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 I. GENERAL CONSIDERATIONS

 1. Introduction. For a long time I have thought I was a statistician, interested
 in inferences from the particular to the general. But as I have watched mathe-
 matical statistics evolve, I have had cause to wonder and to doubt. And when I
 have pondered about why such techniques as the spectrum analysis of time
 series have proved so useful, it has become clear that their "dealing with fluc-
 tuations" aspects are, in many circumstances, of lesser importance than the
 aspects that would already have been required to deal effectively with the
 simpler case of very extensive data, where fluctuations would no longer be a
 problem. All in all, I have come to feel that my central interest is in data analy-
 sis, which I take to include, among other things: procedures for analyzing data,
 techniques for interpreting the results of such procedures, ways of planning the
 gathering of data to make its analysis easier, more precise or more accurate, and
 all the machinery and results of (mathematical) statistics which apply to analyz-
 ing data.

 Large parts of data analysis are inferential in the sample-to-population sense,
 but these are only parts, not the whole. Large parts of data analysis are incisive,
 laying bare indications which we could not perceive by simple and direct ex-
 amination of the raw data, but these too are only parts, not the whole. Some
 parts of data analysis, as the term is here stretched beyond its philology, are
 allocation, in the sense that they guide us in the distribution of effort and other
 valuable considerations in observation, experimentation, or analysis. Data
 analysis is a larger and more varied field than inference, or incisive procedures, or
 allocation.

 Statistics has contributed much to data analysis. In the future it can, and
 in my view should, contribute much more. For such contributions to exist, and
 be valuable, it is not necessary that they be direct. They need not provide new
 techniques, or better tables for old techniques, in order to influence the practice
 of data analysis. Consider three examples:

 (1) The work of Mann and Wald (1942) on the asymptotic power of chi-
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 THE FUTURE OF DATA ANALYSIS 3

 square goodness-of-fit tests has influenced practice, even though the results
 they obtained were for impractically large samples.

 (2) The development, under Wald's leadership, of a general theory of de-

 cision functions has influenced, and will continue to influence data analysis in
 many ways. (Little of this influence, in my judgment, will come from the use of
 specific decision procedures; much will come from the forced recognition of the
 necessity of considering "complete classes" of procedures among which selec-
 tion must be made by judgment, perhaps codified A la Bayes.)

 (3) The development of a more effective procedure for determining proper-

 ties of samples from non-normal distributions by experimental sampling is
 likely, if the procedure be used wisely and widely, to contribute much to the
 practice of data analysis.

 To the extent that pieces of mathematical statistics fail to contribute, or are not
 intended to contribute, even by a long and tortuous chain, to the practice of
 data analysis, they must be judged as pieces of pure mathematics, and criticized
 according to its purest standards. Individual parts of mathematical statistics
 must look for their justification toward either data analysis or pure mathematics.
 Work which obeys neither master, and there are those who deny the rule of both
 for their own work, cannot fail to be transient, to be doomed to sink out of sight.
 And we must be careful that, in its sinking, it does not take with it work of con-
 tinuing value. Most present techniques of data analysis, statistical or not, have a
 respectable antiquity. Least squares goes back more than a century and a half
 (e.g., Gauss, 1803). The comparison of a sum of squares with the value other-
 wise anticipated goes back more than 80 years (e.g., cp., Bortkiewicz, 1901).
 The use of higher moments to describe observations and the use of chi-square to
 assess goodness of fit are both more than 60 years old (Pearson, 1895, 1900).
 While the last century has seen great developments of regression techniques,
 and of the comparison of sums of squares, comparison with the development of
 other sciences suggests that novelty has entered data analysis at a slow, plodding
 pace.

 By and large, the great innovations in statistics have not had correspondingly
 great effects upon data analysis. The extensive calculation of "sums of squares"

 is the outstanding exception. (Iterative maximum likelihood, as in the use of
 working probits, probably comes next, but is not widely enough used to repre-
 sent a great effect.)

 Is it not time to seek out novelty in data analysis?

 2. Special growth areas. Can we identify some of the areas of data analysis
 which today offer unusual challenges, unusual possibilities of growth?

 The treatment of "spotty data" is an ancient problem, and one about which

 there has been much discussion, but the development of organized techniques
 of dealing with "outliers", "wild shots", "blunders", or "large deviations" has
 lagged far behind both the needs, and the possibilities presently open to us for

 meeting these needs.
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 4 JOHN W. TUKEY

 The analysis of multiple-response data has similarly been much discussed,
 but, with the exception of psychological uses of factor analysis, we see few analy-
 ses of multiple-response data today which make essential use of its multiple-
 response character.

 Data of the sort today thought of as generated by a stochastic process is a
 current challenge which both deserves more attention, and different sorts of
 attention, than it is now receiving.

 Problems of selection often involve multi-stage operations, in which later-
 stage actions are guided by earlier-stage results. The essential role of data
 analysis, even when narrowly defined, is clear. (To many of us the whole process
 is a part of data analysis.) Here we have learned a little, and have far to go.

 We have sought out more and more subtle ways of assessing error. The half-
 normal plot typifies the latest, which will have more extensive repercussions
 than most of us have dreamed of.

 Data which is heterogeneous in precision, or in character of variation, and
 data that is very incomplete, offer challenges that we have just begun to meet.
 Beyond this we need to stress flexibility of attack, willingness to iterate, and
 willingness to study things as they are, rather than as they, hopefully, should be.

 Again let me emphasize that these are only some of the growth areas, and
 that their selection and relative emphasis has been affected by both personal
 idiosyncrasies and the importance of making certain general points.

 3. How can new data analysis be initiated? How is novelty most likely to
 begin and grow? Not through work on familiar problems, in terms of familiar
 frameworks, and starting with the results of applying familiar processes to
 the observations. Some or all of these familiar constraints must be given up in
 each piece of work which may contribute novelty.

 We should seek out wholly new questions to be answered. This is likely to require
 a concern with more complexly organized data, though there will be exceptions,
 as when we are insightful enough to ask new, useful kinds of questions about
 familiar sorts of data.

 We need to tackle old problemsi in more realistic frameworks. The study of data
 analysis in the face of fluctuations whose distribution is rather reasonable, but
 unlikely to be normal, provides many important instances of this. So-called
 non-parametric methods, valuable though they are as first steps toward more
 realistic frameworks, are neither typical or ideal examples of where to stop.
 Their ultimrate use in data analysis is likely to be concentrated (i) upon situations
 where relative ranks are really all the data available, and (ii) upon situations
 where unusually quick or portable procedures are needed. In other situations it
 will be possible, and often desirable, to analyze the data more thoroughly and
 effectively by other methods. Thus while non-parametric analysis of two-way
 tables leading to confidence statements for differences of typical values for rows
 and columns is quite possible, it is computationally difficult enough to keep
 me from believing that such techniques will ever be widely used. (The situation
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 THE FUTURE OF DATA ANALYSIS 5

 for three- and more-way tables is even worse.) As means for defending the re-
 sults of an analysis against statistical attack on distributional grounds, non-

 parametric methods will retain a pre-eminent place. And as an outstanding first
 step in eliminating unacceptable dependence upon normality assumptions they
 have been of the greatest importance. But these facts do not suffice to make them
 the methods of continuing choice.

 We should seek out unfamiliar summaries of observational material, and es-
 tablish their useful properties.

 But these are not the only ways to break out into the open. The comparison,

 under suitable or unsuitable assumptions, of different ways of analyzing the same
 data for the same purpose has been a unifying concept in statistics. Such com-
 parisons have brought great benefits to data analysis. But the habit of making
 them has given many of us a specific mental rigidity. Many seem to find it essen-
 tial to begin with a probability model containing a parameter, and then to ask
 for a good estimate for this parameter (too often, unfortunately, for one that is
 optimum). Many have forgotten that data analysis can, sometimes quite ap-
 propriately, precede probability models, that progress can come from asking

 what a specified indicator (= a specified function of the data) may reasonably
 be regarded as estimating. Escape from this constraint can do much to promote
 novelty.

 And still more novelty can come from finding, and evading, still deeper lying con-
 straints.

 It can help, throughout this process, to admit that our first concern is "data
 analysis". I once suggested in discussion at a statistical meeting that it might
 be well if statisticians looked to see how data was actually analyzed by many
 sorts of people. A very eminent and senior statistician rose at once to say that
 this was a novel idea, that it might have merit, but that young statisticians
 should be careful not to indulge in it too much, since it might distort their ideas.
 The ideas of data analysis ought to survive a look at how data is analyzed. Those
 who try may even find new techniques evolving, as my colleague Martin Wilk
 suggests, from studies of the nature of "intuitive generalization".

 4. Sciences, mathematics, and the arts. The extreme cases of science and art

 are clearly distinguished, but, as the case of the student who was eligible for
 Phi Beta Kappa because mathematics was humanistic and for Sigma Xi be-

 cause it was scientific shows, the place of mathematics is often far from clear.
 There should be little surprise that many find the places of statistics and data
 analysis still less clear.

 There are diverse views as to what makes a science, but three constituents
 will be judged essential by most, viz:

 (al) intellectual content,
 (a2) organization into an understandable form,
 (a3) reliance upon the test of experience as the ultimate standard of valid-

 ity.

This content downloaded from 189.63.131.205 on Fri, 29 Jul 2016 14:06:03 UTC
All use subject to http://about.jstor.org/terms



 6 JOHN W. TUKEY

 By these tests, mathematics is not a science, since its ultimate standard of valid-

 ity is an agreed-upon sort of logical consistency and provability.
 As I see it, data analysis passes all three tests, and I would regard it as a

 science, one defined by a ubiquitous problem rather than by a concrete subject.
 (Where "statistics" stands is up to "statisticians" and to which ultimate stand-
 ard-analysis of data or pure mathematics-they adhere. A useful mixed status

 may be gained by adhering sometimes to one, and sometimes to the other,,
 although it is impossible to adopt both simultaneously as ultimate standards.)

 Data analysis, and the parts of statistics which adhere to it, must then take
 on the characteristics of a science rather than those of mathematics, specifically:

 (bl) Data analysis must seek for scope and usefulness rather than security.

 (b2) Data analysis must be willing to err moderately often in order that
 inadequate evidence shall more often suggest the right answer.

 (b3) Data analysis must use mathematical argument and mathematical
 results as bases for judgment rather than as bases for proof or stamps of valid-
 ity.

 These points are meant to be taken seriously. Thus, for example, (bl) does not
 mean merely "give up security by acting as if 99.9 % confidence were certainty",
 much more importantly it means "give general advice about the use of tech-
 niques as soon as there is reasonable ground to think the advice sound; be pre-
 pared for a reasonable fraction (not too large) of cases of such advice to be gen-
 erally wrong" !

 All sciences have much of art in their makeup. (It is sad that the phrase "the
 useful and mechanic arts" no longer reminds us of this frequently.) As well as
 teaching facts and well-established structures, all sciences must teach their
 apprentices how to think about things in the manner of that particular science,
 and what are its current beliefs and practices. Data analysis must do the same.
 Inevitably its task will be harder than that of most sciences. "Physicists" have
 usually undergone a long and concentrated exposure to those who are already
 masters of the field. "Data analysts", even if professional statisticians, will
 have had far less exposure to professional data analysts during their training.

 Three reasons for this hold today and can at best be altered slowly:
 (cl) Statistics tends to be taught as part of mathematics.
 (c2) In learning statistics per se there has been limited attention to data

 analysis.
 (c3) The number of years of intimate and vigorous contact with profes-

 sionals is far less for statistics Ph.D.'s than for physics (or mathematics)
 Ph.D.'s.

 Thus data analysis, and adhering statistics, faces an unusually difficult problem
 of communicating certain of its essentials, one which cannot presumably be met
 as well as in most fields by indirect discourse and working side-by-side.

 For the present, there is no substitute for making opinions more obvious, for
 being willing to express opinions and understandings in print (knowing that
 they may be wrong), for arguing by analogy, for reporting broad conclusions
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 THE FUTURE OF DATA ANALYSIS 7

 supported upon a variety of moderately tenuous pieces of evidence (and then

 going on, later, to identify and make critical tests of these conclusions), for

 emphasing the importance of judgment and illustrating its use, (as Cox (1957)
 has done with the use of judgment indexes as competitors for covariance), not

 merely for admitting that a statistician needs to use it. And for, while doing all
 this, continuing to use statistical techniques for the confirmatory appraisal of

 observations through such conclusion procedures as confidence statements and

 tests of significance.
 Likewise, we must recognize that, as Martin Wilk has put it, "The hallmark

 of good science is that it uses models and 'theory' but never believes them."

 5. Dangers of optimization. What is needed is progress, and the unlocking
 of certain of rigidities (ossifications?) which tend to characterize statistics today.
 Whether we look back over this century, or look into our own crystal ball,
 there is but one natural chain of growth in dealing with a specific problem of
 data analysis, viz:

 (al') recognition of problem,
 (al") one technique used,
 (a2) competing techniques used,

 (a3) rough comparisons of efficacy,
 (a4) comparison in terms of a precise (and thereby inadequate) criterion,
 (a5') optimization in terms of a precise, and similarly inadequate cri-

 terion,
 (a5") comparison in terms of several criteria.

 (Number of primes does not indicate relative order.)
 If we are to be effective in introducing novelty, we must heed two main com-
 mandments in connection with new problems:

 (A) Praise and use work which reaches stage (a3), or only stage (a2), or
 even stage (al").

 (B) Urge the extension of work from each stage to the next, with special
 emphasis on the earlier stages.

 One of the clear signs of the lassitude of the present cycle of data analysis is

 the emphasis of many statisticians upon certain of the later stages to the ex-

 clusion of the earlier ones. Some, indeed, seem to equate stage (a5') to statistics

 -an attitude which if widely adopted is guaranteed to produce a dried-up,
 encysted field with little chance of real growth.

 I must once more quote George Kimball's words of wisdom (1958). "There is a
 further difficulty with the finding of 'best' solutions. All too frequently when a
 'best' solution to a problem has been found, someone comes along and finds a
 still better solution simply by pointing out the existence of a hitherto unsus-
 pected variable. In my experience when a moderately good solution to a prob-
 lem has been found, it is seldom worth while to spend much time trying to
 convert this into the 'best' solution. The time is much better spent in real re-
 search * . ." As Kimball says so forcefully, optimizing a simple or easy problem
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 8 JOHN W. TUKEY

 is not as worthwhile as meliorizing a more complex or difficult one. In data

 analysis we have no difficulty in complicating problems in useful ways. It would,
 for example, often help to introduce a number of criteria in the place of a single
 one. It would almost always help to introduce weaker assumptions, such as more

 flexibility for parent distributions. And so on.
 It is true, as in the case of other ossifications, that attacking this ossification

 is almost sure to reduce the apparent neatness of our subject. But neatness does
 not accompany rapid growth. Euclidean plane geometry is neat, but it is still

 Euclidean after two millenia. (Clyde Coombs points out that this neatness

 made it easier to think of non-Euclidean geometry. If it were generally under-

 stood that the great virtue of neatness was that it made it easier to make things
 complex again, there would be little to say against a desire for neatness.)

 6. Why optimization? Why this emphasis on optimization? It is natural, and
 desirable, for mathematicians to optimize; it focusses attention on a small sub-
 set of all possibilities, it often leads to general principles, it encourages sharpen-
 ing of concepts, particularly when intuitively unsound optima are regarded as

 reasons for reexamining concepts and criteria (e.g., Cox, (1958, p. 361) and the
 criterion of power). Danger only comes from mathematical optimizing when the
 results are taken too seriously. In elementary calculus we all optimize surface-

 to-volume relations, but no one complains when milk bottles turn out to be
 neither spherical or cylindrical. It is understood there that such optimum prob-
 lems are unrealistically oversimplified, that they offer guidance, not the answer.
 (Treated similarly, the optimum results of mathematical statistics can be most

 valuable.)
 There is a second reason for emphasis upon the optimum, one based more

 upon the historical circumstances than upon today's conditions. Let others speak:
 "It is a pity, therefore, that the authors have confined their attention to the

 relatively simple problem of determining the approximate distribution of ar-
 bitrary criteria and have failed to produce any sort of justification for the tests

 they propose. In addition to those functions studied there are an infinity of
 others, and unless some principle of selection is introduced we have nothing to
 look forward to but an infinity of test criteria and an infinity of papers in which

 they are described." (Box, 1956, p. 29.)
 "More generally still, one has the feeling that the statistics we are in the habit

 of calculating from our time series tend to be unduly stereotyped. We are, in a
 way, in the reverse situation to that which obtained when Fisher wrote about
 how easy it was to invent a great multiplicity of statistics, and how the problem
 was to select the good Btatistics from the bad ones. With time series we could

 surely benefit from the exploration of the properties of many more statistics
 than we are in the habit of calculating. We are more sober than in the days of
 Fechner, Galton, and "K.P."; perhaps we are too sober." (Barnard, 1959a, p.
 257.)

