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Abstract. Two methods recently developed for generating normal deviates within a 
computer are reviewed along with earlier proposals. A comparison of the various methods 
for application on an IBM 704 is given. The new direct method gives higher accuracy than 
previous methods of comparable speed. The detailed inverse technique proposed yields 
accuracy comparable with, or better than, most previous proposals using about one-quarter 
the computing time. 

1. Introduction 

Many  applications of  electronic computers require the efficient generation of 
large numbers of pseudo random normal deviates. Tables of pseudo random 
normal deviates are of course available, for example [15, 19], but  they are not 
sufficiently extensive for many purposes and an outside source of this kind can- 
not  usually be used effectively by  the computer. What  is required is some method 
of generation which can be rapidly carried out by  the machine itself. From in- 
dependent random normal deviates well-known methods can of course be used 
to generate n-dimensional normal deviates with arbi t rary means and variance- 
covariance matrix. 

A number  of different ways of generating pseudo random normal deviates is 
known, for example [1, 7, 12, 17]. The most recent methods are [1] and [12]. All 
of these approaches have the common feature tha t  they require the use of pseudo 
random numbers. 

Methods are available by which pseudo random numbers may  be produced 
within the machine, see for example [4, 6, 7, 9, 10, 11, 17, 18]. Judging by the 
results given for example by [6, 7, 14, 17], the most satisfactory procedure, now 
in use for generating random numbers is the one based on residue class tech- 
niques, see for example [11, 16]. We shall not  consider here the validity of em- 
ploying deterministic methods for generating random numbers but  assume that  
some machine method of satisfactorily producing random numbers is available 
from which random normal deviates are to be produced. 

The purpose of the paper is to review the several methods for generating 
pseudo random normal deviates within a large-scale computer. Certain specific 
comparisons of these methods for an IBM 704 are given in table 2. 

* Received October, 1958. Prepared in connection with research sponsored by the Office 
of Ordnance Research, U. S. Army; Statistical Techniques Research Group, Princeton Uni- 
versity, Contract No. DA 36-034-ORD 2297. 
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2. Methods 

2.1 A Direct Approach. The following approach which was recently developed 
by Box and the present writer [1] 1 may be used to generate a pair of random 
deviates from the same normal distribution starting from a pair of random 
numbers. 

MI~THOD: Let U:, U~ be independent random variables from the same rec- 
tangular density function on the interval [0, 1]. Consider the random variables: 

X1 = ( - 2  log~ U1) t cos 2~-U~ 

X2 = ( - 2  log~ U1) t sin 2~'U2 

Then (X1, X:) will be a pair of independent random variables from the same 
normal distribution with mean zero, and unit variance. 

2.2 An Inverse Approach. In principle, the inverse method Of generating a 
normal deviate X from a uniform deviate U is well known. The problem is to 
find the inverse relationship X = X(U) given that 

U -  V'~ oo e -t'l~ dt .  

The actual determination of X(U) offers certain difficulties when it is desired 
to generate reliable normal deviates, especially for large values of X. The details 
of the procedure have been carried out for application on a large size binary 
machine by the author [12]. 

The relation X = X(U) is approximated stepwise. The interval [0, 1] for U 
is subdivided so that over each sub-interval it is possible to obtain a reliable and 
fast procedure for computing X. Over most of [0, 1], X = X(U) is approximated 
by Chebyshev-type polynomials. As X becomes large in absolute value it is 
necessary to increase the degree of the approximating polynomial. However, 
even though the degree of the polynomial increases, the frequency with which 
these approximations are needed decreases, hence this method will use, on the 
average, a low order of approximating polynomial for X = X(U).  Due to sym- 
metry it is actually only necessary to study X = X(U) for ½ ~ U __< 1. For 
127/128 ~ U ~ 1, and by symmetry 0 ~ U =< 1/128, X = X(U) has a singu- 
larity of logarithmic type, consequently for U in this subinterval an approxima- 
tion of more subtle type than Chebyshev polynomials is needed. Here a satis- 
factory rational approximation is obtained by using a truncated continued 
fraction expansion. The necessary coefficients for the approximations for X = 
X(U) are given in [12]. 

Having specified the two most recent methods we will now review the earlier, 
methods. 

2.3 Central Limit Approach. By appealing to the central limit theorem of 
probability, e.g. [3], we know what sums of an arbitrary number of U's will be 

1 As pointed out by the referee of this paper, X~ + X2 in the third equation on page 
611 of [1] should read X12 + XI. 
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asymptotically normally distributed. Though this method is easy to use, it has 
certain limitations which will be considered in section three. 

