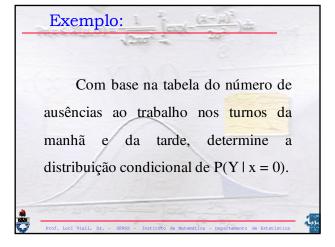
X	p(x)	y	p(y)
0	0,20	0	0,10
1	0,50	1	0,30
1	0,30	2	0,45
2	0,30	3	0,15
Σ	1,00	2	1,00

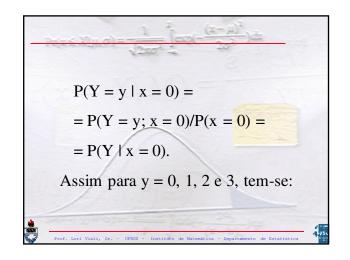


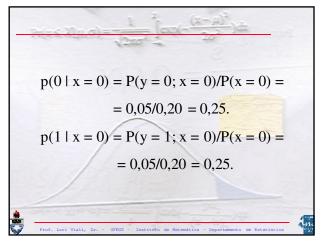
X	1	2	3	Σ
1	0,4	0,0	0,0	0,4
4	0,0	0,2	0,0	0,2
6	0,0	0,2	0,2	0,4
Σ	0,4	0,4	0,2	1,0









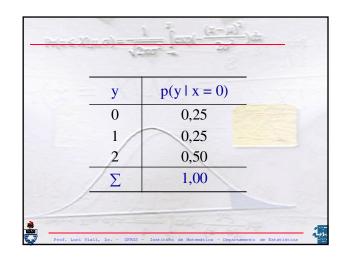


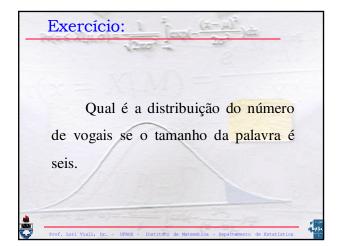
$$p(2 \mid x = 0) = P(y = 2; x = 0)/P(x = 0) =$$

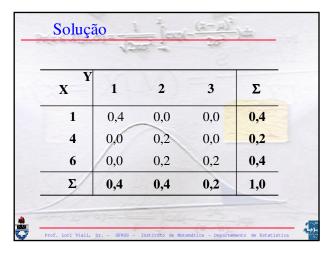
$$= 0,10/0,20 = 0,50.$$

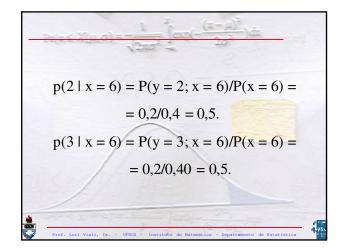
$$p(3 \mid x = 0) = P(y = 3; x = 0)/P(x = 0) =$$

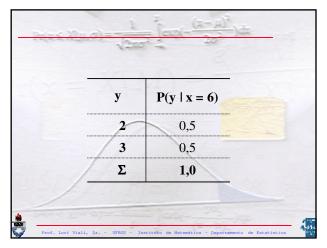
$$= 0/0,20 = 0.$$
Prof. Lori Viali, Dr. - UPROS - Instituto de Matemática - Departmento de Estatística

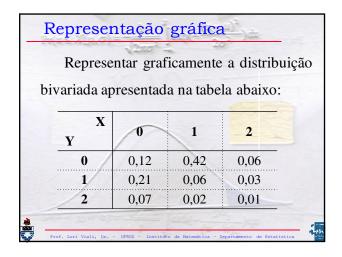


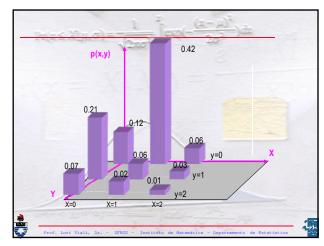


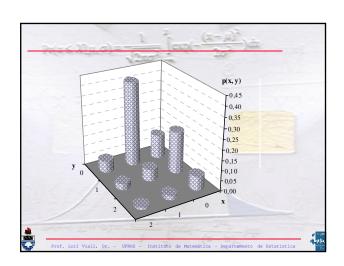


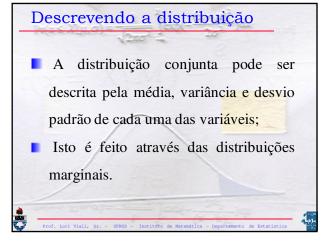










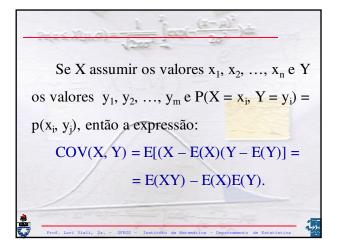


Por e	xemplo, c	onsideran	do a distribuição
representa	ada grafic	amente, te	em-se:
X	p(x)	p(y)	E(X) = 0.70
0	0,4	0,6	V(X) = 0.41
1	0,5	0,3	E(Y) = 0.50
2	0,1	0,1	E (1) 0,50