 The first quotation denies that (a2) above should precede (a3) to (aS'), while
 the second affirms that (a2) and (a3) should be pushed, especially in fields that
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 THE FUTURE OF DATA ANALYSIS 9

 have not been well explored. (The writer would not like to worry about an
 infinity of methods for attacking a question until he has at least four such which
 have not been shown to have distinguishable behavior.)

 7. The absence of judgment. The view that "statistics is optimization" is
 perhaps but a reflection of the view that "data analysis should not appear to
 be a matter of judgment". Here "appear to" is in italics because many who hold
 this view would like to suppress these words, even though, when pressed, they
 would agree that the optimum does depend upon the assumptions and criteria,
 whose selection may, perhaps, even be admitted to involve judgment. It is very
 helpful to replace the use of judgment by the use of knowledge, but only if
 the result is the use of knowledge with judgment.

 Pure mathematics differs from most human endeavor in that assumptions are

 not criticized because of their relation to something outside, though they are,
 of course, often criticized as unaesthetic or as unnecessarily strong. This cleav-
 age between pure mathematics and other human activities has been deepening
 since the introduction of non-Euclidean geometries by Gauss, Bolyai, and
 Lobachevski about a century and a half ago. Criticism of assumptions on the
 basis of aesthetics and strength, without regard for external correspondence
 has proved its value for the development of mathematics. But we dare not use
 such a wholly internal standard anywhere except in pure mathematics. (For a
 discussion of its dangers in pure mathematics, see the closing pages of von Neu-
 mann, 1947.)

 In data analysis we must look to a very heavy emphasis on judgment. At least
 three different sorts or sources of judgment are likely to be involved in almost
 every instance:

 (al) judgment based upon the experience of the particular field of subject
 matter from which the data come,

 (a2) judgment based upon a broad experience with how particular tech-
 niques of data analysis have worked out in a variety of fields of application,

 (a3) judgment based upon abstract results about the properties of par-
 ticular techniques, whether obtained by mathematical proofs or empirical
 sampling.

 Notice especially the form of (a3). It is consistent with actual practice in
 every field of science with a theoretical branch. A scientist's actions are guided,
 not determined, by what has been derived from theory or established by ex-
 periment, as is his advice to others. The judgment with which isolated results are
 put together to guide action or advice in the usual situation, which is too com-
 plex for guidance to be deduced from available knowledge, will often be a mixture
 of individual and collective judgments, but judgment will play a crucial role.
 Scientists know that they will sometimes be wrong; they try not to err too often,
 but they accept some insecurity as the price of wider scope. Data analysts must
 do the same.

 One can describe some of the most important steps in the development of
 mathematical statistics as attempts to save smaller and smaller scraps of cer-
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 10 JOHN W. TUKEY

 tainty (ending with giving up the certainty of using an optimal technique for
 the certainty of using an admissible one, one that at least cannot be unequivo-
 cally shown to be non-optimal). Such attempts must, in large part at least, be
 attempts to maintain the mathematical character of statistics at the expense of
 its data-analytical character.

 If data analysis is to be well done, much of it must be a matter of judgment,
 and "theory", whether statistical or non-statistical, will have to guide, not
 command.

 8. The reflection of judgment upon theory. The wise exercise of judgment
 can hardly help but to stimulate new theory. While the occurrence of this
 phenomenon may not be in question, its appropriateness is regarded quite dif-
 ferently. Three quotations from the discussion of Kiefer's recent paper before
 the Research Section of the Royal Statistical Society point up the issue:

 "Obviously, if a scientist asks my advice about a complex problem for which
 I cannot compute a good procedure in the near future, I am not going to tell
 him to cease his work until such a procedure is found. But when I give him the
 best that my intuition and reason can now produce, I am not going to be satis-
 fied with it, no matter how clever a procedure it may appear on the surface. The
 aim of the subject is not the construction of nice looking procedures with in-
 tuitive appeal, but the determination of procedures which are proved to be good."
 (Kiefer (1959, p. 317) in reply to discussion.)

 "A major part of Dr. Kiefer's contribution is that he is forcing us to consider
 very carefully what we want from a design. But it seems to me to be no more
 reprehensible to start with an intuitively attractive design and then to search
 for optimality criteria which it satisfies, then to follow the approach of the present
 paper, starting from (if I may call it so) an intuitively attractive criterion, and
 then to search for designs which satisfy it. Either way one is liable to be surprised
 by what comes out; but the two methods are complementary." (Mallows, 1959,
 p. 307.)

 "The essential point of the divergence is concisely stated at the end of section
 A: 'The rational approach is to state the problem and the optimality criterion
 and then to find the appropriate design, and not alter the statements of the prob-
 lem and criterion just to justify the use of the design to which we are wedded by
 our prejudiced intuition.' I would agree with this statement if the word 'deduc-
 tive' were inserted in place of the word 'rational'. As a rationalist I feel that the
 word 'rational' is one which indicates a high element of desirability, and I think
 it is much broader in its meaning than 'deductive'. In fact what appears to me to
 be the rational approach is to take designs which are in use already, to see what
 is achieved by these designs by consideration of the general aims to evaluate
 such designs, in a provisional way, and then to seek to find designs which im-
 prove on existing practice. Having found such designs the cycle should be re-
 peated again. The important thing about this approach is that we are always
 able to adjust our optimality criteria to designs as well as adjusting our designs
 to our optimality criteria." (Barnard, 1959b, p. 312).
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 THE FUTURE OF DATA ANALYSIS 11

 9. Teaching data analysis. The problems of teaching data analysis have
 undoubtedly had much to do with these unfortunate rigidities. Teaching data
 analysis is not easy, and the time allowed is always far from sufficient. But these
 difficulties have been enhanced by certain views which have been widely adopted,
 such as those caricatured in:

 (al) "avoidance of cookbookery and growth of understanding come only
 by mathematical treatment, with emphasis upon proofs".

 (a2) "It is really quite intolerable for the teacher then to have to reply,
 'I don't know'." (An actual quotation from Stevens (1950, p. 129).)

 (a3) "whatever the facts may be, we must keep things simple so that we
 can teach students more easily".

 (a4) "even if we do not know how to treat this problem so as to be either
 good data analysis or good mathematics, we should treat it somehow, because
 we must teach the students something".

 It would be well for statistics if these points of view were not true to life, were
 overdrawn, but it is not hard to find them adopted in practice, even among one's
 friends.

 The problem of cookbookery is not peculiar to data analysis. But the solution
 of concentrating upon mathematics and proof is. The field of biochemistry today
 contains much more detailed knowledge than does the field of data analysis.
 The over-all teaching problem is more difficult. Yet the text books strive to tell
 the facts in as much detail as they can find room for. (Biochemistry was selected
 for this example because there is a clear and readable account by a coauthor of
 a leading text of how such a text is revised (Azimov, 1955).)

 A teacher of biochemistry does not find it intolerable to say "I don't know".
 Nor does a physicist. Each spends a fair amount of time explaining what his
 science does not know, and, consequently, what are some of the challenges it
 offers the new student. Why should not both data analysts and statisticians do
 the same?

 Surely the simplest problems of data analysis are those of
 (bl) location based upon a single set of data,
 (b2) relative location based upon two sets of data.

 There are various procedures for dealing with each of these problems. Our
 knowledge about their relative merits under various circumstances is far from
 negligible. Some of it is a matter of proof, much of the rest can be learned by
 collecting the results when each member of any class draws a few samples from
 each of several parent distributions and applies the techniques. Take the one-
 sample problem as an example. What text, and which teachers, teach the follow-
 ing simple facts about one-sample tests?

 (cl) for symmetrical distributions toward the rectangular, the mid-range
 offers high-efficiency of point-estimation, while the normally-calibrated
 range-midrange procedure (Walsh, 1949a) offers conservative but still effi-
 cient confidence intervals,

 (c2) for symmetrical distributions near normality, the mean offers good
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 12 JOHN W. TUKEY

 point estimates and Student's t offers good confidence intervals, but signed-
 rank (Wilcoxon, 1949; Walsh, 1949b, 1959) confidence intervals are about as
 good for small and moderate sample sizes,

 (c3) for symmetrical distributions with slightly longer tails, like the logistic
 perhaps, a (trimmed) mean omitting a prechosen number of the smallest and
 an equal number of the largest observations offers good point estimates,
 while signed-rank procedures offer good interval estimates,

 (c4) for symmetric distributions with really long tails (like the central
 99.8 % of the Cauchy distribution, perhaps) the median offers good point
 estimates, and the sign test offers good interval estimates.

 (c5) the behavior of the one-sample t-test has been studied by various
 authors (cp., Gayen, 1949, and references cited by him) with results for asym-
 metric distributions which can be digested and expressed in understandable
 form.

 These facts are specific, and would not merit the expenditure of a large fraction
 of a course in data analysis. But they can be said briefly. And, while time spent
 showing that Student's t is optimum for exactly normal samples may well, on
 balance, have a negative value, time spent on these points would have a positive
 one.

 These facts are a little complex, and may not prove infinitely easy to teach,
 but any class can check almost any one of them by doing its own experimental
 sampling. Is it any better to teach everyone, amateurs and professionals alike,
 about only a single one-sample procedure (or as is perhaps worse about the com-
 parative merits of various procedures in sampling from but a single shape of
 parent population) than it would be to teach laymen and doctors alike that the
 only pill to give is aspirin (or to discuss the merits and demerits of various pills
 for but a single ailment, mild headache)?

 Some might think point (a4) above to be excessively stretched. Let us turn
 again to the Stevens article referred to in (a2), in which he introduced ran-
 domized confidence intervals for binomial populations. In an addendum, Stevens
 notes an independent proposal and discussion of this technique, saying: "It was
 there dismissed rather briefly as being unsatisfactory. This may be granted but
 since. . . some solution is necessary [because the teacher should not say "I don't
 know" (J. W. T.)], it seems that this one deserves to be studied and to be used
 by teachers of statistics until a better one can be found." The solution is ad-
 mittedly unsatisfactory, and not just the best we have to date, yet it is to be
 taught, and used!

 Not only must data analysis admit that it uses judgment, it must cease to
 hide its lack of knowledge by teaching answers better left unused. The useful
 must be separated from the unuseful or antiuseful.

 As Egon Pearson pointed out in a Statistical Techniques Research Group
 discussion where this point was raised, there is a real place in discussing ran-
 domized confidence limits in advanced classes for statisticians; not because they
 are useful, not because of aesthetic beauty, but rather because they may stimu-
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 THE FUTURE OF DATA ANALYSIS 13

 late critical thought. As Martin Wilk puts it: "We dare not confine ourselves to

 emphasizing properties (such as efficiency or robustness) which, although some-
 times useful as guides, only hold under classes of assumptions all of which may

 be wholly unrealistic; we must teach an understanding of why certain sorts of
 techniques (e.g., confidence intervals) are indeed useful."

 10. Practicing- data analysis. If data analysis is to be helpful and useful, it
 must be practiced. There are many ways in which it can be used, some good
 and some evil. Laying aside unethical practices, one of the most dangerous (as
 I have argued elsewhere (Tukey, 1961b)) is the use of formal data-analytical
 procedures for sanctification, for the preservation of conclusions from all criti-

 cism, for the granting of an imprimatur. While statisticians have contributed to
 this misuse, their share has been small. There is a corresponding danger for data
 analysis, particularly in its statistical aspects. This is the view that all statis-
 ticians should treat a given set of data in the same way, just as all British ad-

 mirals, in the days of sail, maneuvered in accord with the same principles. The
 admirals could not communicate with one another, and a single basic doctrine
 was essential to coordinated and effective action. Today, statisticians can com-
 municate with one another, and have more to gain by using special knowledge
 (subject-matter or methodological) and flexibility of attack than they have to
 lose by not all behaving alike.

 In general, the best account of current statistical thinking and practice is to

 be found in the printed discussions in the Journal of the Royal Statistical Society.
 While reviewing some of these lately, I was surprised, and a little shocked to
 find the following:

 "I should like to give a word of warning concerning the approach to tests of
 significance adopted in this paper. It is very easy to devise different tests which,
 on the average, have similar properties, i.e., they behave satisfactorily when the
 null hypothesis is true and have approximately the same power of detecting
 departures from that hypothesis. Two such tests may, however, give very dif-
 ferent results when applied to a given set of data. This situation leads to a good
 deal of contention amongst statisticians and much discredit of the science of
 statistics. The appalling position can easily arise in which one can get any answer
 one wants if only one goes around to a large enough number of statisticians."
 (Yates, 1955, p. 31).

 To my mind this quotation, if taken very much more seriously than I presume
 it to have been meant, nearly typifies a picture of statistics as a monolithic,

 authoritarian structure designed to produce the "official" results. While the
 possibility of development in-this direction is a real danger to data analysis, I
 find it hard to believe that this danger is as great as that posed by over-emphasis
 on optimization.

 11. Facing uncertainty. The most important maxim for data analysis to heed,
 and one which many statisticians seem to have shunned, is this: "Far better an
 approximate answer to the right question, which is often vague, than an exact
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 14 JOHN W. TUKEY

 answer to the wrong question, which can always be made precise." Data analysis
 must progress by approximate answers, at best, since its knowledge of what the
 problem really is will at best be approximate. It would be a mistake not to face

 up to this fact, for by denying it, we would deny ourselves the use of a great body
 of approximate knowledge, as well as failing to maintain alertness to the possible
 importance in each particular instance of particular ways in which our knowl-
 edge is incomplete.

 II. SPOTTY DATA

 12. What is it? The area which is presently most obviously promising as a

 site of vigorous new growth in data analysis has a long history. The surveyor
 recognizes a clear distinction between "errors" with which he must live, and

 "blunders", whose effects he must avoid. This distinction is partly a matter of
 size of deviation, but more a matter of difference in the character or assigna-
 bility of causes. Early in the history of formal data analysis this recognition led
 to work on the "rejection of observations". Until quite recently matters rested
 there.

 One main problem is the excision of the effects of occasional potent causes.
 The gain from such excision should not be undervalued. Paul Olmstead, for
 example, who has had extensive experience with such data, maintains that
 engineering data typically involves 10 % of "wild shots" or "stragglers". A
 ratio of 3 between "wild shot" and "normal" standard deviations is far too low
 (individual "wild shots" can then hardly be detected). Yet 10 % wild shots
 with standard deviation 3o contribute a variance equal to that of the remaining
 90 % of the cases with standard deviation 1a. Wild shots can easily double,
 triple, or quadruple a variance, so that really large increases in precision can
 result from cutting out their effects.

 We are proud, and rightly so, of the "robustness" of the analysis of variance.
 A few "wild shots" sprinkled at random into data taken in a conventional
 symmetric pattern will, on the average, affect each mean square equally. True,
 but we usually forget that this provides only "robustness of validity", ensuring
 that we will not be led by "wild shots" to too many false positives, or to too
 great security about the precision of our estimates. Conventional analysis of
 variance procedures offer little "robustness of efficiency", little tendency for
 the high efficiency provided for normal distributions of fluctuations-and-errors
 to be preserved for non-normal distributions. A few "wild shots", either spread
 widely or concentrated in a single cell, can increase all mean squares substan-
 tially. (Other spreadings may have different results.) From a hypothesis-testing
 point of view this decreases our chances of detecting real effects, and increases
 the number of false negatives, perhaps greatly. From an estimation point of
 view it increases our variance of estimate and decreases our efficiency, perhaps
 greatly. Today we are far from adopting an adequately sensitive technique of
 analysis, even in such simple situations as randomized blocks.

 Now one cannot look at a single body of data alone and be sure which are the

This content downloaded from 189.63.131.205 on Fri, 29 Jul 2016 14:06:03 UTC
All use subject to http://about.jstor.org/terms
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 "'wild shots". One can usually find a statistician to argue that some particular
 observation is not unusual in cause, but is rather "merely a large deviation".
 When there are many such, he will have to admit that the distribution of de-
 viations (of errors, of fluctuations) has much longer tails than a Gaussian (nor-
 mal) distribution. And there will be instances where he will be correct in such
 a view.

 It would be unfortunate if the proper treatment of data was seriously different
 when errors-and-fluctuations have a long-tailed distribution, as compared to
 the case where occasional causes throw in "wild shots". Fortunately, this ap-
 pears not to be the case; cures or palliatives for the one seem to be effective
 against the other. A simple indication that this is likely to be so is furnished by
 the probability element

 [(1 - 0) (27r)-'e4"2 + 0[h-'(27r) -]e-y222] dy,

 which can be construed in at least three ways:
 (al) as a unified long-tailed distribution which is conveniently manipulable

 in certain ways,

 (a2) as representing a situation in which there is probability 0 that an oc-
 casional-cause system, which contributes additional variability when it acts,
 will indeed act,

 (a3) as representing a situation in which variability is irregularly non-
 homogeneous.

 It is convenient to classify together most instances of long-tailed fluctuation-
 and-error distributions, most instances of occasional causes with large effects,
 and a substantial number of cases with irregularly non-constant variability; the
 term "spotty data" is surely appropriate.

 13. An appropriate step forward. Clearly the treatment of spotty data is
 going to force us to abandon normality. And clearly we can go far by studying
 cases of sampling from long-tailed distributions. How far to go? Which long-
 tailed distributions to face up to?