2.4 Rejection Approach. This technique is a t t r ibuted to yon Neumann. The 
presentation here follows essentially that  in [17]. One proceeds to generate 
normal deviates in the truncated region - b  =< X __< b as follows: Generate uni- 
form deviates U~ and Us. Each time compute Y = -2b2(U~ - ½)2. If log, U~ 
Y, then the value X = b(2 U~ - 1) is used as a normal deviate. If logs U2 > Y 
then one rejects the pair (U1, U2) and repeats the above process. 

2.5 Hastings' Approach. Pade-type or rational approximations to transform 
a uniform deviate to a normal deviate have been suggested by several people. 
The best known version is due to C. Hastings [5, p. 192]. Using this approach 
one obtains a normal deviate X from a uniform deviate U = q as follows: 

( ao -t- al n A- a~ ~ 2 } 

where 

and 

1 e -(~12)t~, 0 < q < .5, ~1 = ~/Fn 1/q 2, q - ~ / ~  (q) = 

a0 = 2.515517 bx = 1.432788 
al = 0.802853 b2 = 0.189269 
a2 = 0.010328 b3 = 0.001308 

2.6 Teichroew's Approach. A fixed number of uniform deviates is summed, 
then using an interpolating Chebyshev polynomial an improved approximate 
normal deviate is obtained. The complete details have been obtained by  Tei- 
chroew [17]. Teichroew calls this the method of "Approximation by  Curve 
Fitt ing". Since his paper has had limited circulation the details are reviewed 
here. He proceeds to find a normal deviate as follows: 

I t  is desired t,o find y = m(O)  where 

f~ 1 e_t2/~ dt = foO¢~(t) dt, 

and where ¢~ is the density function of the sum of 'y uniform deviates. This ap- 
proach requires tha t  the range of O be restricted. For  the restricted range OL 
0 _-< 0 v ,  y = re(O) is approximated by determining an interpolating poly- 
nimial. A Chebyshev polynomial of degree k - 1 is fitted so tha t  its values 
coincide with the values of re(O) at the k roots of the Chebyshev poly- 
nomial of degree k. 

Though  Teichroew has obtained the coefficients of the Chebyshev poly- 
nomials for ~ = 6, 8 and 12, we shall describe the case ~ = 12 since this value 
of ,v gives the most satisfactory results. As before, Ui denotes a uniform deviate, 
and let O = ~ 1  Ui so that  0 ~ O ~ 12. However, O must  be restricted; here 
Teichroew chooses 01. = 2, Ov = 10, where Prob IOz. ~ 0 ~ Or} _-> 1 - (2)10 -'~, 
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so there is a very small probability of being outside this range. His program was 
prepared for SWAC and was arranged so that  if ® fell outside (2, 10) the machine 
would halt  and then type out this fact. (This procedure has been adopted by  this 
writer for the IBM 704 and will appear in the near future as a SNARE program.) 
Let  r = (O -- 6)/4.  Then an approximate normal deviate X is obtained as 

9 

X • Z d2j+i T21+l(r). 

For machine computation it  is not economical or Convenient to find X in the 
above form; so a rearranged series in r is obtained. If we truncate the series 
after the term Tg(r), this series will be 

X = air ..]- a3r 3 -{- a s r  ~ , ~  a~r 7 ..{- agr 9, 

where the coefficients are as follows: 

al = 3.949846138 

a3 = 0.252408784 

a5 = 0.076542912 

a7 = 0.008355968 

a~ = 0.029899776 

3. Appraisals of the Methods 

3.1 The Direct Approach. This method developed from the desire to have a 
way of generating normal deviates which would be reliable in the tails of the 
distribution. Mathematically this approach has the at tractive advantage that  
the transformation for going from uniform deviates to normal deviates is exact. 
Whereas the accuracy of other methods is not easy to analyze, or to change, the 
accuracy obtainable here depends essentially on the precision of the necessary 
function subroutines. Further,  since most computing centers have library pro- 
grams to compute values of trigonometric functions, logarithms, and square 
roots this approach requires little additional machine program writing. 

Inspection of table 2 in section 4 shows that  this method gives higher accuracy 
than previous methods of comparable speed and it indicates the amount  of 
memory space required. 

3.2 The Inverse Approach. This 'method has the advantage tha t  if a reasonable 
level of accuracy is desired over a given range of X it is possible to achieve a very  
fast procedure for generating X at  the expense of utilizing memory space in the 
computer. If this approach is to be efficient the approximations to X = X ( U )  
should be designed to work over subintervals of U whose lengths are either a 
negative power of two or a negative power of ten depending upon whether the 
computer operates in the binary or decimal mode; see [12]. If the approximation 
of X = X ( U )  is to be valid when X is allowed to take values beyond three stand- 

• " :  , 7 ~ ~ " 
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ard deviations from the mean, then this approach may require too many memory 
locations to be practicable on a small computer if a very high level of accuracy is 
required. 

