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Abstract A desirable property for an estimator of the fractional ARFIMA
parameter is to be first difference invariant. This paper investigates the effects
on the fractional parameter estimator in nonstationary ARFIMA(p, d, q) pro-
cesses before and after applying a first difference. We consider semiparametric
and parametric approaches for estimating d. The study is based on a Monte
Carlo simulation for different sample sizes. The Brazilian exchange rate series
is given as an application of the methodology.
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1 Introduction

The ARFIMA(p, d, q) process was first introduced by Granger and Joyeux
(1980), and Hosking (1981). The most useful feature for this process is the long
memory. This property is reflected by the hyperbolic decay of the autocorrela-
tion function or by the unboundedness of the spectral density function of the
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process. While in an ARMA structure, the dependency between observations
decays at a geometric rate.

Several applications using ARFIMA processes are considered in some fields
such as economics, hydrology and finance. Granger and Joyeux (1980) used a
fractionally differenced model with no short-term components to model the
US monthly index of consumer food prices for the period January 1947 to June
1978. Based on minimizing the 10-step-ahead forecast errors, they estimated d
to be approximately 0.35, after first differencing the original time series. Sowell
(1992a) applied the ARFIMA process to correctly model the trend behavior
of the postwar US real GNP data. This time series has sample size equal to
172 observations and the author compared test of hypothesis using fractional
and non-fractional ARIMA processes in modeling the long-run behavior of the
series. Geweke and Porter-Hudak (1983) also found ARFIMA models useful
for forecasting other leading indicator series. Chen (1987) used a fractional
differencing model with fixed coefficient regression terms to incorporate both
long-term dependence and short-term periodic effects into a model for gold
prices. Lobato and Velasco (2000) analyzed the long-memory properties for the
daily trading volume and the return volatility processes of the 30 stocks that
compose the Dow Jones Industrial Average index for the period July 1962 to
December 1994. These two components of the vector process exhibit different
stochastic properties: although return volatility is considered to be stationary,
the trading volume is treated as non-stationary. The authors showed that return
volatility and trading volume have the same long memory parameter for the
most of the stocks although apparently the long memory of these two series
cannot be explained by a common long-memory component.

Several estimation procedures for the fractional ARFIMA parameters have
been proposed, mainly, by semiparametric and parametric procedures.

In the first class the regression method proposed by Geweke and Porter-
Hudak (1983) was the pioneer. This approach was very important giving rise
to several other works. The authors presented a proof when d ∈ (−0.5, 0.0),
nonetheless, the method, denoted here by GPH, has been used for a wide
range of d. Robinson (1995), making use of mild modifications on GPH, deals
simultaneously with d ∈ (−0.5, 0.0), and d ∈ (0.0, 0.5) proving the asymptotic
properties for this new estimator.

Reisen (1994) proposed a modified form of the regression method based on a
smoothed version of the periodogram function. Velasco (1999a) also considered
a modified version of the GPH method.

Hurvich and Ray (1995) have introduced a cosine-bell function as a spec-
tral window to reduce the bias of the periodogram function. They find that data
tapering, and the elimination of the first periodogram ordinate in the regression
equation, can reduce the bias of the estimator. However, the reduction of the
bias’ estimator has the cost of increasing its variance. Velasco (1999b) has also
considered this estimator, and proved its consistency, and asymptotic normality
for any d including both non-stationary, and non-invertible processes.

In the parametric class, the reader will find the methods based on the
maximum likelihood function suggested in Fox and Taqqu (1986) and
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Sowell (1992b), among others. A comparison study between these parametric
approaches are given by Cheung and Diebold (1994), Hauser (1999), and the
references therein. Reisen et al. (2001a) present an extensive simulation study
comparing both semiparametric, and parametric approaches for the estimation
of d in ARFIMA(p, d, q) processes.

The main goal of this paper is to analyze which estimation method for the frac-
tional parameter is invariant to first-differencing when the model is described
by an ARFIMA(p, d, q) process. Hurvich and Ray (1995) addressed the invari-
ance property only for tapered, and non-tapered GPH estimators. In this work
we shall consider three methods in the semiparametric, and one in the paramet-
ric class. In our investigation we analyze the case of non-stationary processes
with, and without level-reversion property, that is, when d ∈ [0.5, 1.0) and
d ∈ [1.0, 1.5), respectively. The work is organized as follows: Sect. 2 presents the
ARFIMA(p, d, q) processes when d ∈ (0.5, 1.5), and the estimation methods;
the simulation results are in Sect. 3; an application of the methodology is in
Sect. 4, and the conclusions are in Sect. 5.

2 The model and the estimators

2.1 Stationary and invertible ARFIMA process

Let {Xt}t∈Z be an ARFIMA(p, d, q) process given by

�(B)(1 − B)dXt = �(B)εt, d ∈ IR, (2.1)

where B is the backward-shift operator, that is, BXt = Xt−1. The polynomials
�(B) = ∑p

i=0(−φi)Bi and �(B) = ∑q
j=0(−θj)Bj are of orders p and q, respec-

tively, with φ0 = −1 = θ0. The process {εt}t∈Z is white noise with zero mean,
and finite variance σ 2

ε . The term (1 − B)d is the binomial power series of B.
The process {Xt}t∈Z, given by the expression (2.1), is called a general fractional

differenced zero mean process, where d is the fractional differencing parameter.
The process given by the expression (2.1) is both stationary, and invertible if

the roots of �(B) and �(B) are outside the unit circle, and d ∈ (−0.5, 0.5). Its
spectral density function, fX(·), is given by

fX(w) = fU(w)
[
2 sin

(w
2

)]−2d
, w ∈ [−π , π ],

where fU(·) is the spectral density function of an ARMA(p, q). One observes
that fX(w) � w−2d, when w → 0.