 To seek complete answers to these questions would be foolish. But a little
 reflection takes us a surprising distance. We do not wish to take on any more
 new problems than we must. Accordingly it will be well for us to begin with
 long-tailed distributions which offer the minimum of doubt as to what should be
 taken as the "true value". If we stick to symmetrical distributions we can avoid
 all difficulties of this sort. The center of symmetry is the median, the mean (if
 this exists), and the a % trimmed mean for all a. (The a % trimmed mean is the
 mean of the part of the distribution between the lower a % point and the upper
 a % point.) No other point on a symmetrical distribution has a particular claim
 to be considered the "true value". Thus we will do well to begin by restricting
 ourselves to symmetric distributions.

 Should we consider all symmetric distributions? This would be a counsel of
 perfection, and dangerous, since it would offer us far more flexibility than we
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 16 JOHN W. TUKEY

 know how to handle. We can surely manage, even in the beginning, to face a
 single one-parameter family of shapes of distribution. Indeed we may be able
 to face a few such families. Which ones will be most effective? Experience to date
 suggests that we should be interested both in families of shapes in which the
 tails behave more or less as one would expect from the remainder of the dis-
 tribution (conforming tails) and in families in which the tails are longer than
 the remainder suggests (surprising tails). The latter are of course peculiarly
 applicable to situations involving occasional causes of moderately rare occur-
 rence.

 What one-parameter families of distribution shapes with conforming tails
 should be considered? And will the choice matter much? We may look for candi-
 dates in two directions, symmetric distributions proposed for graduation, and
 symmetric distributions which are easy to manipulate. The leading classical
 candidate consists of:

 (al) the symmetric Pearson distributions, namely the normal-theory dis-
 tributions of Student's t and Pearson's r.

 The only similar system worth particular mention is:

 (a2) N. L. Johnson's [1949] distributions, which, in the symmetric case,

 are the distributions of tanh N/l or sinh N/l, where N follows a unit normal
 distribution, and a is an appropriate constant.

 While the symmetrical Johnson curves are moderately easy to manipulate in
 various circumstances, even more facility is frequently offered by what may be
 called the lambda-distributions, viz:

 (a3) the distributions of PX - (1 -P) f'where P is uniformly distributed
 on (0, 1).

 (It is possible that it would be desirable to introduce a further system of sym-
 metrical distributions obtained from the logistic distribution by simple trans-
 formation.)

 While the analytic descriptions of these three conforming systems are quite
 different, there is, fortunately, little need to be careful in choosing among them,
 since they are remarkably similar (personal communication from E. S. Pearson
 for (a2) vs. (al) and Tukey, 1962 for (a3) vs. (al)).

 The extreme cases of all of these symmetrical families will fail to have certain
 moments; some will fail to have variances, others will even fail to have means.
 It is easy to forget that these failures are associated with the last e of cumulative
 probability in each tail, no matter how small e > 0 may be. If we clip a tail of
 probability 10-40 off each end of a Cauchy distribution (this requires clipping in
 the vicinity of x = ?i102w), and replace the removed 2.10-40 probability at any
 bounded set of values, the resulting distribution will have finite moments of all
 orders. But the behavior of samples of sizes less than, say, 103? from the two
 distributions will be practically indistinguishable. The finiteness of the moments
 does not matter directly; the extendedness of the tails does. For distributions
 given in simple analytic fonn, infiniteness of moments often warns of practical
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 extendedness of tails, but, as the infinite moments of

 dF = [(1 - 104)(2r)'es' + 1-0 6(4/T)(1 + x2) ']dx

 show in the other direction, there is no necesary connection. A sure way to
 drive ourselves away from attaching undue significance to infinite moments, and
 back to a realistic view is to study some one-parameter families with finite
 moments which converge to infinite-moment cases. These are easy to find, and
 include

 (bl) the distribution of tanX, where (2/r)X is uniform on (-0, +0)
 for 0 < 0 < 1 (as 0 -* 1, this goes to the Cauchy distribution)

 (b2) the distribution of (1 - P)-l - P-l, where P is uniform on (e, 1 - e)
 for 0 < e < 0.5 (as e -- 0, this goes to a rough approximation to a Cauchy
 distribution).

 (Note that all distributions satisfying (bl) and (b2) have all moments finite.)
 Beyond this we shaU want in due course to consider some symmetrical dis-

 tributions with surprising tails (i.e., some which have longer tails than would be
 expected from the rest of the distribution). Here we might consider, in particular:

 (cl) contaminated distributions at scale 3, with probability element

 (1 - 0) (2r) -e"2 + 0[3-1(2)I) je 2uI8I dy,

 (c2) contaminated lambda distributions such as

 (1 -) [p0_2 _ (1 _ p)0,2] + 0[og p - log (1 -P)]

 and

 (1 - Olog P - log (1 - P)] + 0[(1/P) - (1 p)-

 There is no scarcity of one-shape-parameter families of symmetrical distribu-
 tions which are reasonably easily manipulated and whose behavior can offer
 valuable guidance.

 Once we have a reasonable command of the symmetrical case, at least in a
 few problems, it will be time to plan our attack upon the unsymmetrical case.

 14. Trimming and Winsorizing samples. In the simplest problems, those
 involving only the location of one or more simple random samples, it is natural
 to attempt to eliminate the effects of "wild shots" by trimming each sample, by
 removing equal numbers of the lowest and highest observations, and then pro-
 ceding as if the trimmed sample were a complete sample. As in all procedures
 intended to guard against "wild shots" or long-tailed distributions, we must
 expect, in comparison with procedures tailored to exactly normal distributions:

 (al) some loss in efficiency when the samples do come from a normal dis-
 tribution,

 (a2) increased efficiency when the samples come from a long-tailed dis-
 tribution.
 An adequate study of the effects of trimming naturally proceeds step by step.
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 18 JOHN W. TUKEY

 It may well start with comparisons of variances of trimmed means with those
 of untrimmed means, first for normal samples, and then for long-tailed samples.
 Order-statistic moments for samples from long-tailed distributions are thus re-
 quired. The next step is to consider alternative modifications of the classical
 t-statistic with a trimmed mean in the numerator and various denominators.
 Order statistic moments, first for the normal and rectangular, and then for suit-
 able long-tailed distributions are now used to determine the ratios

 variance of numerator

 average squared denominator

 for various modified t-statistics and various underlying distributions. This
 enables the choice of a denominator which will make this ratio quite closely
 constant. (It is, of course, exactly constant for the classical t-statistic.) Detailed
 behavior for both normal and non-normal distributions is now to be obtained;
 sophicated experimental sampling is almost certainly necessary and sufficient
 for this. Close agreement of critical values can now replace close agreement of
 moment ratios as a basis for selection, and critical values can then be supple-
 mented with both normal and non-normal power functions. At that point we
 will know rather more about the symmetrical-distribution behavior of such
 modified t-statistics based upon trimmed samples than we presently do about
 Student's t itself. (This program is actively under way at the Statistical Tech-
 niques Research Group of Princeton University.)

 Both this discussion, and the work at S. T. R. G., began with the case of
 trimmed samples because it is the simplest to think about. But it is not likely
 to be the most effective for moderately or sub-extremely long-tailed distribution.
 When I first met Charles P. Winsor in 1941 he had already developed a clear
 and individual philosophy about the proper treatment of apparent "wild shots".
 When he found an "outlier" in a sample he did not simply reject it. Rather he
 changed its value, replacing its original value by the nearest value of an observa-
 tion not seriously suspect. His philosophy for doing this, which applied to "wild
 shots", can be supplemented by a philosophy appropriate to long-tailed dis-
 tributions which leads to the same actions (cp., Anscombe and Tukey, 1962). It
 seems only appropriate, then, to attach his name to the process of replacing
 the values of certain of the most extreme observations in a sample by the nearest
 unaffected values, to speak of Winsorizing or Winsorization.

 For normal samples, Winsorized means are more stable than trimmed means
 (Dixon, 1960, 1957). Consequently there is need to examine the advantages of
 modified t-statistics based upon Winsorized samples.

 The needs and possibilities will not come to an end here. So far we have dis-
 cussed only the case where a fixed number of observations are trimmed from, or
 Winsorized at, each end of a sample. But intelligent rejection of observations has
 always been guided by the configuration of the particular sample considered,
 more observations being discarded from some samples than from others. Tailor-
 ing is required.
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 Tailored trimming and tailored Winsorizing, respectively, may thus be ex-

 pected to give better results than fixed trimming or fixed Winsorizing, and will
 require separate study. (Given a prescribed way of choosing the number to be

 removed or modified at each end, there will, in particular, be a common factor

 (for given sample size) by which the length of the corresponding fixed-mode con-

 fidence limits can be multiplied in order to obtain tailored-mode confidence
 limits with the indicated confidence. This is of course only one way to allow for

 tailoring each sample separately.)

 All these procedures need to be studied first for the single sample situation,

 whose results should provide considerable guidance for those multiple-sample
 problems where conventional approaches would involve separate estimates of

 variance. Situations leading classically to pooled variances are well-known to be
 wisely dealt with by randomization theory so far as robustness of validity is con-

 cerned (cp., Pitman, 1937; Welch, 1938). While randomization of trimmed

 samples could be studied, it would seem to involve unnecessary complications,
 especially since the pure-randomization part of the randomization theory of

 Winsorized samples in inevitably the same as for unmodified samples. In particu-
 lar, robustness of validity is certain to be preserved by Winsorization. And there
 is every reason to expect robustness of efficiency to be considerably improved

 in such problems by judicious Winsorization in advance of the application of
 randomization theory.

 Before we leave this general topic we owe the reader a few numbers. Consider

 the means of a sample of 11, of that sample with 2 observations trimmed from

 each end, and of that sample with 2 observations Winsorized on each end. The
 resulting variances, for a unit normal parent, and for a Cauchy parent, are as
 follows (cp., Dixon, 1960; Sarhan and Greenberg, 1958 for normal variances of

 symmetrically Winsorized means):

 Normal parent Cauchy parent

 plain mean 0.091 infinite

 trimmed mean 0.102 finite
 Winsorized mean 0.095 finite*

 * Presumably larger than for the corresponding trimmed mean.

 The small loss due to Winsorization or trimming in the face of a normal parent

 contrasts interestingly with the large gain in the face of a Cauchy parent.

 15. How soon should such techniques be put into service? The question of

 what we need to know about a new procedure before we recommend its use, or
 begin to use it, should not be a difficult one. Yet when one friendly private
 comment about a new non-parametric procedure (that in Siegel and Tukey,
 1960) was that it should not appear in print, and I presume should a fortiori not

 be put into service, even in those places where such a non-parametric procedure
 is appropriate, until its power function was given, there are differences of opinion

 of some magnitude. (Especially when the sparsity of examples of non-parametric
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 20 JOHN W. TUKEY

 power functions which offer useful guidance to those who might use the procedure
 is considered.)

 Let us cast our thoughts back to Student's t. How much did we know when
 it was introduced into service? Not even the distribution for a normal parent was

 known! Some empirical sampling, a few moments, and some Pearson curves

 produced the tables of critical values. But, since it filled an aching void, it went

 directly into use.
 As time went on, the position of the single-sample t procedure became first

 better, as its distribution, and its optimality, under normal assumptions was

 established, and then poorer, as more was learned about its weaknesses for non-
 normal samples, whose frequent occurrence had been stressed by Student him-
 self (1927). (For references to the history of the discovery of the weaknesses see,
 e.g., Geary, 1947; and Gayen, 1949. For references which tend to support Geary's
 (1949, p. 241) proposal that all textbooks state that "Normality is a myth; there

 never has, and never will be, a normal distribution.", see Tukey, 1960.)

 The case of modified t's based upon trimmed or Winsorized means is somewhat

 different. There are already well-established procedures with known advantages,
 viz:

 (al) Student's t, optimum for normality

 (a2) the signed-rank procedure, robust of validity within symmetry

 (a3) the sign-test procedure, robust of validity generally.
 How much do we need to know about a competitor before we introduce it to

 service? For my own part, I expect to begin recommending the first product of
 the program sketched above, a modified t based upon a trimmed mean with
 fixed degree of trimming, as a standard procedure for most single-sample location
 problems, as soon as I know:

 (bl) that the variance of the numerator for normality is suitably small.
 (b2) that the ratio of ave (denominator)2 to var (numerator) is constant

 to within a few % for a variety of symmetrical parent distributions.

 (b3) estimates based upon empirical sampling of the critical values (%
 points) appropriate for normality.

 In bringing such a procedure forward it would be essential to emphasize that it
 was not the final answer; that newer and better procedures were to be expected,
 perhaps shortly. (Indeed it would be wrong to feel that we are ever going to
 completely and finally solve any of the problems of data analysis, even the
 simple ones.)

 Surely the suggested amount of knowledge is not enough for anyone to guar-
 antee either

 (cl) that the chance of error, when the procedure is applied to real data,
 corresponds precisely to the nominal levels of significance or confidence, or

 (c2) that the procedure, when applied to real data, will be optimal in any
 one specific sense.

 BUT WE HAVE NEVER BEEN ABLE TO MAKE EITHER OF THESE
 STATEMENTS ABOUT Student's t. Should we therefore never have used
 Student's t?
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 A judgment of what procedures to introduce, to recommend, to use, must

 always be a judgment, a judgment of whether the gain is relatively certain, or
 perhaps only likely, to outweigh the loss. And this judgment can be based upon a
 combination of the three points above with general information of what longer-
 tailed distributions do to trimmed and untrimmed means.

 III. SPOTTY DATA IN MORE COMPLEX SITUATIONS

 16. Modified normal plottng. Spotty data are not confined to problems of

 simple structure. Good procedures for dealing with spotty data are not always
 going to be as forthright and direct as those just discussed for simple samples,
 where one may make a single direct calculation, and where even tailored trim-

 ming or Winsorizing need only require carrying out a number of direct calcula-
 tions and selecting the most favorable. Once we proceed to situations where our
 "criticism" of an apparent deviation must be based upon apparent deviations
 corresponding to different conditions, we shall find iterative methods of calcula-
 tion convenient and almost essential. Iteration will, in fact, take place in "loops
 within loops" since the details of, e.g., making a particular fit may involve
 several iterative cycles (as in non-linear least squares, e.g., ep., Deming, 1943, or
 in probit analysis; e.g., cp., Finney, 1947, 1952), while human examination of
 the results of a particular fit may lead to refitting all over again, with a different
 model or different weights. Even such simple problems as linear regression,
 multiple regression, and cross-classified analyses of variance will require iteration.

 The two-way table offers simple instance which is both illuminating and useful.
 A class of procedures consistent with the philosophies noted in Section 14 [cp.,
 Anscombe and Tukey, 19621 operate in the following way:

 (al) if a particular deviation is much "too large" in comparison with the
 bulk of the other deviations, its effect upon the final estimates is to be made
 very small

 (a2) if a particular deviation is only moderately "too large", its effect is to
 be decreased, but not made negligible.

 The first task in developing such a procedure must be the setting up of a sub-
 procedure which identifies the "too muchness", if any, of the extreme apparent
 deviations. In the first approximation, this procedure may take no account of
 the fact that we are concerned with residuals, and may proceed as if it were
 analyzing a possibly normal sample.

 The natural way to attack this problem graphically would be to fit row and

 column means, calculate residuals (=apparent deviations), order them, plot
 them against typical values for normal order statistics, draw a straight line
 through the result, and assess "too muchness" of extreme deviations in terms of
 their tendency to fall off the line. Such an approach would be moderately ef-
 fective. Attempts to routinize or automate the procedure would find difficulty in
 describing just how to fit the straight line, since little weight should be given to
 apparently discrepant points.

 The display can be made more sensitive, and automation easier, if a different
 plot is used where ordinates correspond to secant slopes on the older plot. More
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 precisely, if we make a conventional probability plot on probability graph paper,
 we plot the observed ith smallest value in a set of n over (against) a correspond-
 ing fraction on the probability scale. (Different choices are conventionally
 made for this fraction, such (i - 1)/n or i/(n + 1).) The same plot could be
 made on ordinary graph paper if we were to plot yi, the ith smallest, against
 ail., the standard normal deviate corresponding to the selected probability.

 With this meaning for the plotting constants aiin, denote the median of the
 values to be examined by y (read "y split"). Then (0, y) and (ail. , yi) are
 points in the old plot, and the slope of the line segment (secant) joining them is

 Zi = yi -
 ailn

 A plot of zi against i is a more revealing plot, and one to which we should like
 to fit a horizontal line. We have then only to select a typical z, and can avoid
 great weight on aberrant values by selecting a median of a suitable set of z's.

 The choice of ailn has been discussed at some length (cp., Blom, 1958, pp.
 144-146 and references there to Weibull, Gumbel, Bliss, Ipsen and Jerne; cp.
 also, Chemoff and Lieberman, 1954). The differences between the various choices
 are probably not very important. The choice ailn = Gau- [(3i - 1)/(3n + 1)],
 where P = Gau (y) is the normal cumulative, is simple and surely an adequate
 approximation to what is claimed to be optimum (also cp., Blom, 1958, pp.
 70-71).