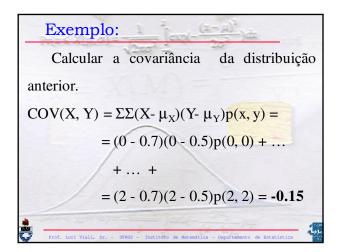
Ela, pode ainda ser descrita em termos do relacionamento entre as duas variáveis. Para descrever o relacionamento entre as duas variáveis existe a covariância e o coeficiente de correlação.

A covariância

A covariância entre as variáveis aleatórias X e Y é dada por: COV(X, Y) = E[(X - E(X)(Y - E(Y))]. Ou seja, é o valor médio do produto dos desvios de X e Y em relação as suas médias.



Pode ser escrita como: $COV(X,Y) = \sum_{i=1}^{n} \sum_{j=1}^{m} [x_i - E(X)][y_i - E(Y)] p(x_i, y_i) = \\ = E(XY) - E(X)E(Y) = \\ = \sum_{i=1}^{n} \sum_{j=1}^{m} x_i y_i p(x_i, y_i) - \sum_{i=1}^{n} x_i p(x_i) \cdot \sum_{j=1}^{m} y_j \cdot p(y_j)$

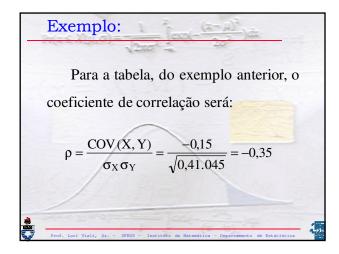


O Coeficiente de Correlação

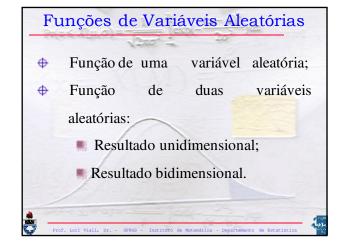
A covariância varia no intervalo $(-\infty, +\infty)$ e é, portanto difícil de interpretar. Por isto trabalha-se, em geral, com o coeficiente de correlação, que é calculado da seguinte forma: $\rho = \text{COV}(X, Y)/\sigma_X \sigma_Y$.

A grande vantagem da utilização do coeficiente de correlação é que ele varia no intervalo [-1; +1], sendo assim de fácil interpretação.

Quando mais próximo de -1 ou +1 estiver o coeficiente maior é a associação linear entre as variáveis. Um coeficiente próximo de zero, indica ausência de relacionamento linear.



Estas expressões para o cálculo da covariância e do coeficiente de correlação não são práticas. Existe uma maneira mais simples do obter estes resultados. Antes, porém, é necessário definir mais alguns conceitos.

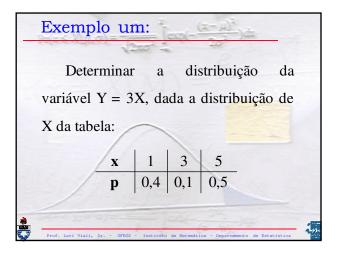


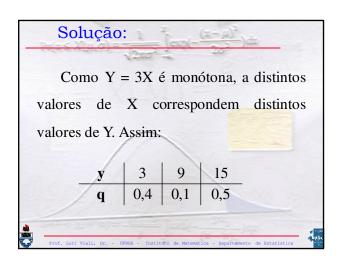
01. Variável Aleatória Discreta

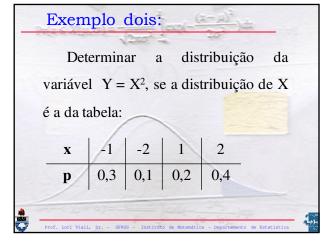
Função de uma variável aleatória

Seja X uma variável aleatória discreta com fp $p(x_i)$. Seja Y = f(x). Se X for monotona, então $y_i = f(x_i)$, onde x_i são os valores de X, com probabilidades: $P(Y = y_i) = P(X = x_i)$

Se X não for monótona, então aos valores possíveis $y_i = f(x_i)$ de Y se associará a probabilidade igual a soma das probabilidades dos valores de X pertencente à imagem inversa de y_i por f.