The ARFIMA(p, d, q) process exhibits long memory when d ∈ (0.0, 0.5),
intermediate memory when d ∈ (−0.5, 0.0), and short memory when d = 0.
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2.2 Non-stationary ARFIMA process

Now, we define the process (2.1) with the parameter d∗ = d + 1, where d ∈
(0.0, 0.5), and the model (2.1) becomes

�(B)(1 − B)d∗
Xt = �(B)εt, t ∈ Z. (2.2)

The process (2.2) is non-stationary when d∗ ≥ 0.5; however, it is still persis-
tent. For d∗ ∈ [0.5, 1.0) it is level-reverting in the sense that there is no long-run
impact of an innovation on the value of the process (see Velasco 1999a). The
level-reversion property no longer holds when d∗ ≥ 1.

2.3 Estimation in ARFIMA(p, d∗, q) process

To estimate the fractional parameter we consider semiparametric and paramet-
ric estimation methods. In the semiparametric class we deal with the estimator
proposed by Geweke and Porter-Hudak (1983), denoted in the sequel by GPH,
where its asymptotic variance is given by

h(x, n) × Var(GPH) ≈ π2

6
, (2.3)

with h(x, n) = ∑g(n)

j=1 (xj − x)2, xj = ln{sin(
wj
2 )}2, wj, for j = 1, . . . , g(n), the j-th

Fourier frequency and g(n) = nα , for 0 < α < 1 (see Geweke and Porter-Hudak
1983).

We also consider the smoothed periodogram regression (SPR), suggested by
Reisen (1994), with asymptotic variance given by

n
m

h(x, n) × Var(SPR) ≈ 0.53928,

where h(x, n) and xj, for j ∈ {1, . . . , g(n)}, have the same values as in (2.3) and
m = nβ , with β = 0.9, is the truncation point of the Parzen lag window (see
Reisen 1994).

The last estimation procedure in the semiparametric class considered here
is the tapered method, denoted by GPHTa and proposed by Hurvich and Ray
(1995) and Velasco (1999b). This is also a periodogram regression method where
one uses the cosine-bell function as a spectral window to reduce the bias of the
periodogram function. The spectral window is given by

λ(t) = 1
2

[

1 − cos

(
2π(t + 0.5)

n

)]

.
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In this case, the modified periodogram function is given by

I(wj) = 1

2π
∑n−1

t=0 λ(t)2

∣
∣
∣
∣
∣
∣

n−1∑

t=0

λ(t)Xt e−iwjt

∣
∣
∣
∣
∣
∣

2

.

This estimator regresses ln{I(wj)} on ln{2 sin(
wj
2 )}, for j = l, l + 1, . . . , g(n).

Its asymptotic variance (see Velasco 1999a) is given by

g(n) × Var(GPHTa) ≈ π2

8
, (2.4)

where g(n) = nα , for 0 < α < 1.
In our investigation we also consider the frequency domain FT estimator,

proposed by Fox and Taqqu (1986), as a parametric procedure. The estimate
obtained from this procedure has asymptotic variance given by n Var(FT) =
6/π2, where n is the sample size (see Beran 1994).

3 Simulation results

In this section we analyze the behavior of the estimators, presented in Sect. 2.3,
before, and after applying a first difference to a time series generated from an
ARFIMA(p, d∗, q) model, where d∗ ∈ [0.5, 1.5).

Let {Xt}t∈Z be an ARFIMA(0, d∗, 0), given by the expression (2.2) with
p = 0 = q. From expression (2.2),

Yt = (1 − B)Xt, t ∈ Z,

is an ARFIMA(0, d, 0) process.
The stationary ARFIMA processes were generated using the algorithm pro-

posed by Hosking (1984). The processes {Xt}t∈Z were obtained through the
algebraic form Xt = (1 − B)−1Yt, for t ∈ IN − {0}, where X1 = Y1. We
used Fortran (IMSL) subroutines for simulation and estimation results. The
ARFIMA(p, d∗, q) processes were simulated including the autoregressive and
moving average components in the {Xt}t∈Z process. Let d̂∗ be the estimator of
d∗, and d̂ be the fractional estimator obtained from the first differenced data.
The main goal is to verify the equality d̂∗ = d̂ + 1.

The simulation study is based on 2, 000 replications of time series with three
different sample sizes (n ∈ {256, 512, 1, 024}). However, in the present paper we
only show the results for the two first sample sizes. The parameter estimates
when using n = 1, 024 were very similar to the cases presented here and are
available upon request. In the semiparametric methods the bandwidths were
set at α = 0.5 and 0.8. These sample sizes were also considered by Velasco
(1999a).
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All tables give the mean (E(·)), the mean squared error (mse) values for the
estimators before, and after applying the first difference to the time series and
the quantity ν ≡ 1 + E(d̂) − E(d̂∗). The smallest mean squared error value is
given in the tables by a boldfaced character. The bandwidth g(n) = nα in the
semiparametric methods was fixed at α1 = 0.5 (this is a commonly used value
in the literature) and at α2 = 0.8 (see Lopes et al. 2004; Velasco 1999a; Hurvich
and Ray 1995). All the estimates from the semiparametric class are denoted
here, respectively, by GPH(i), SPR(i) and GPHTa(i), for i = 1, 2. The truncation
point in the Parzen lag window in the SPR estimator was taken m = nβ , with
β = 0.9 (see Reisen 1994 for a discussion on the β value). The value of l was
set equal to 2 in the GPHTa estimator (see Theorem 3 in Hurvich and Ray 1995).