 17. Automated examiation. Some would say that one should not automate
 such procedures of examination, that one should encourage the study of the data.
 (Which is somehow discouraged by automation?) To this view there are at least
 three strong counter-arguments:

 (1) Most data analysis is going to be done by people who are not sophisti-
 cated data analysts and who have very limited time; if you do not provide
 them tools the data will be even less studied. Properly automated tools are
 the easiest to use for a man with a computer.

 (2) If sophisticated data analysts are to gain in depth and power, they
 must have both the time and the stimulation to try out new procedures of
 analysis; hence the known procedures must be made easy for them to apply
 as possible. Again automation is called for.

 (3) If we are to study and intercompare procedures, it will be much easier
 if the procedures have been fully specified, as must happen if the process of
 being made routine and automatizable.

 I find these counterarguments conclusive, and I look forward to the automation
 of as many standardizable statistical procedures as possible. When these are
 available, we can teach the man who will have access'to them the "why" and
 the "which", and let the "how" follow along.

 18. FUNOP. A specific arithmetic analog of the modified plot of Section 16,
 which we may call FUNOP (from FUll NOrmal Plot) proceeds as follows:
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 (bl) Let ail. be a typical value for the ith ordered observation in a sample
 of n from a unit normal distribution. (See Section 16.)

 (b2) Let yi ? Y2 < ... < yn be the ordered values to be examined. Let
 y be their median (or let y, read "y trimmed", be the mean of the yi with
 in < i < 1(2n).

 (b3) Fori _ 'n or >I(2n) only, letzi = (yi - y)/ailn (or let zi = (yi -Y
 /ailn) -

 (b4) Let z be the median of the z's thus obtained (about ' (2n) in number).
 (b5) Give special attention to z's for which both yj - PJ _ A zi and zi >

 B . i where A and B are prechosen.
 (b5*) Particularly for small n, zj's with j more extreme than an i for which

 (b5) selects zi also deserve special attention (remark of Denis J. Farlie).
 Note that if the y's were a sample from a normal population with mean ,u

 and variance a2 we should have

 ave yi = ,u + aail, ave zi = [(ai1 n/ (ailn) la -a,
 where ai*Zn is the average value of the ith order statistic in a sample of n from the
 unit normal distribution. If a few y's are perturbed and thus made larger, the
 result will be to make a few z's larger, perhaps considerably so, and to shift
 others by modest amounts. Consequently z is a reasonable estimate, with a slight
 tendency toward inflation, of the a of the "main normal part of" the distribution
 from which the y's came.

 The requirement that zi ? Bz is a requirement that the ith observation is
 comparatively large for an ith observation. The requirement that yi- _
 A z i is roughly that yi is beyond y i A a. Some combination of these meets
 many, and I believe most, of the requirements it is reasonable to impose, in
 different circumstances, upon a procedure for identifying values for special
 treatment or attention. For the present we must choose A and B mainly on a
 judgment basis, but we can look forward to future comparisons, probably by
 experimental sampling, of the effects of various choices under specific circum-
 stances.

 The i's with 'n < i < 1(2n) are excluded from the formation of zi's both
 because the small values of ailn promote instability and because zi's for such
 i's seem unrevealing. The choice of the middle 'l of all i's for omission is again
 judgment, but reasonable changes here are not likely to affect the behavior of
 results appreciably. A standard choice is probably worthwhile.

 Let us give a simple example with n = 14. The needed values of ailn can be
 taken as

 -a,114 = a14114 = Gau-1 (2/43) = 1.685

 -a21l4 = a13114 = Gau-1 (5/43) = 1.194

 -a3114 = a12114 = Gau- (8/43) = .892

 -a4114 = a1114 = Gau-' (10/43) = .764
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 TABLE 1

 Example of a FUNOP calculation

 As received Ordered Yi-y z, Ordered z's

 14 -341 -375 222

 -104 -161 -195 164

 -97 -104 -138 155

 -59 -97 -131 171 135

 -161 -59 155

 93 14 164

 454 22 171

 median
 -341 45 176

 54 54 222

 137 93 260

 473 137 103 135 352

 45 193 157 176

 193 454 420 352

 22 473 439 260

 y= 34 z = 174

 and the calculation proceeds as set out in Table 1. (For i = 1, we have 222 =

 -375/(-1.685), for example.) Only z1s = 352 exceeds even 1.5k, and it barely
 exceeds 2i. If we were uising A = 0 and B between 1.5 and 2.0 we would give
 special attention to i = 13, and also to i = 14 because it is more extreme (see
 (b5*) above). These values of i correspond to the original values 454 and 473.

 19. FUNOR-FUNOM in a two-way table. Let us consider a specific applica-
 tion of the techniques sketched above. (The general reader may wish to skip
 the remainder of III at first reading). Because the procedure uses FUNOP and
 first rejects and then modifies deviations it may be designated FUNOR-FUNOM.

 (i.e., FUll NOrmal Rejection-FUll NOrmal Modification.)
 Suppose we are given values in a r-by-c table, and that we consider that these

 values are reasonably treated as of the form

 (general effect) + (row effect) + (column effect) + (deviation)

 where the deviation may either (i) come from a long-tailed distribution or (ii)
 involve "wild shots". The following routine offers a way to avoid most of the
 evil effects of the tails without compromising real row or column effects:

 (al) Fit row and column means to the original observations and form the
 residuals

 Y,k = Xik - Xj. - X.k + X...

 (a2) Apply FUNOP to the n = re residuals, giving special attention to

 any Yjk = yi with both jyj - @ 2 A,. and zi > BR*Z where AR and BR
 are prechosen.
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 (a3) If any such Yjk is found, let yjk = yi be the largest such, and modify
 Xjk as follows:

 r*c
 AXjk = Zjk aiIn' (r - 1) (c - 1) Xjk --*Xjk - AXjk -

 (a4) Repeat steps (al), (a2) and (a3), using successively modified x's

 until no Yjk deserves special attention. (Note that both the relation of i
 to (j, k) and the value of k will change for each of these FUNOR cycles.)

 (a5) When this occurs, give special attention to all Zjk = zi with zi > BM * z,
 where BM is also prechosen (AM is tacitly taken to be zero).

 (a6) For each such jk put

 AXjk = (Zik -B ,) aiin

 and modify the correspondingX,kbY Xjk -b X,k - Axjk (steps (a5) and (a6)
 constitute the FUNOM cycle).

 (a7) Output two two-way tables, one containing the finally modified

 Xjk and the other containig the accumulated modifications.
 Certain points in this procedure deserve comment:

 (bl) The value of AXjk in step (a3) includes a factor rc/(r - 1)(c - 1),
 because a deviant value affects the corresponding fitted row, coluimn, and
 grand means. As a result, the residual for a single very large deviation is

 about (r - 1) (c - 1) /rc times as large as the deviation. The factor com-
 pensates for this. Thus the residual Xjk in the next cycle will be zero.

 (b2) As the FUNOR cycles continue, the residuals for Xjk rejected in earlier
 FUNOR cycles will shift away from zero, but the likely shifts are usually
 small enough to make resetting them to zero not worthwhile.

 (b3) The value of AXjk in step (a6) is chosen to approximately reduce
 Zjk to ByMz. If we neglect changes in fitted means (row, column, and grand)
 as is more reasonable here, since the AXjk are considerably smaller, the effect
 on yji 1S

 Yjk - Yjk - (Zjk -B )ailn

 whence if the i corresponding to jk does not alter and y is negligibly small,

 Zjk Zjk - (Zjk - BM*k) = Bx @
 (b4) Thus each FUNOR cycle effectively rejects one entry, while the

 FUNOM cycle modifies those remaining entries with surprisingly large values.
 The approximate overall result of such a procedure is:

 (ci) to replace deviations of more than As-a (with z's _ BRa) by zero, and
 (c2) to reduce other deviations which were greater than BM a,ln-, to that

 value.

 These are approximately the results which can be supported, as noted above, if
 either (i) there are wild shots or (ii) the distribution is long-tailed.
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 TABLE 3

 FUNOR-FUNOM Steps for data in Table 2

 FUNOR Steps (AR = 10, BR = 1.5)

 Cycle y z10z j, k /Xjk

 1 +.009 0.243 2.435 6, 4 -16.49
 2 +.021 0.228 2.277 9, 8 -5.95

 3 +.020 0.222 2.222 6, 8 +3.55
 4 +.019 0.214 2.136 33, 12 -3.34
 5 +.018 0.207 2.067 4, 13 -3.08
 6 +.017 0.200 2.004 16, 13 -2.42
 7 +.017 0.192 1.923 31, 9 -2.31

 8 + .012 0.190 1.901 32, 4 -2.30

 FUNOM Steps (AM = 0, BM = 1.5)

 i y, z 1.5z number of entries modified

 9 +.013 0.187 0.280 f18 (at - end)
 11 (at + end)

 20. Example of use of FUNOR-FUNOM. An example of the application of
 this procedure to a 36 X 15 table consisting of values of a particular multiple
 regression coefficient in each of 540 = 36 X 15 subgroups (of small to moderate
 size) may clarify the situation. Table 2 presents the original data. (The 7 in-
 stances of "0" correspond to groups involving so few individuals that calculation
 of the corresponding multiple regression coefficients was not reasonable.) The
 very wild value in row 6 and column 4 is obvious from a brief scan over the
 entries.

 Table 3 summarizes the 8 FUNOR steps and the concluding FUNOM step.
 The first FUNOR step directed itself to row 6, column 4 and altered the original
 x4 value to -16.187 - (-16.49) = +.30, a value then giving zero residual.
 The second FUNOR step directed itself to row 9, column 8. Its change of
 - (-5.95) raised the grand mean by 0.01, which, in particular, lowered the

 x64 residual to Y64 = -0.01. The third FUNOR step directed itself to row 6,
 column 8. Its change of -(+3.55) altered the fitted mean for row 6 by -.23,
 and the grand mean by about -.01. One consequence was to alter the y64 residual
 to y64 = -0.01 - (0.23 - 0.01) = -0.23. And so on.

 At the conclusion of the 8th FUNOR step, no Zjk is left with yi _ 10z and
 zi 1.5, so there is no need to "reject" further observations. The FUNOM
 cycle next modifies 18 + 11 = 29 further values to bring their z values down,
 approximately, to 1.5z. Figure 1 shows, for the 65 lowest values of i, the relation
 of the rounded zi to z, 2z, etc. We see zl = Z2 = 2.9z, Z3 = Z4 = 2.5z, Z6 =
 2.4z , Z16 = Z17 = = 1.6z. The observations corresponding to these 18
 values of i = (j, k) are modified in the FUNOM step, along with 11 more for i
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 Values of z; for i= I to 65 ofter FUNOR

 3Z _ (rounded to nearest 0.1)
 00

 - 01 O i not a multiple of 5
 0

 0000 * i a multiple of 5

 2z
 00

 00

 z~~~~~~

 0 00

 0. 0 00 0. 0 0

 00 *0000-0

 0000-0 000-00

 5 10 15 20 25 30 35 40 45 50 55 60 65

 FIG. 1

 near 540. The actual (j, k)'s involved can be determined from Table 4 which
 summarizes the changes for all cycles, which divided into

 (1) 8 changes with lAxl _ 2.3, one made in each FUNOR cycle
 (2) 18 changes with -.374 < Ax < - .006, made in the FUNOM cycle

 for i near 1,
 (3) 11 changes with .015 ? Ax ? .323, made in the FUNOM cycle for i

 near 540.
 Table 5 exhibits the residuals for the results of final modification. Eye ex-

 amination finds little exceptional about this table.
 Table 6 exhibits the table of modified observations. Together with Table 4,

 which exhibits the modifications, Table 6 is the output for further use and
 study from FUNOR-FUNOM. Notice carefully that changing the original ob-
 servations according to

 (observation) jk (observation) jk + Aaj + a'4k

 would have had the following effects:
 (1) Table 4: entirely unaffected (except for possible changes in roundoff)
 (2) Table 6:

 (modified observation)jk ---*(modified observation) ik + Aa, + Mt.
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 32 JOHN W. TUKEY

 Thus the fact that row and column effects were weak in this example is wholly
 unimportant. If large row and column effects had been superposed, they would
 have been transferred to Table 6 without change, and the same Table 4 would
 have emerged.

 FUNOR-FUNOM is a procedure which fills a need hitherto not at all satis-
 fied. It would be nice to know more about its properties, its possible competitors,
 and how the competition comes out. It would be nice to know the consequences
 of different choices for AR, BR , AM, and BM . But pending the necessary effort,
 in which all are invited to participate, it would, in my judgment, be foolish not
 to use it. It is reasonably clear that its use will lead to far more gain than loss,
 even in rather unreasonable hands.

 IV. MULTIPLE-RESPONSE DATA

 21. Where are we, and why? Multivariate analysis has been the subject of
 many pages of papers, and not a few pages of books. Yet when one looks around
 at the practical analysis of data today one sees few instances where multiple
 responses are formally analyzed in any way which makes essential use of their
 multiplicity of response. The most noticeable exception is factor analysis, about
 which we shall make some more specific remarks below. There is, to be sure, a
 fairly large amount of data-analysis by multiple regression, some quite sophisti-
 cated and incisive, much quite bookish and bumbling. (Cochran's remark of a
 number of years ago that "regression is the worst taught part of statistics" has
 lost no validity.) But ordinary multiple regression is overtly not multiple-
 response, no matter how multivariate it may be.

 Why is it that so much formalized and useful analysis of single-response data,
 and of single-response aspects of multiple-response data, is accompanied by
 so little truly multiple-response analysis? One interesting and reasonable sug-
 gestion is that it is because multiple-response procedures have been modeled
 upon how early single-response procedures were supposed to have been used,
 rather than upon how they were in fact used.

 Single-response techniques started as significance procedures designed in
 principle to answer the question: "is the evidence strong enough to contradict a
 hypothesis of no difference?", or perhaps, as became clearer later, the more
 meaningful question: "is the evidence strong enough to support a belief that the
 observed difference has the correct sign?" But in early use by the naive these
 techniques, while sometimes used for the second purpose, were often used merely
 to answer "should I believe the observed difference?". While this last form is a
 misinterpretation to a statistician, its wide use and the accompanying growth of
 the use of such techniques, suggests that it was useful to the practitioner. (Per-
 haps the spread of confidence procedures will go far to replace it by a combina-
 tion of technique and interpretation that statisticians can be happy with. Cp.,
 e.g., Roy and Gnanadesikan, 1957, 1958.)

 But there was one essential to this process that is often overlooked. Single-
 response differences are (relatively) simple, and the practitioner found it mod-
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 erately easy to think, talk, and write about them, either as to sign, or as to sign
 and amount. Even when fluctuations have negligible influence, multiple-response
 differences are not simple, are usually not easy to think about, are usually not
 easy to describe. Better ways of description and understanding of multiple-
 response differences, and of multiple-response variabilities, may be essential if
 we are to have wider and deeper use of truly multiple-response techniques of data
 analysis. While it can be argued that the provision of such ways of description
 is not a problem of statistics, if the latter be narrowly enough defined, it is surely
 a central problem of data analysis.

 Let me turn to a problem dear to the heart of my friend and mentor, Edgar
 Anderson, the shape of leaves. It is, I believe, fair to say that we do not at
 present have a satisfactory way of describing to the mind of another person
 either:

 (al) the nature of the difference in typical pattern (shape and size) of two
 populations of leaves, or

 (a2) the nature of the variability of dimensions for a single population of
 leaves.

 Photographs, or tracings, of shapes and sizes of random samples may convey
 the information to his eyes fairly well, but we can hardly, as data analysts, regard
 this as satisfactory summarization-better must be possible, but how?

 In view of this difficulty of description, it is not surprising that we do not have
 a good collection of ideal, or prototype multivariate problems and solutions,
 indeed it is doubtful if we have even one (where many are needed). A better
 grasp of just what we want from a multivariate situation, and why, could perhaps
 come without the aid of better description, but only with painful slowness.

 We shall treat only one specific instance of the multiple-response aspects of
 analysis of variance. (This instance, in Section 25 below, combines the boiling-
 down and factor-identification techniques of factor analysis with the patterned-
 observation and additive-decomposition techniques of analysis of variance.) A
 variety of schemes for the analysis of variance of multiple-response data have
 been put forward (cp., e.g., Bartlett, 1947; Tukey, 1949a; Rao, 1952; Roy, 1958;
 Rao, 1959), but little data has been analyzed with their aid. A comparative
 study of various approaches from the point of view of data analysis could be very
 valuable. However, such a study probably requires, as a foundation, a better
 understanding of what we really want to do with multiple-response data.

 It seems highly probable that as such better ways of description are developed
 and recognized there will be a great clarification in what multiple-response
 analysis needs in the way of inferential techniques.

 22. The case of two samples. It would not be fair to give the impression that
 there is no use of truly multiple-response techniques except in factor analysis.
 There are a few other instances, mainly significance testing for two groups and
 simple discriminant functions.