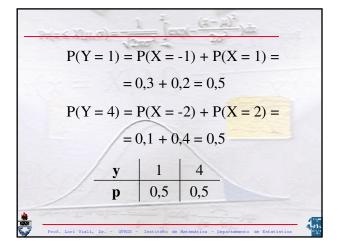


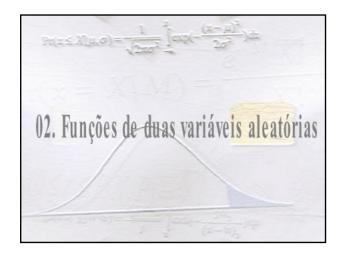


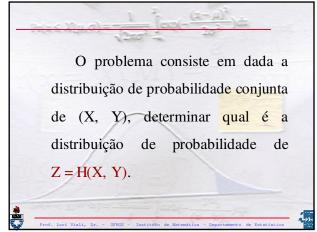


Solução:

Como $Y = X^2$ não é monótona, a correspondência entre os valores de X e de Y não é biunívoca. Então, por definição, a probabilidade de cada y_i será igual a soma das probabilidades dos valores de X correspondendo a y_i , isto é:





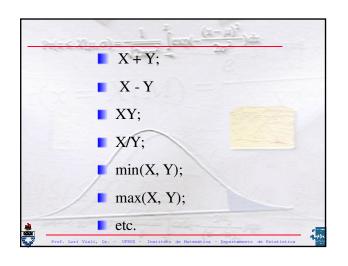


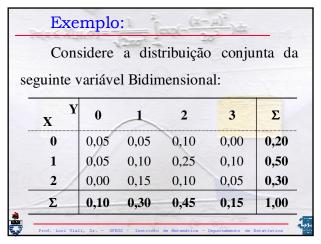
Considere a variável Z = H(X, Y),
uma função de duas variáveis
aleatórias X e Y. Z = Z(s) é também
uma variável aleatória, pois:

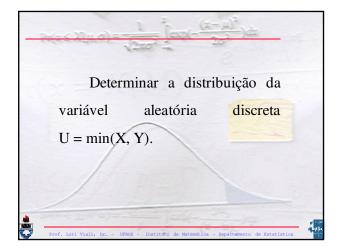
Executa-se o experimento E obtendo "s";
 Calculam-se os números X(s) e Y(s);
 Calcula-se o número Z = H[X(s), Y(s)].

O valor de Z depende de "s", o resultado original do experimento. Ou seja, Z = Z(s) é uma função que associa um número real Z(s) a todo resultado s ∈ S, em consequência Z é uma variável aleatória.

Se (X, Y) for discreta, o problema é simples. Suponha que (X, Y) seja uma VADB. Então, as seguintes variáveis aleatórias unidimensionais são de interesse:







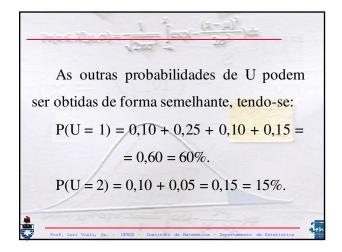
Para obter a distribuição de probabilidade de U adota-se o seguinte procedimento:

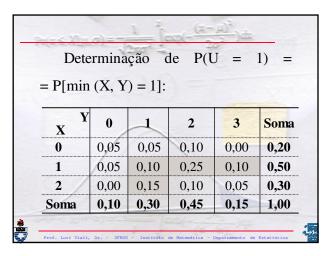
▶ Determina-se os valores possíveis de U.

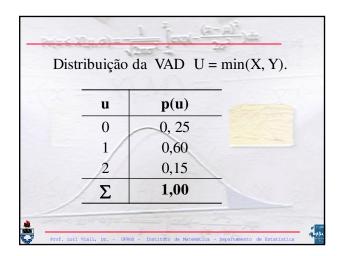
Neste caso, são: 0, 1, 2.

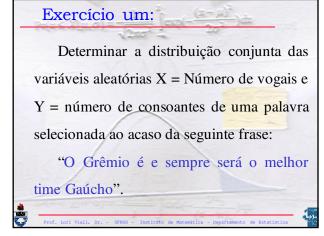
Para determinar P(U = 0) deve-se notar que P(U = 0) se e só se, um dos seguintes eventos ocorre: (X = 0, Y = 0) ou (X = 0, Y = 1) ou (X = 0, Y = 2) ou (X = 0, Y = 3) ou (X = 1, Y = 0) ou (X = 2, Y = 0).
Assim: P(U = 0) = 0,05 + 0,05 + 0 + 0,05 + 0,10 + 0 = 25%.