The Case of ARFIMA(0, d∗, 0)

For pure ARFIMA processes we considered several different values of d∗ ∈
[0.5, 1.0]. Table 1 shows the simulation results when d∗ = 0.6, 0.8, 1.0. For d∗ in
this range it is expected that the first differentiated series is now belonging to
the intermediate or short-memory class.

One observes that the FT method gives estimated mean value very close to
the true parameter d∗ with very small mean squared error values. The semi-
parametric methods also performed reasonably well but the GPHTa procedure
has the largest mean squared error values. The variance of the semiparametric
estimates decreases with the increase of the bandwidth. This also reflects in the
decrease of the mean squared error value of the estimates. An investigation in
this direction can also be found in Hurvich and Ray (1995), and Lopes et al.
(2002).

By looking at the ν quantity, one observes its closeness to the zero value,
indicating that the relation E(d̂∗) � 1 + E(d̂) holds for all considered methods.
Therefore, the estimators are, in mean, nearly invariant. The study reveals that
these methods can be used to model non-stationary time series with the level
reversion property. Also, the estimate of d (d̂) after first difference plus 1 (d̂+1)
is close to the true parameter. This empirical study visions that E(d̂) + 1 = d∗.
This can be useful in practical situations where the practitioner, after first differ-
entiating an ARFIMA(0, d∗, 0) time series will get an estimate of d ∈ (−0.5, 0.0)

with small bias. One observes that when the sample size n increases the bias,
and the mean squared error values decrease.

For d∗ > 1.0 all estimators, except the GPHTa, are very much biased and
the invariance property for the first difference does not hold anymore (see
Table 2). The picture of the empirical study, for this case, changes compared
with the case when d∗ ≤ 1.0. Now all estimators, besides GPHTa, underestimate
d∗. The bias increases dramatically as the value of d∗ increases. The estimates
are always close to one no matter what is the value of d∗. The conclusion is
that E(d̂∗) � 1 for GPH, SPR, and FT estimators. This may cause a problem
in practical situations since obtaining a value close to one does not necessarily
indicates that the series is an ARFIMA(0, d∗, 0) model with d∗ = 1.0. The prop-
erty E(d̂∗) � 1 + E(d̂) seems to hold only for GPHTa. However, it is interesting
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Table 1 Estimation results from the ARFIMA(0, d∗, 0) model, when d∗ ∈ [0.5, 1.0], for different
sample sizes

n d∗ Method E(d̂∗) mse(d̂∗) E(d̂ ) mse(d̂ ) ν

GPH(1) 0.6188 0.0438 −0.3822 0.0459 −0.0010
GPH(2) 0.6133 0.0066 −0.3910 0.0062 −0.0043
SPR(1) 0.5549 0.0312 −0.3877 0.0229 0.0574

0.6 SPR(2) 0.6003 0.0043 −0.3947 0.0037 0.0050
GPHTa(1) 0.6119 0.1607 −0.4018 0.1621 −0.0137
GPHTa(2) 0.6135 0.0136 −0.3902 0.0141 −0.0040
FT 0.6070 0.0028 −0.3972 0.0027 −0.0042

GPH(1) 0.8365 0.0460 −0.1844 0.0440 −0.0209
GPH(2) 0.8308 0.0084 −0.2002 0.0063 −0.0310
SPR(1) 0.7801 0.0314 −0.2148 0.0243 0.0052

256 0.8 SPR(2) 0.8194 0.0054 −0.2065 0.0041 −0.0258
GPHTa(1) 0.8213 0.4576 −0.1995 0.3429 −0.0208
GPHTa(2) 0.8304 0.0145 −0.1984 0.0029 −0.0250
FT 0.8252 0.0039 −0.1946 0.0028 −0.0199

GPH(1) 0.9994 0.0369 0.0014 0.0430 0.0020
GPH(2) 1.0000 0.0051 −0.0027 0.0062 −0.0027
SPR(1) 0.9670 0.0273 −0.0437 0.0256 −0.0107

1.0 SPR(2) 1.0036 0.0035 −0.0141 0.0042 −0.0176
GPHTa(1) 0.9784 0.4756 −0.0136 0.3569 0.0080
GPHTa(2) 1.0089 0.0125 0.0140 0.0015 −0.0074
FT 0.9934 0.0023 −0.0037 0.0028 0.0029

GPH(1) 0.6273 0.0307 −0.3781 0.0305 −0.0054
GPH(2) 0.6122 0.0037 −0.3936 0.0034 −0.0059
SPR(1) 0.5810 0.0208 −0.3808 0.0154 0.0382

0.6 SPR(2) 0.6036 0.0025 −0.3959 0.0021 0.0005
GPHTa(1) 0.6178 0.0949 −0.3930 0.0944 −0.0108
GPHTa(2) 0.6120 0.0078 −0.3939 0.0072 −0.0044
FT 0.6066 0.0015 −0.3978 0.0014 −0.0044