 Hotelling's T2 serves the two-sample problem well in many cases. Only the
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 need for lengthy arithmetic and the inversion of a matrix stands in its way.

 The requirement for lengthy arithmetic, both in accumulating sums of products

 and squares, and in inverting the resulting matrix, which is probably inevitable

 for a procedure that is affine-invariant (i.e., one whose results are unchanged by
 the introduction of new responses that are non-singular linear combinations of
 the given responses), used to stand in the way of its use. More and more of those

 who have multivariate data to analyze now have access to modern computers,
 and find the cost of arithmetic low. Those who are not in so favorable a state may
 benefit substantially from the use of validity-conserving "quick" methods,
 specifically from applying to more simply obtainable "relatively highly appar-
 ent" comparisons, the critical values which would be appropriate to affine-
 invariant "most apparent" comparison, and which are therefore generally
 applicable. Such procedures would still be able to establish significance in a large
 proportion of those cases in which it is warranted. Such "quick" multivariate

 techniques would not be thorough in establishing lack of significance, but would
 be far more thorough than would application, at an appropriate error-rate, of a

 single-response procedure to each component of the multiple response.
 Let us sketch how two or three such "quick" multiple-response procedures

 might be constructed. First, consider calculating means and variances for each
 component, applying Penrose's method (1947) to obtain an approximate dis-
 criminant function, computing values of this discriminant for every observa-
 tion, calculating Student's t for these values and then referring t2 to the critical
 values of Hotelling's T2 to test the result. A simpler version, under some circum-
 stances, might be to use sample ranges in place of sample variances. A more

 stringent version would calculate a Penrose discriminant, regress each com-

 ponent (each original response) on this to obtain means and variances of resi-
 duals, extract a second Penrose discriminant from the residuals, and combine the
 two discriminants before testing. Each of these procedures is feasible for high
 multiplicity of response, since their labor is proportional to only the first power
 of the number of components, whereas Hotelling's T2 requires labor in collection
 of SS and SP proportional to the square of this number, and labor in the matrix
 inversion proportional to its cube.

 For very large numbers of components, as compared to the number of ob-
 servations, it is necessary to give up affine invariance. Dempster's method (1958,
 1960), which involves judgment selection of a measure of size, is applicable in
 such cases and may well also prove useful in many cases where Hotelling's
 72 would be feasible. There is always a cost to providing flexibility in a method.
 Affine-invariance implies an ability of the analysis to twist to meet any apparent
 ellipsoid of variability. Unless the number of cases is large compared to the num-
 ber of responses, this flexibility requires loose critical values. For moderate
 numbers of cases, judgment "sizes" may give greater power than would affine
 invariance. (The observations are still being asked to provide their own error
 term, thus validity can be essentially the same for the two approaches.)

This content downloaded from 189.63.131.205 on Fri, 29 Jul 2016 14:06:03 UTC
All use subject to http://about.jstor.org/terms



 THE FUTURE OF DATA ANALYSIS 35

 Many statisticians grant the observer or experimenter the right to use judg-
 ment in selecting the response to be studied in a single-response analysis. (Judg-
 ment is badly needed in this choice.) It is no far cry to the use of judgment,

 perhaps by the two parties together, in selecting a "size" for analysis in a multi-
 ple-response situation. In this connection, the promising work of Wilk and

 Gnanadesikan (1962) in using multiple-response sizes to generalize the half-
 normal-plot analysis for single-response data must be pointed out.

 There are many ways to use flexibility in opening up the practice of the analysis

 of multiple-response data. Few, if any, involve matrices "six feet high and four
 feet wide", or the solution of very complex maximum likelihood equations.

 23. Factor analysis: the two parts. Factor analysis is a procedure which has

 received a moderate amount of attention from statisticians, and rather more
 from psychometricians. Issues of principle, of sampling fluctuation, and of
 computational ease have been confounded. By and large statisticians have been
 unsatisfied with the result.

 Any reasonable account of factor analysis fromn the data analyst's point of view
 must separate the process into two quite distinct parts. Every type of factor
 analysis includes a "boiling-down" operation in which the dimensionality of the
 data is reduced by introducing new coordinates. In most cases this process is
 followed, or accompanied, by a "rotation" process in which a set of new co-
 ordinates are located which might be believed to approximate a set with some
 intrinsic meaning. The problems connected with the second phase are rather
 special, and tend to involve such questions, upon which we should not enter
 here, as whether simple structure is a hypothesis about the tested, or about the
 test-makers.

 The "boiling-down" process is something else again. If we strip it of such
 extraneous considerations as:

 (al) a requirement to extract as much useful information as possible with
 as few coordinates as possible,

 (a2) a requirement to try to go far enough but not one bit further,
 we find that it is an essentially simple problem of summarization, one with which
 most, if not all, statisticians can be content (so long as not too much is claimed
 for it). If we start with 40 responses, and really need only 8 coordinates to ex-
 press the 'meat' of the matter, then finding 10, 12, or even 15 coordinates which
 are almost sure to contain what is most meaningful is a very useful process, and
 one not hard to carry out. (The early stages of almost any method of factor
 analysis will serve, provided we do not stop them too soon.) And, before we go
 onward beyond such rough summarization, it may be very much worth while to
 investigate how changes in mode of expression, either of the original coordinate
 or the new ones, may lead to a further reduction in dimensionality. Adequate
 packaging, and broad understanding, of effective methods of "boiling down, but
 not too far" which are either simple or computationally convenient could con-
 tribute much to the analysis of highly multiple-response data.
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 24. Factor analysis: regression. Whatever the conclusion as to the subject-

 matter relevance and importance of the "rotation" part of the process, we may,
 as statisticians, be sure of its demand for more and more data. For it is essen-
 tially based, at best, upon the detailed behavior of multivariate variance com-
 ponents. It is commonplace that variance-component techniques applied to

 single responses will require large samples. When they are applied to multiple
 responses, their demands for large samples cannot help being more extensive.

 Consequently there must be a constant attempt to recognize situations and ways
 in which techniques basically dependent upon regression rather than variance

 components can be introduced into a problem, since regression techniques

 always offer hopes of learning more from less data than do variance-component
 techniques.

 When we have repeated measurements, we can, if we wish, make a multi-
 variate analysis of variance, and factor-analyze a variance component for
 individuals (or tests) rather than factor-analyzing the corresponding mean square
 (or sum of squares). It has already been pointed out that it is better to turn to
 the variance component (Tukey, 1951) in such instances.

 A somewhat related situation arises when the multiple responses are accom-
 panied by a (small) number of descriptive variables. We clearly can replace the
 original responses by residuals after regression on descriptive variables before
 proceeding to factor analysis. Should we?

 If this question has a general answer, it must be that we should. For a de-
 scription of the variation of the multiple responses in terms of a mixture of

 (al) regression upon descriptive variables, and
 (a2) variation of residual factors,

 will convey much more meaning than the results of a simple factor analysis, if
 only because of the lower sensitivity of the regression coefficients to fluctuations.
 And the residual factor analysis will often be far more directly meaningful than
 the raw factor analysis. Consider a study of detailed aspects of children's per-
 sonalities, as revealed in their use of words. Suppose the sexes of the individual
 children known. Elimination of the additive effect of sex would almost surely
 lead to more meaningful "factors", and elimination of reading speed as well, if
 available for elimination, might lead us to even closer grips with essentials.

 25. Factor analysis: the middle lines. An instance which illustrates this point,
 and is related to the earlier one, is provided by the Management Attitude
 Survey which has been given on a completely anonymous basis to tens of thou-
 sands of Bell System supervisors. Within the limits of anonymity it is possible
 to obtain data upon sex, department, level of supervision, and (geographical)
 operating area for each respondent. Sex and department are interrelated, some-
 times strongly, so that it seems advisable to treat department, sex, and job
 level as a single composite factor, of which, for some analyses, it is reasonable
 to consider only the 15 most popular such combinations as the versions, while
 some 36 (partly consolidated) geographical zones serve as versions of a second
 factor.
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 If we had only a single response, we should want to make an analysis of
 variance according to the skeleton

 Item df

 Department, Sex, Job level 14
 Geographical zones 35
 Interaction 490
 Within tens of thousands

 If we are to study the multiple responses by a factor analysis, we have strong
 reasons for excluding the additive effect of sex, and likely the additive effects
 assignable to combinations of department, job level, and geographical location.
 Thus we should be careful to omit the corresponding upper variance components
 from the analysis. The argument about the tens of thousand of degrees of free-
 dom for differences among people identified alike is more subtle, depending in
 part (but only in part) on whether the purpose of the analysis is to get at basic
 psychology or to learn about Bell System supervisors. Granted that it is the
 latter, it is appropriate to avoid the variance component within supervisors
 identified alike, and to concentrate our attention upon the middle line(s) of the
 analysis of variance. If we can face the computational labor, we should factor
 analyze the multivariate variance component corresponding to the 490 degrees of
 freedom for the interaction line; otherwise we should factor analyze the corre-
 sponding mean square, in which the variance component which we should like to
 factor is combined with a fraction of the within component. (Before saying that
 such an analysis is wholly unsatisfactory, we must note how much less of the
 within component is combined in the middle-line mean square than had we
 analysed a random subsample of individuals, or had separated out only the "up-
 per lines" before analysis.)

 In practice factoring the mean square would mean forming the mean of each
 response for each of the 15 X 36 = 540 groups of supervisors identified alike,
 and then forming residuals by adjusting for Department-Sex-Job-level means
 and Geographic zone means. The residuals, one for each response for each group
 ,of supervisors identified alike, would then be subjected to some form of factor
 analysis.

 This example has been mentioned not so much for its intrinsic importance,
 but rather because it illustrates a joining of attitudes and techniques some of
 which are traditionally associated with single-response analysis while others are
 limited to multiple-response analysis. The difficulties in dealing with this set of
 data are not matters of significance, confidence, estimation, or of statistics
 narrowly defined. Rather they are matters of how to convert a mass of data
 into possibly meaningful numbers, which is surely the first, though not the only,
 task of data analysis.

 Another way to relate factor analysis, as practiced with psychometric bat-
 teries, to single-response techniques more familiar to the statistician has been
 pointed out by Creasy (1957). Eysenck (1950, 1952) has proposed, under the
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 name of "criterion analysis", a different sort of interplay between external
 variables and factor analysis, which is intended to aid in improving the definition
 of the external variables.

 26. Taxonomy; classification; incomplete data. Problems which can be fitted
 under the broad heading of taxonomy (or, if you must, nosology) are truly
 multiple response problems, whether plants, retrievable information, or states of
 ill-health are to be classified. It is already clear that there are a variety of types
 of problems here. In plants, for example, where the separation of species does
 not usually call for formal data analysis, the work of Edgar Anderson (e.g., 1949,
 1957) has shown how even simple multiple response techniques (e.g., Anderson,
 1957) can be used to attack such more complex questions as the presence and
 nature of inter-specific hybridization.

 The rise of the large, fast, and (on a per-operation basis) cheap electronic
 computer has opened the way to wholly mechanized methods of species-finding.
 Here biologists have had a prime role in attacking the problem (cp., Sneath,
 1957a, 1957b; Michener and Sokal, 1957; Sneath and Cowan, 1958; Rogers
 and Tanimoto, 1960).

 Formal and semiformal techniques for identifying "species" from multiple-
 response data are certain to prove important, both for what they will help us,
 learn, and for the stimulus their development will give to data analysis.

 Once "species" are identified, the problem of assigning individuals to them is
 present. There is a reasonable body of work on the classical approaches to dis-
 crimination, but much remains to be done. The possibilities of using the Penrose
 technique repeatedly (see Section 22 above) have neither been investigated or
 exploited. And the assessment, as an end product, for each individual of its
 probabilities of belonging to each "species", in place of the forcible assignment
 of each individual to a single species, has, to my knowledge, only appeared in
 connection with so-called probability weather forecasts. (For an example of as-
 sessment as an expression of the state of the evidence, see Mosteller and Wallace,
 1962.)

 When we realize that classification includes medical diagnosis, and we recog-
 nize the spread of affect, from naive optimism to well-informed hope for slow
 gains as a result of extensive and coordinated effort, with which the application
 of electronic computer to medical diagnosis is presently being regarded by those
 who are beginning to work in this field, we cannot find the classification problem
 simple or adequately treated.

 Once either taxonomy or classification is an issue, the problem of incomplete
 data arises. This is particularly true in medical diagnosis, where no patient may
 have had all the tests. There is a small body of literature on the analysis of in-
 complete data. Unfortunately it is mostly directed to the problems of using in-
 complete data to estimate population parameters. Such results and techniques
 can hardly be used in either taxonomy or classification. Great progress will be
 required of us here also.
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 V. SOME OTHER PROMISING AREAS

 27. Stochastic-process data. The number of papers about the probability

 theory of stochastic processes has grown until it is substantial, the number of
 papers about statistical inference in stochastic processes is seeking to follow the
 same pattern, yet, with a few outstanding exceptions, there does not seem to be

 anything like a comparable amount of attention to data analysis for stochastic
 processes. About the cause of this there can be quite varied views. A tempting

 possibility is that we see the ill effects of having the empirical analysis of data
 wait upon theory, rather than leading theory a merry chase.

 Techniques related to circular frequencies, cosines, or complex exponentials,

 and to linear, time-invariant black boxes are one of the outstanding exceptions.
 The estimation of power spectra has proved a very useful tool in the hands of
 many who work in diverse fields. Its relation to variance components had been
 discussed quite recently (Tukey, 1961a). Its more powerful brother, the analysis
 of cross-spectra, which possesses the strength of methods based upon regression,
 is on its way to what are likely to be greater successes. All these techniques
 involve quadratic or bilinear expressions, and their variability involves fourth-
 degree expressions. Their use is now beginning to be supplemented by quite
 promising techniques associated with (individual, pairs of, or complex-valued)

 linear expressions, such as (approximate) Hilbert transforms and the results of
 complex demodulation.

 The history of this whole group of techniques is quite illuminating as to a
 plausible sequence of development which may appear in other fields:

 (al) the basic ideas, in an imprecise form, of distribution of energy over
 frequency became a commonplace of physics and engineering,

 (a2) a belief in the possibility of exact cycles, of the concentration of energy
 into lines, led to the development of such techniques as Schuster's periodo-
 grams and the various techniques for testing significance in harmonic analysis
 (e.g., Fisher, 1929),

 (a3) an abstract theory of generalized harmonic analysis of considerable
 mathematical subtlety was developed by Wiener (e.g., 1930).

 (a4) various pieces of data were analyzed in various ways, mostly variously
 unsatisfactory,

 (a5) a Bell Telephone Laboratories engineer wanted to show a slide with
 a curve which represented the rough dependence of energy upon frequency
 for certain radar, and had some data analyzed,

 (a6) examination showed a curious alternation of the estimates above and
 below a reasonable curve, and R. W. Hamming suggested (0.25, 0.50, 0.25)
 smoothing. (The striking success of this smoothing seized the writer's atten-
 tion and led to his involvement in the succeeding steps.)

 (a7) so the 4th degree theory of the variability and covariability of the
 estimates was worked out for the Gaussian case, to considerable profit,

 (a8) gradually the simpler 2nd degree theory for the average values of
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 spectral estimates, which does not involve distributional assumptions, came

 to be recognized as of greater and greater use,

 (a9) more recently we have learned that still simpler 1st degree theory,

 especially of complex demodulation (cp., Tukey, 1961a, pp. 200-201), offers
 new promise,

 (alO) and the next step will call for investigation of the theory, roughly of
 2nd degree, of the variability of the results of such techniques.

 In this history note that:

 (bl) decades were lost because over-simple probability models in which

 there was a hope of estimating everything were introduced and taken seriously

 (in step a2),
 (b2) the demands of actual data analysis have driven theoretical under-

 standing rather than vice versa (e.g., cp., steps a6, a7, a9, alO),
 (b3) by and large, the most useful simpler theory was a consequence of

 more complex theory, although it could have been more easily found separately

 (e.g., cp., steps a7 and a8).
 There seems to be no reason why we should not expect (bi) (b2) and (b3) to
 hold in other areas of stochastic-process data analysis.

 If I were actively concerned with the analysis of data from stochastic processes

 (other than as related to spectra), I believe that I should try to seek out tech-
 niques of data processing which were not too closely tied to individual models,

 which might be likely to be unexpectedly revealing, and which were being pushed

 by the needs of actual data analysis.

 28. Selection and screening problems. Data analysis, as used here, includes
 planning for the acquisition of data as well as working with data already ob-

 tained. Both aspects are combined in multistage selection and screening problems,
 where a pool of candidates are tested to differing extents, and the basic questions
 are those of policy. How many stages of testing shall there be? How much effort
 shall be spent on each? How is the number of candidates passed on from one
 stage to another to be determined?

 This subject has been studied, but the results so far obtained, though quite
 helpful, leave many questions open. (Cp., Dunnett, 1960, for some aspects;
 Falconer, 1960, and Cochran, 1951, for others.) This is in part due directly to
 the analytical difficulty of the problems, many of whose solutions are going to

 require either wholly new methods, or experimental simulation. An indirect

 effect of analytical difficulty is that available solutions refer to criteria, such as

 "mean advance" which do not fit all applications.