This procedure has been developed by the author [12] for use on a large scale 
binary computer. This procedure then yields accuracy comparable with, or even 
better than most previous proposals using about one-quarter of the computer 
time. I t  was developed so that the maximum absolute error in X should be less 
than 4 X 10 -4 in the range - 5  -< X ~ 5, where Prob { - 5  ~ X ~_ 5} > 1 -- 
6 X 10 -7, so that X is correct to within 4 X 10 -4 except for an event of proba- 
bility less than 6 X 10 -7. Inspection of table 2 in section 4 shows that at least 
for a machine the size of the IBM 704 the increase in computing speed possible 
with this method has not been acquired at the expense of an excessive amount 
of additional storage. I t  should also be kept in mind that if the range of X is 
decreased then the computing time and storage requirements can be considerably 
reduced. 

3.3 The Central Limit Approach. This approach has the advantage of requir- 
ing little memory space and it appears to be reasonably fast. However, if the 
values of X can be restricted to be within three standard deviations of the mean, 
then for the accuracy attainable here the speed of this procedure is easily 
matched or improved upon by other methods. Further, if values of X beyond 
three standard deviations from the mean are required this approach is unre- 
liable; see for example [8]. Finally, some objection to this procedure has been 
raised in the past due to the fact that here one requires that several uniform 
deviates be generated for each approximate normal deviate. The problem of 
comparing the accuracy of this approach with others is complicated to the extent 
that the Central Limit Theorem is concerned with an asymptotic convergence 
in probability. Consequently in comparing this procedure with others it is 
necessary to see how the actual distribution function of a finite number of uni- 
form deviates compares to the limiting normal distribution function. If one takes 
sums of twelve uniform deviates, then its distribution about its mean of six will 
have the advantage of having a unit variance. 

Table 1 gives an indication of the errors one makes in using this approach. For 
example, inspection of the table shows that the probability of the sum of 12 uni- 
form deviates being greater than 3.2000 above its mean is 0.455824 X 10 -3. Yet 
this probability point for normally distributed deviates with the same mean and 
variance gives a value of 3.3165. Thus the difference is -0.1165. 

3.4 Rejection Approach. For some distributions rejection-type techniques, see 
for example [2, 8, 13], are acceptable. However, for the normal distribution this 
approach is very inefficient, especially if precise tail values are important. This 
method is mentioned here only for the sake of historical completeness. If one 
wanted to generate normal deviates in the truncated region - b  ~ X ~ b, then 
the inefficiency of the process can be appreciated by realizing that the proba- 
bility that a pair (U1, U2) will be used to generate a normal deviate, namely 

Prob {U2 -<_ exp (-2b2(U1 - ½)2}, equals exp (-2b2(U -- ½)2dU, whichis 



GENERA.TING NORMAL DEVIATES 3~1 

TABLE 1 
Normal deviates exceeded with certain probabilities compared with sums of 1~ uniform deviates 

exceeded with the same probabilities means and variances equated) 

Sum of 12 deviates 

0.0000 
0.2000 
0.4000 
0.6000 
0.8000 
1.0000 
1.2000 
1.4000 
1.6000 
1.80(0 
2.0000 
2.2000 
2.4000 
2.6000 
2.8000 
3.0000 
3.2000 
3.4000 
3.60(0) 
3.8000 
4.0(00 

Probability of a larger deviate 

0.500000 
0.421711 
0.346338 
0.276483 
0.214180 
0.160727 
0.116639 
0.817077 X 10 -1 
0.551457 X 10-' 
0.357846 X 10 -1 
0.222756 X 10 -1 
0.132681X 10 -1 
0.754029 X 10- 2 
0.407497 X 10-' 
0.208611X 10-' 
0.100700X 10 -2 
0.455824 X 10 -s 
0.192173 X 10- a 
0.748223 X 10 -4 
0.266137 X 10 -4 
0.852607 X 10 -5 

Normal deviates with same 
mean and variance with 

same probability 

0.0000 
0.1975 
0.3952 
0.5933 
0.7920 

Difference of deviates 

0.0000 
0.0025 
0.0048 
0.0067 
0.0080 

0.9915 
1.1912 
1.3937 
1.5969 
1.8018 
2.0089 
2.2183 
2.4304 
2.6458 
2.8648 
3.0882 
3.3165 
3.5505 
3.7917 
4.0410 
4.3004 

0.0085 
0.OO88 
0.0063 
0.0031 

-0.0018 
-0.0089 
-0.0183 
-0.0304 
-0.0458 
- 0.0648 
-0.0882 
-0.1165 
-0.1505 
-0.1917 
- 0 . 2 4 1 0  

- 0 . 3 0 0 4  

a s y m p t o t i c a l l y  ( l / b ) ~ / ~ - / 2 .  I t  is poss ible  to  in t roduce  s t ra t i f ied  s ampl ing  tech-  
n iques  in an  a t t e m p t  to  i m p r o v e  th i s  procedure ,  b u t  to  d a t e  no efficient i m p r o v e -  
m e n t  for  th is  p rocedure  is known.  