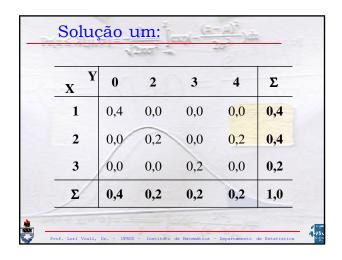
Iluet	ação d	a deteri	ninacão	de P(l	II = 0)
= P[min			mnaçac	de I (0 = 0)
- 1 [111111	(A, 1)	– vj.			
X	0	1	2	3	Soma
0	0,05	0,05	0,10	0,00	0,20
1	0,05	0,10	0,25	0,10	0,50
2	0,00	0,15	0,10	0,05	0,30
Soma	0,10	0,30	0,45	0,15	1,00

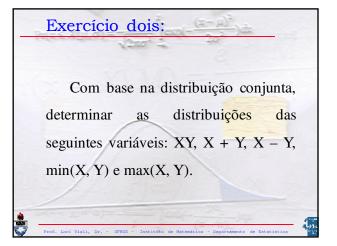






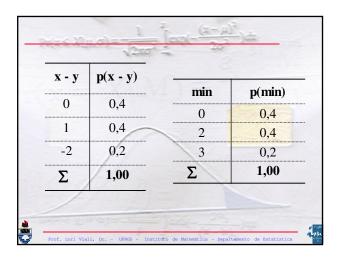


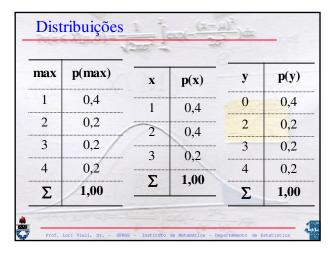


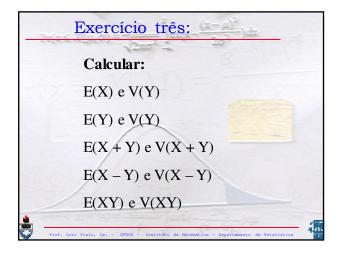


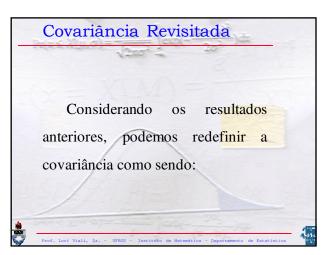
(x, y)	p(x, y)	ху	x+y	x - y	min	max
(1, 0)	0,4	0	_1	1	0	1
(1, 2)	0,0	2	3	-1	1	2
(1, 3)	0,0	3	4	-2	1	3
(1, 4)	0,0	4	5	-3	1	4
(2, 0)	0,0	0	2	2	0	2
(2, 2)	0,2	4	4	0	2	2
(2, 3)	0,0	6	5	-1	2	3
(2, 4)	0,2	8	6	-2	2	4
(3, 0)	0,0	0	3	3	0	3
(3, 2)	0,0	6	5	1	2	3
(3, 3)	0,2	9	6	0	3	3
(3, 4)	0,0	12	7	1	3	4

	-	3	
хy	p(xy)	A ===	
0	0,4	x + y	p(x + y)
4	0,2	1	0,4
	//	4	0,2
8	0,2	6	0,4
9	0,2	Σ	1,00
Σ	1,00		





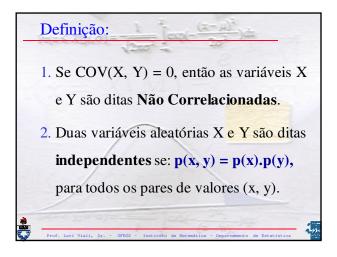


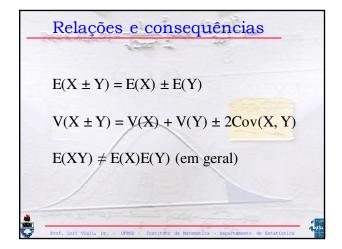


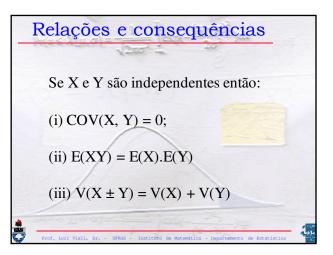
```
Covariância Revisitada

COV(X,Y) = \\ = E[(X - E(X)(Y - E(Y)] = \\ = E(XY - XE(Y) - YE(X) + E(X)E(Y)] = \\ = E(XY) - E(X)E(Y) - E(Y)E(X) + \\ E(X)E(Y) = E(XY) - E(X)E(Y).

Prof. Lori Viali, Dr. - UTROS - INSILESTO de Matemática - Departamento de Establistica
```







Observações:

E(XY) = E(X)E(Y) pode ser verdadeira, mas as variáveis X e Y serem dependentes.

Se Cov(X, Y) = 0, isto não quer dizer que X e Y são independentes, o contrário sim.

A independência é uma relação mais forte do que a não correlação. Dizer que duas variáveis são não correlacionadas, significa que elas não tem relacionamento linear, enquanto que independência exclui qualquer tipo de relacionamento.

