
1. The prediction limits can be used in conjunction with 
a normalizing transformation, as illustrated by the logarith- 
mic transformation in the preceding example from Nelson 
(1982). Transformations to achieve approximate normality 
are especially important in light of the lack of robustness 
of the prediction limits noted earlier. 

2. Some instructors may wish to contrast prediction lim- 
its with tolerance limits; the former refers to limits for a 
single independent observation from a normal population, 
and the latter refers to limits within which a certain fraction 
of the entire normal population is claimed to lie. 

3. The prediction limits (2.3) can be extended readily to 
include the case of predicting the mean of m new obser- 
vations in an independent random sample from the same 
normal population. In this case the 1 - a limits for the 
predicted mean have the form 

Y ? tl-a/2,n-IS5[ + !]1/.(3.1) 

In addition, prediction limits of the form Y ? rs can be 
constructed that will contain all m new observations with a 
given level of confidence. Tables of the multiplier r may 
be found in Hahn (1969, 1970). 

4. The instructor may wish to note that result (2.2) holds 
approximately for the standardized sample values 

Zi = (Yi - Y)Is, i = 1,.. .,n, (3.2) 

and this fact may be useful for outlier identification in nor- 

mal samples. The class discussion of (3.2) provides a useful 
preparation for the subsequent discussion of standardized 
residuals in a regression framework. 

5. For courses with a Bayesian orientation, the limits in 
(2.3) are the central 1 - a posterior probability limits for 
a prediction of Y based on a normal sample Y1, . . ., Yn and 
an uninformative improper prior joint density function for 
A and o- (e.g., see DeGroot 1970, chap. 10). 
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Relationships Among Common Univariate Distributions 
LAWRENCE M. LEEMIS* 

Common univariate distributions are usually discussed sep- 
arately in introductory probability textbooks, which makes 
it difficult for students to understand the relationships among 
these distributions. The purpose of this article is to present 
a figure that illustrates some of these relationships. 

KEY WORDS: Limiting distributions; Transformations of 
random variables. 

1. INTRODUCTION 

Students in a first course in probability usually study 
common univariate distributions. Most introductory text- 
books discuss each of the distributions in separate sections. 
One of the drawbacks of this approach is that students often 
do not grasp all of the interrelationships among the distri- 

butions. The purpose of this article is to present and discuss 
a figure that overcomes this shortfall. 

There are several excellent sources for studying univariate 
distributions. Hastings and Peacock's (1975) handbook shows 
graphs of densities and variate relationships for several dis- 
tributions. Hirano, Kuboki, Aki, and Kuribayashi (1983) 
gave graphs of univariate distributions for many combina- 
tions of parameter values. For more detail, Johnson and 
Kotz (1970) have done a four-volume series covering uni- 
variate and multivariate distributions. Recently, Patil, Bos- 
well, Joshi, and Ratnaparkhi (1985) and Patil, Boswell, and 
Ratnaparkhi (1985) have also completed volumes on dis- 
crete and continuous distributions. Other books on distri- 
butions and modeling include Ord (1972), Patel, Kapadia, 
and Owen (1976), and Shapiro and Gross (1981). Diagrams 
that relate these distributions to one another may be found 
in Nakagawa and Yoda (1977), Taha (1982), and Marshall 
and Olkin (1985). 

2. DISCUSSION 

The diagram in Figure 1 shows some relationships among 
common univariate distributions that might be presented in 
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Figure 1. Relationships Among Distributions. 
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an introductory probability course. There are 9 discrete dis- 
tributions, shown on the upper part of the diagram, and 19 
continuous distributions. The first line of each entry is the 
name of the distribution. The next line contains the region 
of support for the distribution. The last line contains the 
distribution's parameters. The parameters must satisfy the 
following: n is an integer; 0 < p < 1; a and o- are positive 
scale parameters; 3 and y are positive shape parameters; 
and ,u, a, and b are location parameters. When ,u or o- are 
used as parameters, they denote the mean and standard 
deviation of the distribution, respectively. 

There are three types of relationships among distributions: 
limiting distributions, transformations, and special cases. 
Limiting distributions are indicated with a dashed arrow. 
Transformations (which assume independent random vari- 
ables) and special cases are indicated by a solid arrow. One- 
to-one transformations have an arrow pointing in both di- 
rections. The random variable X is used for all distributions. 
Thus the arrow from the t distribution to the F distribution 
indicates that the square of a t random variable has an F 
distribution. 

The normal and exponential distributions play a central 
role in Figure 1. This fact is partially due to their natural 
genesis via the central limit theorem and superpositioning 
principle. In addition, some distributions generalize the ex- 
ponential distribution (such as the Weibull), since it is often 
used in reliability to model component lifetimes. 

The transformation relationships in Figure 1 can be com- 
bined to form other relationships. A path from the standard 
normal to the chi-square to the exponential to the Rayleigh, 
for example, indicates that the random variable (XI + 
XI)1"2 has the Rayleigh distribution if X1 andA2 are standard 
normal random variables. 