3.5 Hastings'  Approach. Thi s  e legan t  set  of a p p r o x i m a t i o n s  is v e r y  rel iable.  
E x c e p t  for  cer ta in  i m p o r t a n t  sub in t e rva l s  such as  (1.48 =< X =< 2.42) ,  t he  
abso lu te  va lue  of the  er ror  is less t h a n  4 X 10 -4, a n d  even on these  i n t e rva l s  t he  
abso lu te  va lues  of the  er ror  a re  less t h a n  6 X 10 -4. However ,  f a s te r  p rocedures  
requi r ing  less m e m o r y  space are  now ava i lab le .  

3.6 Teichroew's Approach. Thi s  is a v e r y  n e a t  p rocedure  requ i r ing  a v e r y  
smal l  a m o u n t  'of m e m o r y  space.  However ,  as  i t  now exists  i t  will  no t  gene ra t e  
dev ia t e s  m u c h  b e y o n d  four  s t a n d a r d  dev ia t ions  f rom the  mean .  One m i g h t  also 
ob jec t  to  t he  fac t  t h a t  i t  uses more  t h a n  one un i fo rm d e v i a t e  ( in  fac t  e i the r  
e ight  or  twe lve)  when genera t ing  a no rma l  devia te .  N e i t h e r  of these  ob jec t ions  
is ser ious and  there  is much  to  r e c o m m e n d  th is  procedure ,  espec ia l ly  on  smal l  
machines .  

4. Some Comparisons 

I n  the  compar i sons  ( tab le  2) i t  has  been as sumed  t h a t  the re  is no e r ror  in t ro -  
duced  in genera t ing  a un i fo rm devia te .  I n  fact ,  the  t r u n c a t i o n  e r ror  ( t h e  e r ror  

\ 
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T A B L E  2 
Timing, precision, and memory space comparisons for generating normal deviates on the 

IBM 704 

Method 

!nverse 

Sum of 12 uni- 
form deviates 

Direct 

Teichroew's 
= 12 

(3, = 8) 

Hastings' 

Rejection 

Time per deviate (milliseconds) 

(Average)  = 1.395 
( S t a n d a r d  dev ia t ion)  -- 1.261 
(87.5% of cases) =< 0.996 

5.052 

6.60i  

6.948 
6.278 

6.968 

(Average)  = 16.360 
( S t a n d a r d  devia t ion)  ffi 28.201 

Precision 

in units of X 

4 X 10-4 

See  t a b l e  1 

5 X 10 -7 

2 X 10 -4 
2 X 10 -4 

6 X 10 .4  

5 X 10 -7 

except for 
probability 

less than 

6 X 10 - r  

See tab le  1 

4 X 10 -s 

2 X 10 -5 

4 X 10 -8 

6 X 10 -7 

Memory space 
(reusable 

temporary 
locations) 

202 (4) 

25 (4) 

175 (7) 

46 (4) 
49 (4) 

104 (8) 

76 (5) 

introduced from working with a discrete number of digits for U) in U is not 
serious until X is desired beyond five standard deviations from its mean. If high 
precision is required beyond this range it will be necessary to generate U with 
double precision in order to have enough significant bits in U for those pro- 
cedures which utilize U < 5 X 10 -6. However, this situation can be handled by 
generating a second random number in order to supply the additional significant 
bits. 

Though the timing and memory space considerations given in table 2 may be 
valid for other computers, they have been derived for a floating point binary 
machine with index registers, in this case the IBM 704. Further, the timing and 
memory space requirements have been evaluated subject to existing library sub- 
routines which are available for the 704 through the SHARE organization. I t  is 
possible that some computing time or memory space could be saved if specialized 
function subroutines were written; however the present approach has the ad- 
vantage that if a given sampling, or Monte Carlo problem requires some of the 
same library function subroutines they will be already available in the memory. 
The memory space requirements indicated include the necessary function sub- 
routines. For each method a normal deviate is formed for use as a "floated" 
normal deviate. 
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