GPH(1) 0.8365 0.0301 −0.1859 0.0284 −0.0224
GPH(2) 0.8242 0.0049 −0.1992 0.0033 −0.0234
SPR(1) 0.8003 0.0215 −0.2063 0.0159 −0.0066

512 0.8 SPR(2) 0.8193 0.0032 −0.2031 0.0021 −0.0223
GPHTa(1) 0.8205 0.1000 −0.1971 0.1005 −0.0176
GPHTa(2) 0.8252 0.0089 −0.1942 0.0079 −0.0200
FT 0.8242 0.0025 −0.1957 0.0013 −0.0199

GPH(1) 0.9879 0.0216 0.0178 0.0312 0.0299
GPH(2) 0.9998 0.0027 −0.0015 0.0034 −0.0014
SPR(1) 0.9915 0.0151 −0.0175 0.0185 −0.0090

1.0 SPR(2) 1.0051 0.0018 −0.0088 0.0023 −0.0014
GPHTa(1) 1.0256 0.0984 −0.0008 0.1005 −0.0264
GPHTa(2) 1.0077 0.0073 0.0021 0.0077 0.0007
FT 0.9960 0.0010 0.0113 0.0015 0.0153

to note that for all methods the relation 1+E(d̂) � d∗ holds. This is a very useful
information for practical purposes. If the time series is an ARFIMA(0, d∗, 0)

model, with 1.0 < d∗ < 1.5, the first difference fractional estimate will be in the
range (0.0, 0.5) with small bias.
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Table 2 Estimation results from the ARFIMA(0, d∗, 0) model, when d∗ ∈ (1.0, 1.5), for different
sample sizes

n d∗ Method E(d̂∗) mse(d̂∗) E(d̂ ) mse(d̂ ) ν

GPH(1) 1.0522 0.0371 0.1067 0.0438 0.0545
GPH(2) 1.0442 0.0090 0.0990 0.0059 0.0548
SPR(1) 1.0402 0.0270 −0.0450 0.0285 −0.0852

1.1 SPR(2) 1.0615 0.0045 0.0871 0.0044 0.0256
GPHTa(1) 1.1450 0.1689 0.1001 0.1766 −0.0449
GPHTa(2) 1.0817 0.0121 0.1055 0.0148 0.0237

256 FT 1.0447 0.0061 0.0983 0.0029 0.0536

GPH(1) 1.0445 0.1844 0.4598 0.0462 0.4152
GPH(2) 1.0281 0.1857 0.4581 0.0067 0.4300
SPR(1) 1.1227 0.1147 0.3981 0.0323 0.2754

1.45 SPR(2) 1.0699 0.1478 0.4439 0.0048 0.3740
GPHTa(1) 1.1939 0.1735 0.4334 0.1642 0.2395
GPHTa(2) 1.3127 0.0311 0.4641 0.0150 0.1515
FT 1.0271 0.1875 0.4928 0.0048 0.4657

GPH(1) 1.0516 0.0249 0.1008 0.0294 0.0492
GPH(2) 1.0422 0.0069 0.1008 0.0033 0.0586
SPR(1) 1.0587 0.0164 0.0643 0.0180 0.0056

1.1 SPR(2) 1.0615 0.0031 0.0933 0.0021 0.0318
GPHTa(1) 1.1357 0.0952 0.1057 0.0963 −0.0300
GPHTa(2) 1.0768 0.0069 0.1054 0.0071 0.0286
FT 1.0455 0.0048 0.0984 0.0013 0.0529

512 GPH(1) 1.0391 0.1823 0.4632 0.0305 0.4241
GPH(2) 1.0194 0.1900 0.4575 0.0034 0.4380
SPR(1) 1.1210 0.1135 0.4171 0.0212 0.2961

1.45 SPR(2) 1.0522 0.1602 0.4489 0.0023 0.3967
GPHTa(1) 1.5500 0.0965 0.4566 0.0917 −0.0934
GPHTa(2) 1.2793 0.0357 0.4620 0.0073 0.1827
FT 1.0219 0.1889 0.4731 0.0019 0.4512

Lopes and Pinheiro (2006) have showed that an estimator of d∗ based on
the wavelet theory is very competitive for both situations with, and without
level-reversion property. We believe that the invariance property will hold for
this estimator even when d∗ > 1.0 (this is a topic for a forthcoming paper).
An extensive simulation study related to the bias of d∗ for a nonstationary
ARFIMA process is presented by Lopes et al. (2002, 2004).