The relationship between the uniform (0, 1) distribution 
and the exponential distribution is valid by the probability 
integral transformation. Since the probability integral trans- 
formation states that the cumulative distribution function for 
a random variable is uniformly distributed between 0 and 
1, an arrow could be drawn from the uniform (0, 1) distri- 
bution to every other distribution shown in the figure, al- 
though not all of these relationships are closed form. This 
relationship is known in the simulation literature as the 
inverse-cdf technique for random variate generation. A sur- 
vey article of general methods for random variate generation 
is given by Schmeiser (1980). 

The probability mass functions and probability density 
functions for the distributions in Figure 1 are listed in the 
Appendix. All continuous lifetime distributions [i.e., those 
with support on (0, om)] may be generalized to have support 
on (a, oo) by replacing x with x - a in the density function. 
In addition, the parameterizations chosen for the distribu- 
tions in Figure 1 are not unique. 

There are many relationships that Figure 1 does not in- 
dicate. First, because of space constraints, there are rela- 
tionships (e.g., between the exponential and Poisson 
distributions) that are not included. Second, combining two 
random variables with different distributions is not included. 
For example, the defining formula for the Student-t distri- 
bution, Z(y2/n))112, where Z is standard normal and x2 has 
the chi-square distribution with n df, is not shown. Third, 

analogies between discrete and continuous distributions (e.g., 
the geometric and exponential) are not shown. Finally, the 
distributions included are oriented toward the classical dis- 
tributions, and families of distributions (e.g., the Pearson 
system) are not included. 

3. CONCLUSIONS 

There are two applications for this diagram. First, after 
presenting common univariate distributions in an introduc- 
tory course in probability, it can be used to indicate how 
distributions relate to one another. Second, in an advanced 
course (e.g., simulation or reliability), Figure 1 provides a 
quick review of important univariate distributions. 

APPENDIX: DISTRIBUTION 
PARAMETERIZATIONS 

Discrete Distributions 

Bernoulli: 
f(X) = pX(l - p)l-X, x= 0, 

Beta-Binomial: 

f(X) = (n2 +X- 1) 

X (ni + n3-X 1) 

(n + n2 + n3 1), 1, n, 
n, 

Binomial: 

f(x) 
n 

(n)px(l _ p)n-x x= O, 1,. .n 

Discrete Weibull: 
f(x) = (1 -p)XP -(1 -p)(x+l)P x = 0, 1, 

Geometric: 
f(x) = p(l p)X, x = 0, 1, ... 

Hypergeometric: 

f(x) () &n3 
- n) 

(n3) x =-0, 1, . . ., min(nl, n2) 
n2l 

Pascal (negative binomial): 

f(X) 
n I 

) pn (1I p)y I x = O1 11 . . . 

Poisson: 
f(x) = uxe- lx!, x = 0, 1, ... 

Rectangular: 
f(x) = 1/n, x=O ,... 

Continuous Distributions 

Arcsin: 
f(x) = 1/7T[X(1 - x)]112, 0 < x < 1 
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Beta: 
f(x) = [F(,3 + y)/F(,)F(y)] 

X xP-(1 -x)-l 0 < x < 1 

Cauchy: 
f(x) = I/lar[I + ((x - a)-a)2], oo < x < ?? 

Chi-square: 
f(x) = [1/2,'2F(n/2)] xnI2- le-x/2 x > 0 

Erlang: 
f(x) = [1/a n(n - 1)!] xn-le-x/ x > 0 

Exponential: 
f(x) = (1/a) e-xI, x > 0 

F: 
f(x) = F((nI + n2)/2) 

x (n In2 )ni/2 Xni12 -I 

F(n1/2) F(n2/2) 

X [(nl/n2) X + 1] ((ni + n2)/2) x > 0 

Gamma: 
f(x) = [l/aPF(,f)] x-le-xlt, x > 0 

LaPlace: 
f(x) = [l/(al + a2)]ex/1, x ' 0 

= [l/(al + a2)]ex/a2, x < 0 

Lognormal: 
f(x) = [l/(2 T) 12 x,13]exp[ - 1/2(log(x/ 

a)/ 8)2], X > 0 

Normal: 
f(x) = [1/(2 T)1/2o-] exp[ - ?12((x - 

A)1r)2], -?? < x < oo 

Rayleigh: 
f (x) =(2xl a) e-2a x > O 

f(x) = F((n + 1)12)1(nIT) 12F(n/2) 

X [x2/n + 1] (n+1)/2 -?? < X < ?? 

Triangular: 
f(x) = 1 + x, -1 <x<O 

= 1 - x, --- O?X< 1 

Uniform: 
f(x) = I/(b - a), a < x < b 

Weibull: 
f(x) = (1/a) 3xO- I exp[-(1/a)x], x > 0 
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