 Not only do problems of this class occur in widely different fields-selecting
 scholarship candidates, breeding new plant varieties, screening molds for anti-
 biotic production are but three-but the proper criterion varies within a field

 of application. The criterion for selecting a single national scholarship winner
 should be different from that used to select 10,000 scholarship holders; the cri-
 terion for an antibiotic screen of earth samples (in search of new species of
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 antibiotic producers) should be different from that for an antibiotic screen of
 radiation-induced mutants (in search of a step toward more efficient producers);
 and so on.

 Practical selection (cp., e.g., page 223 in Lerner, 1954) has long made use of
 selection for the next stage, not of a fixed number, nor of a fixed fraction, but
 of those whose indicated quality is above some apparent gap in indicated quality.
 It is reasonable to believe (as I for one do) that such flexible selection is more
 efficient than any fixed % methods. But, to my knowledge, we have no evidence
 from either analytic techniques or empirical simulation as to whether this is
 indeed the case. This is but one of many open questions.

 29. Extenal, intenal, and confounded estinates of error. The distinction
 between external and internal estimates of error is a tradition in physical meas-
 urement, where external estimates may come from comparisons between the
 work of different investigators, or may even be regarded as requiring compari-
 sons of measurements of the same quantity by different methods. A similar
 distinction is of course involved in the extensive discussions of "the proper error
 term" in modern experimental statistics. No one can consider these questions
 to be of minor importance.

 But there is another scale of kinds of error estimate whose importance, at
 least in a narrower field, is at least as great; a scale which can be regarded as a
 scale of subtlety or a scale of confusion. The first substantial step on this scale
 may well have been the use of "hidden replication" (cp., Fisher, 1935) in a fac-
 torial experiment as a basis of assessing variability appropriate as a measure of
 error. This can be regarded, from one standpoint, as merely the use of residuals
 from an additive fit to assess the stability of the fitted coefficients. As such it
 would not be essentially different from the use of residuals from a fitted straight
 line. But if, in this latter case, the fluctuations vary about a crooked line, we
 know of no sense in which the residuals, which include both variability and
 crookedness, are a specifically appropriate error term. In the factorial case,
 however, the presence of arbitrary interactions does not affect the correctness of
 the error term, provided the versions of each factor are randomly sampled from
 a population of versions (e.g., Cornfield and Tukey, 1956) whose size is allowed
 for. Thus "hidden replication" may reasonably be regarded as a substantial
 step in subtlety.

 The recovery of inter-block information in incomplete block experiments
 (including those in lattices) is another stage, which has been extended to the
 recovery of inter-variety information (Bucher, 1957).

 But the latest step promises much. Until it was taken, we all felt that error
 should be assessed in one place, effects in another, even if different places were
 merely different pre-chosen linear combinations of the observations. The in-
 troduction of the half-normal plot (cp., Daniel, 1959) has shown us that this
 need not be the case, that, under the usual circumstance where many effects are
 small, while a few are large enough to be detected, we may confound effects
 with error and still obtain reasonable analyses of the result.
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 30. The consequences of half-normal plotting. The importance of the intro-

 duction of half-normal plotting is probably not quite large enough to be re-
 garded as marking a whole new cycle of data analysis, although this remains to
 be seen. The half-normal plot itself is important, but the developments leading
 out of it are likely to be many and varied.

 The work of Wilk and Gnanadesikan (1962) on multivariate extensions of
 the half-normal plot offers real promise of "shaking up" the analysis of multiple-

 response data. And it may well come in due course to modify our original treat-
 ment of the half-normal-plot situation itself.

 A substantial part of the stimulus for the FUNOP, FUNOR, FUNOM ap-
 proach to spotty data illustrated in Sections 18 to 20 came from the existence

 and use of the half normal plot.

 The extension of half-normal technique to mean squares with varied numbers
 of degrees of freedom is inevitable, and in progress. What is not clear are the

 likely consequences of its by-products.

 The introduction of random balance experimentation (cp., Various Authors,
 1959) has made some attention to "super-saturated" experimental patterns
 inevitable. Adequately incisive analysis, in terms of what is possible, must turn
 to something like the half-normal plot in the sense that "error" will have to be
 estimated from contrasts which may contain contributions from real effects.

 (Some such procedures, such as that suggested by Beale and Mallows, 1958, are
 far from being graphical.) Note that not only situations supersaturated with
 main effects are in question here, but also situations with main effects reasonably
 clear of one another where the supersaturation is associated with two-factor
 interactions.

 Undoubtedly still other important chains of growth will spring from the half
 normal plot.

 These techniques, like the half-normal plot itself, will begin with indication,
 and will only later pass on to significance, confidence, or other explicitly prob-
 abilistic types of inference. When they do pass on, the resulting probabilistic
 treatments are relatively certain to be admittedly approximate. The hypothesis
 that fluctuations-and errors are exactly normally distributed, though demon-
 strably contrary to fact, is much more likely to be accepted without explicit
 question than is the hypothesis that a specific finite set of effects behave exactly
 like a sample from a normal distribution. Yet the latter is the type of assumption
 needed to make an exact probabilistic treatment of the half-normal plot, or of
 its progeny, exact rather than approximate. At this juncture the everpresent
 approximateness of data analysis must be more completely faced.

 31. Heterogeneous data. Some sort of homogeneity of fluctuation-and-error
 behavior is a highly conventional, even stylized, part of the development of
 most procedures of data analysis. In a few cases we have come to recognize the
 extent to which it is needed and the role it plays. In balanced analyses of variance,
 for example, homogeneity of variance plays no role in determining the average
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 values of mean squares, but can substantially affect their variability, and thus
 affect the exactness of F-tests of ratios of mean squares. The validity of the
 analysis-of-variance table as an indicator, which is usually its greatest im-
 portance, is unaffected by heterogeneity of variance, though conventional state-
 ments of significance and confidence may become only approximate in its
 presence.

 There are at least two reasons why our attention, which we have often com-

 fortably kept away from problems of heterogeneity of variation, is going to be
 brought into focus upon them:

 (al) the rise of procedures for dealing with spotty data, and
 (a2) the rise of half-normal-plot-like techniques.

 The removal, actual or effective, of observations which appear to be "wild
 shots" cannot be the whole result of an effective procedure for dealing with
 spotty data. For the most useful information is not infrequently found to reside in
 the apparent wild shots themselves. Consequently, good procedures for spotty
 data will provide two separate and distinct outputs, one consisting of cleaned-up
 observations, or of results based on such, while the other describes the apparent
 wildnesses.

 We noted above that, besides the extreme deviations occurring rarely in any
 event, apparent "wild shots" can come from such varied sources as occasionally-
 acting causes, long-tailed distributions of deviations and errors, and inhomo-
 geneity of variance. Which of these was the actual source for a specific "wild
 shot" will be a matter of concern in many instances. In seeking answers we shall
 have to face up to many more situations of inhomogeneous variability.

 The case of half-normal-plot-like techniques is not too different. They are
 specifically directed toward the detection of those "occasionally-acting causes
 which are associated with namable effects." They cannot avoid bringing up
 occasional instances of purely accidental fluctuations-and-errors of extreme
 size. And they have to be more sensitive to situations of heterogeneous varia-
 bility than do more omnibus methods. Their use will also bring us more fre-
 quently face to face with heterogeneity of variability.

 32. Two samples with unequal variability. Why is the treatment of hetero-
 geneous variability in such poor shape? In part, perhaps, because we are stuck
 at the early stage of the Behrens-Fisher problem. Analytical difficulties are
 undoubtedly a contributing cause, but it is doubtful that they would have been
 allowed to hold us up if we had reached a clear conclusion as to what do with
 the two-sample problem when the variances are to be separately estimated with
 appreciable uncertainty.

 While it has been the fashion to act as though we should solve this problem in
 terms of high principle, either a high principle of "making use of all the informa-
 tion" or a high principle of "making exact probability statements", it now seems
 likely that we may, in due course, decide to settle this question in a far more
 realistic way. Both the highly-principled approaches before us require precise
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 normality of the two parent distributions. We know this condition is not met in

 practice, but we have not asked how much the case of non-normal populations

 can tell us about what technique can reasonably be applied, or whether either of
 the well-known proposals is reasonably robust. We should ask, and think about
 the answer.

 Martin\Wilk is vigorous in pointing out that solving the two-sample location
 problem will not solve the problem of comparing two samples whose variances

 are likely to differ. He considers that the crux of the issue lies beyond, where
 both difference in variance and difference in mean are equally interesting to

 describe and test. Discussion of this problem, like that of so many left un-
 touched here, would open up further interesting and rewarding issues for which
 we have no space.

 While no clear general line has yet been identified, along which major progress
 in meeting heterogeneity of variability is likely to be made, there are a number
 of clear starting points.

 VI. FLEXIBILITY OF ATTACK

 33. Choice of modes of expression. Clearly our whole discussion speaks for
 greater flexibility of attack in data analysis. Much of what has been said could

 be used to provide detailed examples. But there are a few broader issues which
 deserve specific mention.

 Shall the signal strength be measured in volts, in volts2 (often equivalent to
 "watts"), in -/volts, or in log volts (often described as "in decibels")? As a
 question about statement of final results this would not be for data analysis and
 statisticians to answer alone, though they would be able to assist in its answering.
 But, as a question about how an analysis is to be conducted, it is their responsi-
 bility, though they may receive considerable help from subject-matter experts.

 This is an instance of a choice of a mode of expression for a single response,
 a question about which we now know much more than we did once upon a time.
 Clarification of what data characteristics make standard techniques of analysis
 more effective, and of the nature of measurement, as it has been developed in
 science, has made it possible to set down goals, and to arrange them in order
 of usual importance. Moreover, there are reasonably effective techniques for
 asking sufficiently large bodies of data about the mode in which their analysis
 should go forward. Today, our first need here is to assemble and purvey avail-
 able knowledge.

 The related question of expressing multiple-response data in a desirable way
 is almost unattacked. It is substantially more complex than the single-response
 case, where the order of the different responses is usually prescribed, so that all
 that remains is to assign numerical values to these responses in a reasonable
 way.

 First and last, a lot is said about changes of coordinates, both in pure mathe-
 matics, and in many fields of mathematical application. But little space is spent
 emphasizing what "a coordinate" is. From our present point of view, a coordinate
 is the combination of two things:
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 (al) a set of level surfaces, namely a classification of the points, objects,
 responses, or response-lists into sets such that any two members of a set are
 equivalent so far as that particular coordinate is concerned (as when a 200
 lb. woman aged 53 has the same height as a 110 lb. man aged 22), and

 (a2) an assignment of numerical values, one to each of these level surfaces
 or equivalence classes.

 In dealing with modes of expression for single-response data, part (al) is usually
 wholly settled, and we have to deal only with part (a2).

 In dealing with multiple-response data, the least we are likely to face is a
 need to deal with part (a2) for each response, at least individually but often
 somewhat jointly. Actually, this simplest case, where the identification of the
 qualitative, (al), aspects of all coordinates is not at all at the analyst's disposal,
 is rather rare. A much more frequent situation is one in which coupled changes
 in (al) and (a2) are to be contemplated, as when any linearly independent set
 of linear combinations of initially given and quantitatively expressed coordi-
 nates make up an equally plausible system of coordinates for analysis. In fact,
 because of its limited but real simplicity, we often assume this situation to hold
 with sometimes quite limited regard for whether this simplicity, and the con-
 sequent emphasis on affine invariance of techniques, is appropriate in the actual
 instance at hand.

 In many instances of multiple-response data we can appropriately consider
 almost any system of coordinates, giving at most limited attention to the qualita-
 tive and quantitative relations of the coordinates for analysis to the initial
 coordinates. Our knowledge of how to proceed in such circumstances is limited,
 and poorly organized. We need to learn much more; but we also need to make
 better use of what we do know. All too often we approach problems in terms of
 conventional coordinates although we know that the effect to be studied is
 heavily influenced by an approximately-known combination of conventional
 coordinates. Time and temperature in the stability testing of foods, chemicals,
 or drugs is one instance. (The combination of time and temperature corresponding
 to 30 kcal/mole activation energy can be profitably substituted for time in
 most problems. A little information will allow us to do even better.) Tempera-
 ture and voltage in the reliability testing of electronic equipment is another.

 As in so many of the instances we have described above, the main need in this
 field is for techniques of indication, for ways to allow the data to express their
 apparent character. The need for significance and confidence procedures will
 only begin to arise as respectable indication procedures come into steady use.

 34. Sizes, nomination, budgeting. The choice of qualitative and quantitative
 aspects of coordinates is not the only way in which to approximately exercise
 judgment in approaching the analysis of multiple response data. The work of
 Dempster (1958, 1960) and of Wilk and Gnanadesikan (1962) points the way
 toward what seems likely to prove an extensive use of judgment-selected measures
 of "size" for differences of multiple response. The considerations which should
 be involved in such choices have not yet been carefully identified, discussed,

This content downloaded from 189.63.131.205 on Fri, 29 Jul 2016 14:06:03 UTC
All use subject to http://about.jstor.org/terms



 46 JOHN W. TUKEY

 and compared. Still, it is, I believe, clear that one should not limit oneself to
 information and judgment about the actual variability, individual and joint, of
 the several responses (or of more useful coordinates introduced to describe these
 responses). It will also be wise and proper to give attention to what sorts (= what
 directions) of real effects seem more likely to occur, and to what sorts of effects,
 if real, it is more likely to be important to detect or assess.

 The problems which arise in trying to guide the wise choice of "size" are new,
 but not wholly isolated. The practice at East Malling, where experiments take

 a major fraction of a scientific lifetime, of nominating (cp., Pearce, 1953) oertain
 comparisons, appears to have been the first step toward what seems to be an
 inevitable end, the budgeting of error rates in complex experiments. We consider

 it appropriate to combine subject-matter wisdom with statistical knowledge in
 planning what factors shall enter a complex experiment, at how many versions
 each shall appear, and which these versions shall be. This granted, how can there
 be objection to using this same combination of wisdom and knowledge to deter-
 mine, in advance of the data, what level of significance shall be used at each of

 the lines of the initial analysis of variance. If wisdom and knowledge suffice to
 determine whether or not a line is to appear in the initial analysis, surely they
 suffice to determine whether 5 %, 1 %, or 0.1 % is to be the basis for immediate
 attention. Yet budgeting of error rate does not seem to have yet been done to
 any substantial extent.

 35. A caveat about indications. It may be that the central problem of complex

 experimentation may come to be recognized as a psychological one, as the prob-
 lem of becoming used to a separation between indication and conclusion. The
 physical sciences are used to "praying over" their data, examining the same
 data from a variety of points of view. This process has been very rewarding, and
 has led to many extremely valuable insights. Without this sort of flexibility,
 progress in physical science would have been much slower. Flexibility in analysis
 is often only to be had honestly at the price of a willingness not to demand that
 what has already been observed shall establish, or prove, what analysis suggests.
 In physical science generally, the results of praying over the data are thought of
 as something to be put to further test in another experiment, as indications
 rather than conclusions.

 If complex experiment is to serve us well, we shall need to import this freedom
 to reexamine, rearrange, and reanalyze a body of data into all fields of applica-
 tion. But we shall need to bring it in alongside, and not in place of, preplanned
 analyses where we can assign known significance or confidence to conclusions
 about preselected questions, We must be prepared to have indications go far
 beyond conclusions, or even to have them suggest that what was concluded
 about was better not considered. The development of adequate psychological
 flexibility may not be easy, but without we shall slow down our progress.

 This particular warning about the place of indication besides conclusion
 applies in many places and situations. It appears at this particular point because
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 sizes, nomination, and error-rate budgeting are all directed toward the attain-
 ment of conclusions with valid error-rates of reasonable overall size. It would

 have been dangerous to have left the impression that suggestive behavior which

 did not appear conclusive because of the wise use of such somewhat conservative

 techniques should, consequently, not be taken as an indication, should not even

 be considered as a candidate for following up in a later study. Indications are
 not to be judged as if they were conclusions.

 36. FUNOP as an aid to group comparison. The most standard portion of

 the output of an analysis of variance is a set of means, and an estimate of their
 variance. As we have learned, more than one thing can be done at this point.

 Classically, an F-test was used to answer the question "Does the data provide
 firm evidence that the means are not all the same?". More recently, we have had

 a variety of multiple comparison methods leading to significance, confidence,
 and decision statements about more detailed comparisons.

 But these approaches, which concentrate upon "Have I proved it?" or "What

 should I do next?", are not the only ones possible. And there are other sorts of
 questions. Suppose that the various means are so well determined as to make
 every comparison unequivocally significant, and suppose, even, that we have
 put confidence limits for all these comparisons on record, what then?

 There is still a real need for guidance in how to think of the real differences

 among the means. Does one differ unusually from the others, do a few? (If the
 answer to this question is "yes", it will not imply that the remaining means are

 the same, for all comparisons were assumed significant, it will merely suggest
 that the character of the differences between the one (or few) and the rest are
 likely to be different from the character of the differences among the rest.)
 Clearly FUNOP can be used, in a variety of possible ways, to provide answers
 to this question. The simplest ways involve special attention for observations
 with zi _ BA .i (and for y's more extreme than such yi).