The Case of ARFIMA(p, d∗, q)

We now analyze the invariance property for the first difference in
ARFIMA (1, d∗, 0) model, when d∗ + 0.8, and the results are presented in
Table 3. From this table one can see that the semiparametric estimators follow
the same behavior observed in Table 1. For φ = −0.6 the estimators do not
suffer large impact with the autoregressive component presented in the model.
For positive φ (for instance, φ = 0.6), the SPR method dominates the study
by showing smaller bias, and mean squared error values. As it is known, to
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Table 3 Estimation results from the ARFIMA(1, d∗, 0) model, when d∗ = 0.8 and φ ∈ {−0.6, 0.6},
for different sample sizes

φ n Method E(d̂∗) mse(d̂∗) E(d̂ ) mse(d̂ ) ν

GPH(1) 0.8257 0.0424 −0.1984 0.0470 −0.0241
GPH(2) 0.6957 0.0194 −0.3401 0.0262 −0.0359
SPR(1) 0.7689 0.0316 −0.2242 0.0266 0.0069

256 SPR(2) 0.6846 0.0192 −0.3480 0.0262 −0.0326
GPHTa(1) 0.8044 0.1781 −0.2212 0.2015 −0.0256
GPHTa(2) 0.7044 0.0232 −0.3309 0.0317 −0.0353
FT 0.8457 0.0112 −0.1956 0.0040 −0.0413

−0.6 GPH(1) 0.8242 0.0299 −0.1977 0.0295 −0.0219
GPH(2) 0.7331 0.0097 −0.2976 0.0132 −0.0308
SPR(1) 0.7909 0.0209 −0.2148 0.0162 −0.0057

512 SPR(2) 0.7249 0.0090 −0.3029 0.0129 −0.0279
GPHTa(1) 0.8097 0.0957 −0.2066 0.0944 −0.0163
GPHTa(2) 0.7337 0.0125 −0.1977 0.0019 −0.0269
FT 0.8714 0.0150 −0.1964 0.0019 −0.0678

GPH(1) 0.9042 0.0529 −0.1176 0.0562 −0.0218
GPH(2) 1.1310 0.1204 0.2165 0.1796 0.0854
SPR(1) 0.8479 0.0319 −0.1442 0.0308 0.0079

256 SPR(2) 1.1393 0.1199 0.2086 0.1713 0.0693
GPHTa(1) 0.9609 0.1878 −0.0726 0.2016 −0.0335
GPHTa(2) 1.1512 0.1387 0.2171 0.1929 0.0659
FT 1.2830 0.5433 −0.1456 0.0336 −0.4286

0.6 GPH(1) 0.8714 0.0333 −0.1521 0.0308 −0.0235
GPH(2) 1.1147 0.1047 0.1661 0.1373 0.0514
SPR(1) 0.8335 0.0208 −0.1759 0.0168 −0.0094

512 SPR(2) 1.1220 0.1063 0.1621 0.1332 0.0400
GPHTa(1) 0.8625 0.0987 −0.1537 0.0969 −0.0162
GPHTa(2) 1.1238 0.1135 0.1664 0.1437 0.0426
FT 1.3994 0.6515 −0.1857 0.0181 −0.5851

compute the FT estimates it is necessary to make use of a numerical method to
achieve the maximum value of a function which depends on the periodogram
and the spectral density functions. This procedure depends on the parameter
range values. Here, we have decided to work with a very large parameter width
to avoid any estimate to attain the boundary constraints. This can dramatically
changes the picture of the FT estimates and it may explain that FT method
presented estimates with very large biases. It seems that the method has diffi-
culties for distinguishing between positive correlation caused by d and positive
correlation caused by φ. This affects substantially the estimates in this method,
by presenting large values of both bias, and mean squared error. The estimator
GPHTa has the largest standard deviation value for d̂∗, and d̂ even when the
sample size increases. One study case of the previously reported results is also
shown graphically by the boxplot figures (see Figs 1, 2).

Analyzing the invariance property we can see the difference (E(d̂) + 1) −
E(d∗) is not very large, and it is comparable with the case in Table 1, except for
the FT method when φ > 0 (see Figs. 1, 2).
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Fig. 1 Box-plot of d̂∗ − (1 + d̂), for the ARFIMA(1, d∗, 0) model, when d∗ = 0.8, φ = −0.6 and
n = 512

Fig. 2 Box-plot of d̂∗ − (1 + d̂), for the ARFIMA(1, d∗, 0) model, when d∗ = 0.8, φ = +0.6 and
n = 512

The picture of the estimates from the ARFIMA(0, d∗, 1) model (see Table 4)
is similar to the ARFIMA(1, d∗, 0) case but in the opposite way. Now, FT method
presents large bias for negative value of θ . Again the semiparametric methods
are not too much affected by the correlation structure caused by θ , and the
value of ν is relatively small, comparable with the ARFIMA(0, d∗, 0) process.

We now consider the case when p = 1 = q. Table 5 presents the simulation
results when φ = −0.6 and θ = 0.2, and when φ = 0.2 and θ = 0.6, both for
d∗ = 0.8, and sample size equal to n = 256. In this situation, the SPR is the
estimator that suffers less impact, compared with the others, from the short-
memory parameter combinations considered here. The method GPHTa has the
largest mean squared error value for both d̂∗, and d̂ in this case.
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Table 4 Estimation results from the ARFIMA(0, d∗, 1) model, when d∗ = 0.8 and θ ∈ {−0.6, 0.6},
for different sample sizes

θ n Method E(d̂∗) mse(d̂∗) E(d̂ ) mse(d̂ ) ν

GPH(1) 0.8410 0.0419 −0.1937 0.0454 −0.0347
GPH(2) 0.9526 0.0297 −0.0515 0.0287 −0.0041
SPR(1) 0.7818 0.0295 −0.2235 0.0256 −0.0053

256 SPR(2) 0.9469 0.0257 −0.0585 0.0242 −0.0054
GPHTa(1) 0.8198 0.1612 −0.2060 0.1875 −0.0258
GPHTa(2) 0.9524 0.0368 −0.0486 0.0394 −0.0010
FT 1.8599 1.1664 −0.1946 0.0040 −1.0545

−0.6 GPH(1) 0.8405 0.0321 −0.1929 0.0306 −0.0334
GPH(2) 0.9181 0.0175 −0.0962 0.0142 −0.0143
SPR(1) 0.8005 0.0217 −0.2128 0.0173 −0.0133

512 SPR(2) 0.9145 0.0156 −0.1006 0.0121 −0.0151
GPHTa(1) 0.8216 0.0962 −0.1955 0.0966 −0.0171
GPHTa(2) 0.9126 0.0206 −0.0922 0.0202 −0.0048
FT 1.8996 1.2095 −0.1979 0.0018 −1.0975

GPH(1) 0.7395 0.0493 −0.2729 0.0536 −0.0124
GPH(2) 0.4332 0.1443 −0.6030 0.1695 −0.0361
SPR(1) 0.6841 0.0457 −0.2886 0.0304 0.0273

256 SPR(2) 0.4178 0.1525 −0.6072 0.1700 −0.0249
GPHTa(1) 0.6515 0.1493 −0.3553 0.1764 −0.0068
GPHTa(2) 0.4539 0.1352 −0.5887 0.1668 −0.0426
FT 0.8128 0.0373 −0.1977 0.0389 −0.0105

0.6 GPH(1) 0.7779 0.0284 −0.2423 0.0303 −0.0202
GPH(2) 0.4693 0.1146 −0.5578 0.1316 −0.0271
SPR(1) 0.7386 0.0237 −0.2573 0.0177 0.0041

512 SPR(2) 0.4609 0.1184 −0.5622 0.1334 −0.0231
GPHTa(1) 0.7092 0.0848 −0.4622 0.0778 −0.1714
GPHTa(2) 0.4822 0.1093 −0.5504 0.1308 −0.0326
FT 0.8351 0.0220 −0.1893 0.0212 −0.0244

Table 5 Estimation results from the ARFIMA(1, d∗, 1) model, when d∗ = 0.8, for different values
of φ and θ and sample size n = 256

φ θ Method E(d̂∗) mse(d̂∗) E(d̂ ) mse(d̂ ) ν

GPH(1) 0.8223 0.0395 −0.2029 0.0467 −0.0252
GPH(2) 0.5902 0.0531 −0.4429 0.0653 −0.0331
SPR(1) 0.7595 0.0306 −0.2270 0.0243 0.0135

−0.6 0.2 SPR(2) 0.5782 0.0553 −0.4462 0.0644 −0.0245
GPHTa(1) 0.7781 0.1413 −0.2479 0.1703 −0.0260
GPHTa(2) 0.6043 0.0525 −0.4321 0.0680 −0.0365
FT 0.8605 0.0329 −0.1559 0.0296 −0.0164

GPH(1) 0.7581 0.0450 −0.2635 0.0488 −0.0216
GPH(2) 0.5339 0.0795 −0.5012 0.0971 −0.0351
SPR(1) 0.7033 0.0386 −0.2810 0.0288 0.0157

0.2 0.6 SPR(2) 0.5202 0.0839 −0.5073 0.0982 −0.0275
GPHTa(1) 0.6883 0.1553 −0.3182 0.1738 −0.0065
GPHTa(2) 0.5486 0.0776 −0.4933 0.1000 −0.0419
FT 0.8888 0.0801 −0.1190 0.0802 −0.0078
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Table 6 Estimate of the parameter in ARFIMA(0, d∗, 0) when the generated process was an
ARFIMA(1, d∗, 0) model with d∗ = 1.1, φ ∈ {−0.6, 0.6} and n ∈ {256, 512}

φ n Method E(d̂∗) mse(d̂∗) E(d̂) mse(d̂) ν

GPH 1.0474 0.0369 0.0888 0.0459 0.0415
256 SPR 1.0326 0.0271 0.0377 0.0305 0.0052

GPHTa 1.0455 0.5357 0.0653 0.4142 0.0198
FT 1.7763 0.5784 0.0921 0.0041 −0.6842

−0.6 GPH 1.0475 0.0275 0.0981 0.0293 0.0506
512 SPR 1.0548 0.0171 0.0618 0.0199 0.0070

GPHTa 1.0462 0.2461 0.0906 0.2003 0.0444
FT 1.7880 0.5802 0.0961 0.0018 −0.6919

GPH 1.0833 0.0358 0.1771 0.0525 0.0938
256 SPR 1.0777 0.0211 0.1225 0.0278 0.0447

GPHTa 1.1826 0.5077 0.1965 0.4276 0.0139
FT 1.8231 0.5761 0.1079 0.0308 −0.7152

0.6 GPH 1.0663 0.0252 0.1388 0.0303 0.0725
512 SPR 1.0748 0.0149 0.1006 0.0168 0.0258

GPHTa 1.1022 0.2508 0.1423 0.2065 0.0400
FT 1.8223 0.5752 0.0860 0.0180 −0.7363

Table 7 Estimate of the parameter in ARFIMA(0, d∗, 0) when the generated process was the
ARFIMA(1, d∗, 0) model with d∗ = 1.45, φ ∈ {−0.6, 0.6} and n ∈ {256, 512}