 The choice of BA is going to be a matter of judgment. And will ever remain so,

 as far as statistical theory and probability calculations go. For it is not selected to
 deal with uncertainties due to sampling. Instead it is to be used to classify
 situations in the real world in terms of how it is "a good risk" for us to think
 about them. It is quite conceivable that empirical study of many actual situa-

 tions could help us to choose BA, but we must remember that the best BA would
 be different in different real worlds.

 For the present, I propose to experiment with BA = 2. Experience may lead
 to changes.

 Let us then consider an example involving numbers which will arise below as
 part of a more complex situation. Table 7 sets out the relevant values: column
 numbers which serve as identification, the observed means in both raw and
 linerly coded forms, values of i when the means are ordered, values of z,, and
 of z and 2i. The z value for column 4 exceeds 2k so that we are led to give this
 mean special attention. The z value for column 8 comes close to 2 , and might
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 TABLE 7

 Use of FUNOP to guide thinking about groups of determinations

 Observed Column Mean
 Col. i FUNOP zt

 Raw* Coded

 1 .042 14 7 - =215
 2 .022 -104 4 177 2= 430

 3 .023 -97 5 230

 4 -.081 -723 1 482
 5 .030 -59 6

 6 .013 -161 3 199

 7 .055 93 11 159
 8 .115 454 14 381
 9 -.017 -341 2 310

 10 .049 54 10

 11 .062 137 12 180
 12 .118 473 15 298

 13 .047 45 9

 14 .072 193 13 201
 15 .043 22 8 -

 * Rounded off.
 t Applicable to either raw or coded values; -'s from middle third.

 well be considered a case for special attention on this ground, since we have

 little basis for setting BA at precisely 2. If we do give column 8, and thus i = 14,

 special attention, we should do the same for i = 15, namely column 12, which
 is even more extreme.

 Actually, if we repeat FUNOP on the values remaining after excluding "col-

 umn 4" we obtain the figures set out above in Table 1 (Section 18), and find
 that columns 8 and 12 now exceed 2 . For the present purpose it is likely not to

 be necessary to do the repeat calculation; the application of judgment to the
 first cycle will usually suffice.

 In any event, we come to the following suggestion:

 special attention: column 4

 some special attention: columns 8, 12

 undistinguished: columns 1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15.
 If the error variance associated with these means were small, the proper label on

 the third group above would be "undistinguished but significantly different",

 and any further discussion would have to involve both the actual names of the
 columns andl subject-matter insight.

 37. Continuation. But suppose, as was actually the case in the situation in
 which the means above were generated, that the error variance was not very
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 small. It may be that only a few true means are different, and that, at least
 for all our evidence tells us, the others may be all equal. How are we to assess
 the reasonableness of such a possibility?

 There is certainly ground for considering carefully just how we should proceed
 in marginal cases, but there is little doubt that we should at least look at the
 corresponding mean squares. For the instance at hand, these mean squares
 (expressed for the coded values) are (rounded):

 DF MS

 All columns 14 85010
 Omit column 4 13 48430
 Omit cols. 4, 8, 12 11 21200
 Possible error term 490 56960
 Better error term 442 46400

 The qualitatively reasonable indications are clear:
 (a) Except for column 4 there is no strong indication of differences between

 true means.

 (b) Except for columns 4, 8, 12 there is no visible indication of differences
 between true means.

 The reader may find it instructive to consider what the qualitatively reason-
 ably indications would have been had the error mean square been 5000, 10000,
 20000, or 80000.

 VII. A SPECIFIC SORT OF FLEXIBILITY

 38. The vacuum cleaner. In connection with stochastic process data we noted
 the advantages of techniques which were revealing in terms of many different
 models. This is a topic which deserves special attention.

 If one technique of data analysis were to be exalted above all others for its
 ability to be revealing to the mind in connection with each of many different
 models, there is little doubt which one would be chosen. The simple graph has
 brought more information to the data analyst's mind than any other device. It
 specializes in providing indications of unexpected phenomena. So long as we
 have to deal with the relation of a single response to a single stimulus, we can
 express almost everything qualitative, and much that is quantitative, by a
 graph. We may have to plot the differences between observed response and a
 function of the stimulus against another function of stimulus; we may have to
 re-express the response, but the meat of the matter can usually be set out in a
 graph.

 So long as we think of direct graphing of stimulus against response, we tend
 to think of graphing as a way to avoid computation. But when we consider the
 nature and value of indirect graphs, such as those mentioned above, we come to
 realize that a graph is often the way in which the results of a substantial compu-
 tational effort is made manifest.

 We need to seek out other tools of data analysis showing high flexibility of
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 effectiveness in other situations. Like the simple graph they will offer us much.

 We should not expect them to be free of a substantial foundation of computa-
 tion, and we should not expect their results to be necessarily graphical. Our aim

 should be flexibility.
 In the area of time-series-like phenomena, as we have already noted, spectrum

 analysis and, more particularly, cross-spectrum analysis (and their extensions)
 offer such tools.

 For data set out in a two-way table, exhibiting the combined relation of two

 factors to a response, we have long had a moderately flexible approach: the
 fitting of row, column, and grand means, and the calculation of residuals. We
 have had much profit from the fitting of row, column, and grand means, though

 not as much as if we had usually gone on to calculate individual residuals,

 rather than stopping with calculation of the sum of their squares (of the "sum
 of squares for interaction" or "for discrepancy" etc. in the corresponding analysis
 of variance). But it is easy to write down two-way tables of quite distinct struc-
 ture where the fitting of row, column, and grand means fail to exhaust the bulk
 of this structure. We need to have general techniques that go farther than any

 just mentioned.
 A first step was practiced under such titles as "the linear-by-linear interaction",

 and was later formalized as "one degree of freedom for non-additivity" (Tukey,
 1949b). By isolating a further single (numerical) aspect of the tabulated values,
 it became possible to ask the data just one more question, and to retrieve just

 one more number as an answer.
 How does one ask still more questions of a two-way table in such a way as to

 detect as much orderly behavior as possible? The answer here must depend upon
 the nature of the two factors. If one or both is quantitative, or naturally ordered,
 we will have access to techniques not otherwise available. Let us be Spartan,
 and suppose that neither factor has natural quantitative expression or natural
 order.

 If we are to ask reasonably specific questions we must plan to be guided by
 the table itself in choosing which ones we ask. (This is true to the extent that
 general prescriptions can be given. Subject-matter knowledge and insight can,
 and of course should, guide us in specific instances.) If the start is to be routine,
 prechosen, there is little chance that the fitting of row, column, and grand means
 can be replaced by some other first step that is both equally simple and better.
 And the question becomes, once these have been fitted, and residuals formed,
 how are we to be guided to a next step? Only the fitted means offer us new
 guidance.

 The table of coefficients whose entries are products of "row mean minus
 grand mean" with "column mean minus grand mean" designates the one degree
 of freedom for non-additivity. To go further we should perhaps make use of the
 individual factors rather than their product. When we seek for ways to applv
 "row mean minus grand mean", for example, we see that we can apply these
 entries separately in each column, obtaining one regression coefficient per column,
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 a whole row of regression coefficients in all; and so on. This procedure generates
 what, since its initial use was to produce "vacuum cleaned" residuals (residuals
 more completely free of systematic effect than those obtained by mean fitting),
 is conveniently called the basic vacuum cleaner. (Those who feel that FUNOR-
 FUNOM really removes the dirt, may wish to adopt Denis Farlie's suggestion
 that the present procedure be called FILLET, (i) because it is like taking the
 bones out of a fish (a herring, perhaps), (ii) from the acronym "Freeing Interac-
 tion Line from the Error Term".)

 39. Vacuum cleaning: the subprocedure. Again we revert to detail; this time
 the general reader may wish to skip to VIII, page 60 on first reading.

 Our first task is to describe formally a regression procedure which is equivalent
 to regressing (the values in) each row of a two-way table on (the values in) a
 separately given row, regressing (the values in) each column of the table on
 (the values in) a separately given column, regressing the whole table on the two-
 way array consisting of all products of an entry in the separate row with an
 entry in the separately given column, and then subtracting this last regression
 from each of the other two. The result is a four-part breakdown:

 (original values) = (dual regression)
 + (deviations of row regression from dual regression)
 + (deviations of column regression from dual regression-
 + (residuals)

 This subprocedure begins with a two-way array of entries {y,c}, where 1 ?
 r < R, 1 ? c ? C, and two conformable one-way arrays, {a,} for 1 ? r ? R
 and {bj} for 1 < c ? C. (Clearly "r" stands for "row" and "c" for column.)
 The regression coefficient of column c of the yrc upon Ia,j will be denoted

 [y/aIc = Erar Yrc
 Erar

 and provides the decomposition

 Yrc = a4y/a], + {yrc - ar[y/a],}

 into an array of rank one involving {ar} and an array of residuals, each column
 of which yields zero regression on { a,). In the particular case a, 1, we have
 [y/a]c = Y-c, the mean of the cth column, and the decomposition is that cor-
 responding to the removal of column means.

 We can clearly also calculate the regression coefficient

 [y/b]r = _EC Yrc b
 Ec b2

 of each row upon the given row I be,). Doing both together, we are led, by the
 familiar procedure of removing row, column, and grand means first to notice
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 that

 Ec[y/a]c b E E-Z a, yrc bc _ EZ a,[y/al. - [/b]
 Ec 2a. a b2c Ea. /

 where the notation [y/ab] is by analogy with [y/a]c and [y/a]r, and then to
 write down the 4-part decomposition

 yrc = a4[y/ab]bc + {a,[y/a]c - a[y/ab]bc} + { [y/b]rbc - a[y/ab]bc}

 + {Yrc - ar[y/a]c - [y/b]rbc + a,[y/ab]bc}

 whose successive terms represent (i) dual regression, (ii) regression within
 column differing from dual regression, (iii) regression within row differing from
 dual regression, (iv) residuals, each row or column of which yields no regression.

 In the special case a- 1 bc these four parts of course reduce to (i) grand
 mean, (ii) deviation of column mean from grand mean, (iii) deviation of row
 mean from grand mean, (iv) residuals, each row or column of which yields zero
 mean. Thus the breakdown provided by our subprocedure is a generalization of a
 familiar one.

 As we may expect, there is a corresponding breakdown of the sum of squares:

 - ([y/t2b])2. Za2. E bc + E ([y/a]c - [y/ab]bc)2 E a

 + ([y/b]r - a[y/ab])2 E b2 + (Yrc - ar[y/a]c - [y/b]rbc

 + a,[y/ab]bc)2

 here the entries in parentheses are natural results of the breakdown, viz: (i)
 dual regression coefficient, (ii) and (iii) deviation regression coefficients, (iv)
 residuals.

 Simplicity of computation is enhanced if we apply the constraint E a,.
 1 _ E b2c, which (a) eliminates divisors in calculating regression coefficients,
 and (b) eliminates factors in calculating the breakdown into sums of squares.
 The resulting subprocedure, then;

 (al) accepts a column of numbers, a row of numbers, and a two-way table

 Yrc} of numbers,
 (a2) multiplies the entries in the column by an appropriate constant to

 attain E a. = 1, and those in the rw by another to attain E bc = 1. The
 new row and the new column are conveniently called carriers, (or perhaps
 regressors cp., Hannan, 1958),

 (a3) calculates a two-way table of residuals; finding (a row of, a column of,
 and an individual) coefficients on the way.

 (a4) accumulates the corresponding analysis-of-variance sums of squares,
 (a5) outputs the carriers, the residuals, the coefficients, and an analysis

 of variance.

 40. The basic vacuum cleaner, and its attachments. In what is called the basic
 vacuum cleaner the subprocedure just described is applied twice:
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 (bi) in the first application each carrier consists of identical entries, and
 the subprocedure removes row, column, and grand means,

 (b2) in the second application, the carriers are constructed (by a2) from
 the coefficients obtained in the first stage, and the subprocedure extracts row-
 by-row regression upon "column mean minus grand mean" and column-by-
 column regression on "row mean minus grand mean".

 The respective single degrees of freedom (corresponding to dual regression) are
 those (bl) for the grand mean, and (b2) for one degree of freedom for nonaddi-
 tivity.

 Since the first application removes R + C - 1 degrees of freedom and the
 second application removes R + C - 3 degrees of freedom, the table has to be

 large enough for RC > 2R + 2C - 4, which requires R, C > 3.
 In early trials, the vacuum cleaner was applied to relatively raw data contain-

 ing some quite wild values. As a result, the vacuum cleaner spent its (b2) effort
 in trying to account for the wildest values and had none left over to look for
 more dispersed structure. FUNOR-FUNOM was actually developed so that it
 could be applied, on a routine basis, ahead of the vacuum cleaner. Some similar

 sort of clean-up procedure will usually have to precede application of the vacuum
 cleaner.

 There are a number of ways to continue the basic vacuum cleaner, a number
 of "attachments" which can be added. Clearly the stage b2 coefficients could be
 used to define stage b3 carriers, as could the results of orthogonalizing the
 squares of the stage bl coefficients to the stage bl coefficients themselves. It
 would also be possible to proceed in a way suggested by expression of the residual
 table in terms of eigen-vectors. We shall not follow up any of these possibilities
 here in any detail.

 The problem of determining the eigen-vectors and eigen-values associated
 with a two-way array is beginning to appear in diverse places in data analysis.
 Tucker (1958) has been led to it in connection with factor analysis; it is surely
 one of the natural ways to continue the basic vacuum cleaner; and we may
 expect the same problem to arise in connection with a number of quite distinct
 problems.

 To date, work on eigen-values and eigen-vectors computation has concen-
 trated upon taking a matrix as given error-free and finding vectors and values
 to an assigned accuracy. The effort involved increases moderately rapidly with
 the size of the array. Large arrays are going to require, and smaller arrays can

 be wisely analyzed through, the use of approximate solutions. We shall need to
 know how the precision required to make the errors of approximation small
 with respect to sampling fluctuations depends on the proper analog of sample
 size. And we shall have to investigate such methods of seeking the largest eigen-
 value, and its associated vectors, as beginning with k randomly chosen vectors
 and repeatedly multiplying each by the array or its transpose. (With or without
 changes in the k-dimensional coordinate system after each multiplication.)
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 THE FUTURE OF DATA ANALYSIS 55

 41. The vacuum cleaner: an example. Table 8 presents 540 = 36 X 15

 values of a multiple regression coefficient as obtained in 540 small to moderate
 groups and modified (i) by entering "0" for 8 groups containing too few indi-
 viduals to make calculation of the corresponding multiple regression coefficients
 reasonable, and (ii) applying FUNOR-FUNOM. (Neither variate in this ex-

 ample is the same as in the example of Section 19.) For our present purposes,
 this is just another moderately cleaned-up two-way table.

 Table 9 shows the first application of the subprocedure, corresponding to the
 removal of row and column means. The entries in the body of the table are resid-

 uals after this fit. Thus, the upper left entry in Table 9 is

 0.126 - (0.014) (0.258) - (-.459) (0.167) - (0.921) (0.258) (0.167) - 0.20.

 which would have been calculated in terms of row and column means (see

 Table 8 for same) as

 0.126 - 0.042 -(-0.079) + (0.040) - 0.20.

 And so on and on. (Clearly, if all we wanted to do was to fit row, column, and
 grand means, we would have saved some arithmetic to do this directly.) The
 result of the first application, so far as the upper left cell is concerned, is to dissect
 the value 0.126 into four parts:

 0.126 0.20 + (0.014) (0.258) + (-0.459) (0.167) + (0.921) (0.258) (0.167)

 to set 0.014, -0.459, and 0.921 aside for later consideration, and to carry 0.20

 on for further analysis.
 The appended analysis of variance indicates the presence of (small) row and

 column contributions, since the row and column mean squares are each about
 1.5 times the error mean square. If all degrees of freedom are to be taken at
 face value, the pooled mean square for rows and columns is significant at 5%.

 Table 10 shows the second application of the same subprocedure. The carriers
 are now normalized forms of the coefficients obtained in the first application.
 (Note ratios of about 0.9 for the row vectors and about 0.6 for the column vec-

 tors.) Again the body of the table contains residuals after removing the indi-
 cated regressions on the carriers.

 The mean squares for row slopes and column slopes are larger than were the

 mean squares for row means and column means. If fitting row and column means
 to the original table was worthwhile, continuing the fitting this further stage was
 more worthwhile. The individual slope mean squares are all significant at 5 %;
 indeed the ratio of pooled mean squares for slopes to pooled mean squares for
 means is significant at 5 % (if we dare trust a two-sample-like F test).

 The second stage reduced the residual mean square by something more than
 15 % below its post-first-stage value. Whether or not such a reduction is impor-
 tant will depend very much upon the purpose for which the residuals are to be
 used. If, for example, they were to be correlated with residuals from another
 similar table, failing to remove this amount of systematic structure could easily
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 58 JOHN W. TUKEY

 lead to avoidable errors as serious as ascribing the wrong sign to the resulting

 correlation or regression coefficients.