φ n Method E(d̂∗) mse(d̂∗) E(d̂) mse(d̂) ν

GPH 1.0470 0.1819 0.4575 0.0508 0.4105
256 SPR 1.1245 0.1142 0.3914 0.0357 0.2669

GPHTa 1.1875 1.2843 0.4334 0.4405 0.2459
FT 1.8050 0.2020 0.5105 0.0082 −0.2945

−0.6 GPH 1.0477 0.1787 0.4599 0.0301 0.4122
512 SPR 1.1248 0.1120 0.4153 0.0206 0.2905

GPHTa 1.2092 0.5180 0.4370 0.2192 0.2279
FT 1.8047 0.2013 0.4828 0.0031 −0.3219

GPH 1.0541 0.1800 0.5367 0.0563 0.4826
256 SPR 1.1340 0.1085 0.4703 0.0319 0.3363

GPHTa 1.2826 1.2181 0.5678 0.4574 0.2852
FT 1.8081 0.2000 0.9437 0.4619 0.1356

0.6 GPH 1.0448 0.1807 0.5065 0.0307 0.4617
512 SPR 1.1265 0.1118 0.4572 0.0178 0.3307

GPHTa 1.2360 0.4945 0.5233 0.2361 0.2873
FT 1.8070 0.2004 1.0540 0.7234 0.2470

Parameters’ estimation in model misspecification
We now analyze the simulation experiment results when one specifies the

wrong process. Tables 6, 7 and 8 present these results where one estimates
the parameter in an ARFIMA(0, d∗, 0) model when the generated process
was the ARFIMA(1, d∗, 0), with d∗ ∈ {1.1, 1.45} (see Tables 6, 7). We also
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Table 8 Estimate of the parameter in ARFIMA(0, d∗, 0) when the generated process was the
ARFIMA(0, d∗, 1) model with d∗ = 0.8, θ ∈ {−0.6, 0.6} and n ∈ {256, 512}

θ n Method E(d̂∗) mse(d̂∗) E(d̂) mse(d̂) ν

GPH 0.8393 0.0443 −0.1894 0.0440 −0.0287
256 SPR 0.7882 0.0286 −0.2170 0.0254 −0.0053

GPHTa 0.8264 0.3997 −0.2109 0.3865 −0.0373
FT 1.8157 1.0909 −0.1962 0.0039 −1.0119

−0.6 GPH 0.8389 0.0313 −0.1884 0.0292 −0.0273
512 SPR 0.7998 0.0207 −0.2094 0.0167 −0.0091

GPHTa 0.8227 0.2204 −0.2089 0.2116 −0.0316
FT 1.8143 1.0892 −0.1981 0.0019 −1.0125

GPH 0.7481 0.0441 −0.2596 0.0519 −0.0077
256 SPR 0.6893 0.0412 −0.2815 0.0296 0.0292

GPHTa 0.5476 0.3049 −0.3744 0.3783 0.0779
FT 0.3802 0.1814 −0.1924 0.0358 0.4273

0.6 GPH 0.7786 0.0264 −0.2367 0.0288 −0.0154
512 SPR 0.7348 0.0221 −0.2549 0.0179 0.0102

GPHTa 0.6345 0.1939 −0.3167 0.1905 0.0488
FT 0.4023 0.1608 −0.1904 0.0203 0.4073

estimate the parameter in an ARFIMA(0, d∗, 0) when the generated process
was the ARFIMA(0, d∗, 1), with d∗ = 0.8 (see Table 8). From the empirical re-
sults in Tables 6, 7 and 8 one observes that the semiparametric methods do not
depend on the corrected specification of the spectral density function to obtain
an estimate for d∗. Therefore, the bias of the fractional estimator is unaffected
by the precise order of the ARMA structure. However, a wrong specification
for the model leads to a large bias for the parameter d∗ when one uses the FT
method. We refer the reader to Reisen et al. (2001b) where an extensive Monte
Carlo study was carried out for analyzing misspecification of the model consid-
ering other estimation methods besides GPH, SPR and FT. In this later work
the authors consider different values for α in g(n) = nα , and also consider the
bias and the mean squared error values for the estimate of the short memory
components when they are present in the model.

4 An application

As an application, we consider the monthly Brazilian exchange rate data from
the period January 1979 to March 2002. The original time series, with 279 obser-
vations (see Fig. 3), clearly shows that the mean level changes with time. The
correlogram (see Fig. 4) declines very slowly indicating a long memory behavior
for this series.

The estimates are shown in Table 9 for the original, and first differenced
series together with the asymptotic standard deviation value (denoted by σ )
for each estimation method. Observe that for each semiparametric method we
present two different values for the bandwidth g(n) = nα . In Table 9 we consider
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Fig. 3 Brazilian exchange rate data (01/1979 to 03/2002)

Fig. 4 Sample autocorrelation function of the Brazilian exchange rate data

α1 = 0.5 and α2 = 0.8 and the estimates of the semiparametric class are denoted,
respectively, by GPH(i), SPR(i) and GPHTa(i), for i = 1, 2. Table 10 presents
the upper and lower bounds of the 95% confidence interval for the unit root
based on each four estimation procedures. From Tables 9 and 10 we observe that
different bandwidths produce totally different estimates. This may indicate that
the candidate model probably has short-memory component. Large value of α

produces estimates with smaller standard deviation and they are very similar to
the FT estimate. Results from the tables also suggest a unit root process.