 Note that FUNOR-FUNOM was applied before the vacuum cleaner. If this
 had not been done, and if, for instance, the original table had contained a single

 unusually deviant observation, the second stage would have devoted most of
 its effort to accounting for the presence of this "wild shot", and would thus have
 been unable to attend to removing the organized structure which was actually
 removed. Unless "wild shots" are surely absent, preliminary FUNOR-FUNOM
 is likely to be essential in making effective use of the basic vacuum cleaner.

 42. The example continued. The production of residuals freer of systematic

 structure than those obtained by merely fitting rows and columns is a central
 purpose of using the vacuum cleaner. To this end, the 540 residuals in Table 10
 are one of the main results of the technique, and would normally be subject to

 further analysis or examination.
 But the results of the vacuum cleaner can be applied to other purposes. The

 usual purposes of fitting row and column means include a summarization of
 (some of) the systematic appearances of the data. These purposes are more fully

 met by giving the row and column slopes as well as the row and column means.
 The 50 constants required to specify grand, row, and column means describe

 the differences between the values of Table 8 and the first residuals of Table 9.
 The 48 further constants required to specify linear-by-linear (or dual), row, and

 column slopes, when combined with the first 50, describe the differences between
 the original values of Table 8 and the second residuals of Table 10. For some
 aspects of the purpose of describing the apparently systematic behavior it
 would suffice to stop with these 50 + 48 values. For others further analysis may

 be helpful.
 Having obtained the various coefficient vectors, we can try to understand

 them. The first question to ask is: "Is one entry, or are a few entries, of over-
 whelming importance?" As we have seen above (Section 36) FUNOP can offer
 guidance in this problem. Table 11 sets out the relevant detail for the various
 row vectors in the example. The entries for column 4 turn out to be compara-

 tively large. As comparison with Table 7 shows, the entries for the "main"
 coefficients, which are linearly-coded sample means, were already analyzed in
 Section 36, with the result that there is rather clear ground for giving special
 attention to column 4, and possible ground for looking at columns 8 and 12,
 while the others seem to need no attention.

 Turning to the slope coefficients, no zi exceeds 2z = 880 but z1, corresponding
 to column 4 nearly reaches this level. In view of (a) our uncertainty that 2.00z
 is the right dividing line, and (b) the appearance of column 4 in the detailed
 analysis of the mean vector, it seems reasonable to give the column 4 slope
 special attention. If we do this, we should do the same for the more extreme
 entries for columns 8 and 13. Analysis of the remaining 12 entries yields a mean
 square of only about 1.5 times the error mean square, and FUNOP gives no
 strong indication of further need for special attention.
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 THE FUTURE OF DATA ANALYSIS 59

 TABLE 1 1

 Detailed behavior of row vectors in example
 (Entries 1000 X those above)

 (Carrier) Coefficient FUNOP
 Col.

 (Main) (Slope) Main Slope Main Slope

 1 (258) (13) 14 -422 306
 2 (258) (-95) -104 125 177 399
 3 (258) (-90) -97 -627 230 362

 4 (258) (-663) -723t 678 482t 843
 5 (258) (-54) -59 -409 382
 6 (258) (-148) -161 -365 199 604

 7 (258) (86) 93 -394 159 481
 8 (258) (416) 454 856 381 603
 9 (258) (-313) -341 84 310

 10 (258) (49) 54 66
 11 (258) (125) 137 -151 180
 12 (258) (434) 473 150 298 326

 13 (258) (42) 45 759 721
 14 (258) (177) 193 -219 201
 15 (258) (20) 22 -131

 z=215 440

 * FUNOP z's for coefficient entries.
 t FUNOP z > 2z.

 So far as row vectors are concerned, the best-defined part of the systematic
 appearance will be covered if we specify the entries for columns 4, 8, 12, and 13,
 leaving the others zero, and adjusting the dual regressions (grand mean and
 linear-by-linear) accordingly. Thus the 14 + 13 = 27 row vector constants
 have been boiled down to 4 + 4 = 8 numerical values and the selection of 4
 columns for special attention. (A similar process could be applied to the column
 vectors.)

 This boiling down of apparent structures does not oblige us to alter our resid-
 uals. The purpose of using the vacuum cleaner to generate residuals was to
 provide residuals clear of likely effects. This it did. A three-part decomposition
 of the observations,

 (observed value) = (apparently systematic part)
 + (possibly systematic part)
 + (hopefully residual part)

 is often more desirable than a two-part decomposition in which everything is
 forced to be either apparently systematic or hopefully residual.
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 60 JOHN W. TUKEY

 When special attention is given to these four columns it is easy, in this par-
 ticular instance, to learn what is going on. As noted at the beginning of the
 example the 540 original values are regression coefficients, one for each of 540
 groups of individuals, these groups, being cross-classified into 36 and 15 classes
 respectively. Each group can provide not only an apparent regression coefficient,
 but also an estimate of the variance of this apparent regression coefficient. When
 these estimates of variance are examined, they are found to be systematically
 large in the four special-attention columns.

 Thus the apparent significance of row means and slopes can plausibly be
 ascribed to inhomogeneity of variance. Two remarks are relevant:

 (1) As noted elsewhere (Section 31) the use of more incisive tools is more
 likely to reveal both what is being sought for and what may, perhaps uncom-
 fortably, be present (such as non-constant variability).

 (2) The effects of non-constant variability already gave rise to a detectable,
 and nominally significant, effect in the conventional stage of the analysis, the
 fitting of row and column means.

 VIII. HOW SHALL WE PROCEED?

 43. What are the necessary tools? If we are to make progress in data analysis,
 as it is important that we should, we need to pay attention to our tools and our
 attitudes. If these are adequate, our goals will take care of themselves.

 We dare not neglect any of the tools that have proved useful in the past.
 But equally we dare not find ourselves confined to their use. If algebra and analy-
 sis cannot help us, we must press on just the same, making as good use of in-
 tuition and originality as we know how.

 In particular we must give very much more attention to what specific tech-
 niques and procedures do when the hypotheses on which they are customarily
 developed do not hold. And in doing this we must take a positive attitude, not a
 negative one. It is not sufficient to start with what it is supposed to be desired
 to estimate, and to study how well an estimator succeeds in doing this. We must
 give even more attention to starting with an estimator and discovering what is a
 reasonable estimand, to discovering what is it reasonable to think of the estima-
 tor as estimating. To those who hold the (ossified) view that "statistics is op-
 timization" such a study is hindside before, but to those who believe that "the
 purpose of data analysis is to analyze data better" it is clearly wise to learn what
 a procedure really seems to be telling us about. It would be hard to overem-
 phasize the importance of this approach as a tool in clarifying situations.

 Procedures of diagnosis, and procedures to extract indications rather than
 conclusions, will have to play a large part in the future of data analyses. Graph-
 ical techniques offer great possibilities in both areas, and deserve far more
 extensive discussion than they were given here. Graphs will certainly be in-
 creasingly "drawn" by the computer without being touched by hands. More
 and more, too, as better procedures of diagnosis and indication are automated,
 graphs, and other forms of expository output, will, in many instances, cease to
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 THE FUTURE OF DATA ANALYSIS 61

 be the vehicle through which a man diagnoses or seeks indications, becoming,
 instead, the vehicle through which the man supervises, and approves or dis-
 approves, the diagnoses and indications already found by the machine.

 44. The role of empirical sampling. Numerical answers about the absolute or
 comparative performance of data analysis procedures will continue to be of
 importance. Approximate answers will almost always serve as well as exact
 ones, provided the quality of the approximation is matched to the problem.
 There will, in my judgment, be no escape from a very much more extensive
 use of experimental sampling (empirical sampling, Monte Carlo, etc.) in estab-
 lishing these approximate answers. And while a little of this experimental
 sampling can be of a naive sort, where samples are drawn directly from the situ-
 ation of concern, the great majority of it will have to be of a more sophisticated
 nature, truly deserving the name of Monte Carlo. (Cp., Kahn, 1956, for an in-
 troduction.)

 It is, incidentally, both surprising and unfortunate that those concerned with
 statistical theory and statistical mathematics have had so little contact with
 the recent developments of sophisticated procedures of empirical sampling.
 The basic techniques and insights are fully interchangeable with those of survey
 sampling, the only difference being that many more "handles" are easily avail-
 able for treating a problem of statistical theory than are generally available for
 treating a problem about a human population or about an aggregation of busi-
 ness establishments. (cp., Tukey, 1957, for an instance of interchangeability.)

 As one comes to make use of all that he knows, both in replacing the original
 problem by one with an equivalent answer, and in being more subtle in analysis
 of results, one finds that no more than a few hundred samples suffice to answer
 most questions with adequate accuracy. (The same modifications tend to reduce
 the demands for extreme high quality of the underlying "random numbers".)
 And with fast electronic machines such numbers of samples do not represent
 great expenditures of time or money. (Programming time is likely to be the
 bottleneck.)

 45. What are the necessary attitudes? Almost all the most vital attitudes
 can be described in a type form: uillingness to face up to X. Granted that facing
 up can be uncomfortable, history suggests it is possible.

 We need to face up to more realistic problems. The fact that normal theory,
 for instance, may offer the only framework in which some problem can be tackled
 simply or algebraically may be a very good reason for starting with the normal
 case, but never can be a good reason for STOPPING there. We must expect to
 tackle more realistic problems than our teachers did, and expect our successors to
 tackle problems which are more realistic than those we ourselves dared to take on.

 We need to face up to the necessarily approximate nature of useful results in
 data analysis. Our formal hypotheses and assumptions wili never be broad
 enough to encompass actual situations. Even results that pretend to be precise
 in derivation wili be approximate in application. Consequently we are likely

This content downloaded from 189.63.131.205 on Fri, 29 Jul 2016 14:06:03 UTC
All use subject to http://about.jstor.org/terms



 62 JOHN W. TUKEY

 to find that results which are approximate in derivation or calculation will
 prove no more approximate in application than those that pretend to be precise,

 and even that some admittedly approximate results will prove to be closer

 to fact in application than some supposedly exact results.
 We need to face up to the need for collecting the results of actual experience

 unth specific data-analytic techniques. Mathematical or empirical-sampling studies

 of the behavior of techniques in idealized situations have very great value, but
 they cannot replace experience with the behaviour of techniques in real situa-
 tions.

 We need to face up to the need for iterative procedures in data analysis. It is
 nice to plan to make but a single analysis, to avoid finding that the results of
 one analysis have led to a requirement for making a different one. It is also
 nice to be able to carry out an individual analysis in a single straightforward
 step, to avoid iteration and repeated computation. But it is not realistic to be-
 lieve that good data analysis is consistent with either of these niceties. As we
 learn how to do better data analysis, computation will get more extensive,
 rather than simpler, and reanalysis will become much more nearly the custom.

 We need to face up to the need for both indication and conclusion in the same
 analysis. Appearances which are not established as of definite sign, for example,

 are not all of a muchness. Some are so weak as to be better forgotten, others
 approach the borders of establishment so closely as warrant immediate and ac-
 tive following up. And the gap between what is required for an interesting indi-
 cation and for a conclusion widens as the structure of the data becomes more
 complex.

 We need to face up to the need for a free use of ad hoc and informal procedures
 in seeking indications. At those times when our purpose is to ask the data what
 it suggests or indicates it would be foolish to be bound by formalities, or by any
 rules or principles beyond those shown by empirical experience to be helpful in
 such situations.

 We need to face up to the fact that, as we enter into new fields or study new
 kinds of procedures, it is natural for indication procedures to grow up before the
 corresponding conclusion procedures do so. In breaking new ground (new from
 the point of view of data analysis), then, we must plan to learn to ask first of
 the data what it suggests, leaving for later consideration the question of what it
 establishes. This means that almost all considerations which explicitly involve
 probability will enter at the later stage.

 We must face up to the need for a double standard in dealing with error rates,
 whether significance levels or lacks of confidence. As students and developers of
 data analysis, we may find it worth while to be concerned about small difference
 among error rates, perhaps with the fact that a nominal 5 % is really 4 % or 6 %,
 or even with so trivial a difference as from 5 % to 4.5 % or 5.5 %. But as prac-
 titioners of data analysis we must take a much coarser attitude toward error
 rates, one which may sometimes have difficulty distinguishing 1 % from 5 %,
 one which is hardly ever able to distinguish more than one intermediate value
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 between these conventional levels. To be useful, a conclusion procedure need
 not be precise. As working data analysts we need to recognize that this is so.

 We must face up to the fact that, in any experimental science, our certainty
 about what will happen in a particular situation does not usualy come from directly
 applicable experiments or theory, but rather comes mainly through analogy be-
 tween situations which are not known to behave similarly. Data analysis has, of
 necessity, to be an experimental science, and needs therefore to adopt the atti-
 tudes of experimental science. As a consequence our choices of analytical ap-
 proach will usually be guided by what is known about simpler or similar situa-
 tions, rather than by what is known about the situation at hand.

 Finally, we need to give up the vain hope that data analysis can be founded
 upon a logico-deductive system like Euclidean plane geometry (or some form
 of the propositional calculus) and to face up to the fact that data analysis is in-
 trinsically an empirical science. Some may feel let down by this, may feel that
 if data analysis cannot be a logico-deductive system, it inevitably falls to the
 state of a crass technology. With them I cannot agree. It will still be true that
 there will be aspects of data analysis well called technology, but there will also
 be the hallmarks of stimulating science: intellectual adventure, demanding
 calls upon insight, and a need to find out "how things really are" by investiga-
 tion and the confrontation of insights with experience.

 46. How might data analysis be taught? If we carry the point of view set
 forth here to its logical conclusion, we would teach data analysis in a very dif-
 ferent way from any that I know to have been tried. We would teach it like
 biochemistry, with emphasis on what we have learned, with some class discus-
 sion of how such things were learned perhaps, but with relegation of all question
 of detailed methods to the "laboratory work". If we carried through the analogy
 to the end, all study of detailed proofs, as well as all trials of empirical sampling
 or comparisons of ways of presentation would belong in "the laboratory" rather
 than "in class". Moreover, practice in the use of data analysis techniques would
 be left to other courses in which problems arose, just as applications of biochem-
 istry are left to other courses.

 It seems likely, but not certain, that this would prove to be too great a switch
 to consider putting into immediate effect. Even if it is too much for one step,
 what about taking it in two or three steps?

 I can hear the war cry "cookbookery" being raised against such a proposal.
 If raised it would fail, because the proposal is really to go in the opposite direc-
 tion from cookbookery; to teach not "what to do", nor "how we learned what
 to do", but rather "what we have learned". This last is at the opposite pole from
 "cookbookery", goes beyond "the conduct of taste-testing panels", and is con-
 cemed with "the art of cookery". Dare we adventure?

 47. The impact of the computer. How vital, and how important, to the matters
 we have discussed is the rise of the stored-program electronic computer? In
 many instances the answer may surprise many by being "important but not

This content downloaded from 189.63.131.205 on Fri, 29 Jul 2016 14:06:03 UTC
All use subject to http://about.jstor.org/terms



 64 JOHN W. TUKEY

 vital", although in others there is no doubt but what the computer has been
 "vital".

 The situations where the computer is important but not vital are frequently
 those where the computer has stimulated the development of a method which
 then turns out to be quite applicable without it. FUNOP for small or moderate
 sized sets of values is an example. Using pen, paper, and slide rule, I find that I
 can FUNOP a set of 36 values in, say, twice or thrice the time it would take me
 to run up sums and sums of squares, and find s2 on a desk computer. And I ob-
 serve:

 (1) I learn at least two or three times as much from FUNOP as from x
 and 82*

 (2) Hand FUNOP is faster than hand calculation of conventional measures
 of non-normality.

 (3) It is easier to carry a slide rule than a desk computer, to say nothing
 of a large computer.

 This is but one instance, but it is unlikely to be the only one.
 On the other hand, there are situation where the computer makes feasible

 what would have been wholly unfeasible. Analysis of highly incomplete medical
 records is almost sure to prove an outstanding example.

 In the middle ground stand techniques which could be done by hand on small
 data sets, but where speed and economy of delivery of answer make the com-
 puter essential for large data sets and very valuable for small sets. The com-
 bination of FUNOR-FUNOM and the basic vacuum cleaner (with FUNOP on
 the coefficient vectors) will tear down a two-way table more thoroughly than
 statisticians were prepared to do, even by interspersing many man hours of
 careful study between spells of computation, only a few years ago. With a few
 trimmings, such as estimation of separate variances for individual rows and
 columns, such a procedure, teamed with a competent statistician who could spot
 and follow up clues in the print-out, could greatly deepen our routine insight
 into two-way tables.

 48. What of the future? The future of data analysis can involve great progress,
 the overcoming of real difficulties, and the provision of a great service to all
 fields of science and technology. Will it? That remains to us, to our willingness
 to take up the rocky road of real problems in preference to the smooth road of
 unreal assumptions, arbitrary criteria, and abstract results without real attach-
 ments. Who is for the challenge?
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