In Table 11 we give the results for the augmented Dickey–Fuller (ADF) and
Phillips–Perron (PP) tests where the null hypothesis is the presence of a unit
root and the alternative hypothesis is the stationarity for the series. From this
table we observe that for both tests we can not reject the null hypothesis at 5%
of significance level, indicating that the Brazilian exchange rate data possesses
a unit root.

The above investigation suggests to perform an analysis of the short-term
components for the data. When using the semiparametric methods the ARMA
process order was identified after differentiating the original time series by
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Table 9 Estimation results for the original and the differenced Brazilian exchange rate series

Method GPH(1) GPH(2) SPR(1) SPR(2) GPHTa(1) GPHTa(2) FT

Original Data
Estimate 0.5020 1.0528 0.6390 1.0556 0.9330 1.2741 1.0959
σ 0.2102 0.0770 0.0906 0.0332 0.2777 0.1171 0.0467

Differenced Data
Estimate –0.3415 –0.0104 –0.2002 0.0734 –0.2130 0.3616 0.2571
σ 0.2102 0.0770 0.0907 0.0332 0.2777 0.1171 0.0467

Note: The numbers 1 and 2, in parenthesis, for the semiparametric methods, indicate that g(n) = nαi ,
with α1 = 0.5 and α2 = 0.8. σ means the asymptotic standard deviation value

Table 10 Confidence interval for d∗ at 95% confidence level based on the estimation methods

Method GPH(2) SPR(2) GPHTa(2) FT

Lower Bound 0.9019 0.9905 1.0446 1.0044
Upper Bound 1.2037 1.1207 1.5036 1.1874

Note: The number 2, in parenthesis, for the semiparametric methods, indicates that g(n) = nα2 ,
with α2 = 0.8.

Table 11 Results of the
augmented Dickey–Fuller
(ADF) and Phillips–Perron
(PP) tests for the Brazilian
exchange rate time series

Test ADF PP

Statistic Value –3.1216 –15.0253
Lag-order 6 5
p-Value 0.1035 0.2675

Table 12 Estimate results of the short-term components for the Brazilian exchange rate series

Estimate GPH(2) SPR(2) GPHTa(2) FT

φ̂1 0.2501 0.2459 0.2514 0.2022
s.e.(φ̂1) 0.1182 0.1149 0.1193 0.0925
θ̂1 0.6608 0.6691 0.6579 0.7419
s.e.(θ̂1) 0.0915 0.0880 0.0927 0.0632
σ̂ 2
ε 0.9708 0.9714 0.9706 0.9777

MBP 29.8 30.0 29.8 31.5

Notes: MBP – the modified Box-Pierce chi-square statistic with 21 degrees of freedom. The number
2, in parenthesis, for the semiparametric methods, indicates that g(n) = nα2 , with α2 = 0.8

the estimate of d∗. Only the estimation method FT is a one-step procedure
performing the estimation of the entire vector of parameters. We tried several
models with different orders by using the Minitab package. Table 12 shows the
estimation results and other statistics related to this analysis and presents the
estimates of the AR and MA components and their standard errors (denoted
respectively by s.e.(φ̂1) and s.e.(θ̂1)).

The residual analysis was also performed for the fitted model and it indicates
that the errors are approximately Gaussian white noise. The hypothesis of ade-
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quated model is not rejected at 5% of significance level, for all four estimation
methods, based on the modified Box-Pierce (MBP) test.

All methods indicate that the series is a non-stationary ARFIMA(1, d∗, 1)

model. Looking at the estimation results for the first differenced data, all esti-
mates approximately present the invariance property.

5 Conclusions

This work presented the performance of four estimation methods, belonging
to the parametric and semiparametric classes, for non-stationary ARFIMA
models with main interest when d∗ ∈ [0.5, 1.5). The two general approaches
to estimate this parameter are: use the original non-stationary time series to
estimate d∗; take first difference of the original time series, then estimate d in
the transformed stationary time series, and finally add 1 to the estimate of d to
obtain an estimate for d∗.

For the ARFIMA(0, d∗, 0) case, when d∗ ∈ [0.5, 1.0], and the corrected order
of the process is considered, the parametric FT method is, in mean, the best esti-
mation method with the invariance property for the first difference. However,
the semiparametric methods also gave good results. Therefore, when d∗ ≤ 1.0,
the simulation study reveals that both approaches perform well with all four
estimation methods. On average, the estimate for d∗ derived from the original
time series equals one plus the estimate for d derived from the transformed
series. However, the study also reveals that the second approach, when one
uses first differences, performs far better than the first when d∗ > 1.0. In these
cases, the invariance property does not hold.

When d∗ > 1.0, the tapered estimator indicates to be more nearly invariant
to the first difference than the other methods. The procedures GPH, SPR, and
FT produced estimates very close to one no matter the value of d∗.

The simulation study was extended to a general class of ARFIMA(p, d∗, q)

model. The estimates presented similar performance to the ARFIMA(0, d∗, 0)

case except for the FT method. The estimates from this procedure were strongly
affected by short-memory structures.

The authors also considered the semiparametric methods proposed in
Robinson (1995), and Velasco (1999a). The results were very similar to the
GPH method, and are available from the authors.

When misspecification for the model occurs, the estimation methods in the
semiparametric class are not affected by the corrected specification of the spec-
tral density function since they are model order independent.

As an application the Brazilian exchange rate series was analyzed and the
estimates and tests indicated a non-stationary long memory time series mod-
elled by an ARFIMA(1, d∗, 1) process with d∗ = 1.0.
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