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Abstract

Here we present a theoretical study on the main properties of Fractionally Integrated Exponential General-
ized Autoregressive Conditional Heteroskedastic (FIEGARCH) processes. We analyze the conditions for the
existence, the invertibility, the stationarity and the ergodicity of these processes. We prove that, if {Xt}t∈Z
is a FIEGARCH(p, d, q) process then, under mild conditions, {ln(X2

t )}t∈Z is an ARFIMA(q, d, 0) with cor-
related innovations, that is, an autoregressive fractionally integrated moving average process. The conver-
gence order for the polynomial coefficients that describes the volatility is presented and results related to the
spectral representation and to the covariance structure of both processes {ln(X2

t )}t∈Z and {ln(σ2
t )}t∈Z are

discussed. Expressions for the kurtosis and the asymmetry measures for any stationary FIEGARCH(p, d, q)
process are also derived. The h-step ahead forecast for the processes {Xt}t∈Z, {ln(σ2

t )}t∈Z and {ln(X2
t )}t∈Z

are given with their respective mean square error of forecast. The work also presents a Monte Carlo simula-
tion study showing how to generate, estimate and forecast based on six different FIEGARCH models. The
forecasting performance of six models belonging to the class of autoregressive conditional heteroskedastic
models (namely, ARCH-type models) and radial basis models is compared through an empirical application
to Brazilian stock market exchange index.
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1. Introduction

Financial time series present an important characteristic known as volatility which can be defined/mea-
sured in different ways but is not directly observable. A common approach, but not unique, is to define
the volatility as the conditional standard deviation (or the conditional variance) of the process and use
heteroskedastic models to describe it. The two main classes of econometric models used for representing
the dynamic evolution of volatilities are the Autoregressive Conditional Heteroskedastic models, also called
ARCH-type (introduced by [1]) and Stochastic Volatility (SV) models (see, [2] and references therein).

Both ARCH-type and SV models assume that the stochastic process {Xt}t∈Z is written as

Xt = σtZt, for all t ∈ Z, (1)

where {Zt}t∈Z is a sequence of independent identically distributed (i.i.d.) random variables, with zero
mean and variance equal to one, and σt := Var(Xt|Ft−1), where Ft−1 denotes the sigma field generated
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by the past information until time t − 1. More specifically, for ARCH-type models, Ft := σ({Xs}s≤t) or
Ft := σ({Zs}s≤t), while for SV models Ft := σ({Zs, ηs}s≤t), where {ηt}t∈Z is a sequence of latent variables,
independent of {Zt}t∈Z, but which is not directly observable. Since the volatility of SV models is specified
as a latent variable, parameter estimation is much more challenging then for ARCH-type ones.

By ARCH-type models we mean not only the ARCH(p) model proposed by [1], where

σ2
t = α0 +

p∑
i=1

αiX
2
t−i, for all t ∈ Z,

(which characterizes the volatility as a function of powers of past observed values, consequently, the volatility
can be observed one-step ahead), but also the several generalizations that were lately proposed to properly
model the dynamics of the volatility.

Among the generalizations of the ARCH model are the Generalized ARCH process (see [3]), denoted by
GARCH(p, q), and the Exponential GARCH process (see [4]), denoted by EGARCH(p, q), for which σ2

t is,
respectively defined through

σ2
t = ω +

p∑
i=1

αiX
2
t−i +

q∑
j=1

βjσ
2
t−j and ln(σ2

t ) = ω +
α(B)

β(B)
g(Zt−1), for all t ∈ Z,

where B is the backward shift operator defined by Bk(Xt) = Xt−k, for all k ∈ N, g(·) is defined by

g(Zt) = θZt + γ [|Zt| − E(|Zt|)] , for any θ, γ ∈ R, (2)

α(·) and β(·) are, respectively, defined by

α(z) =

p∑
i=0

(−αi)zi = 1−
p∑
i=1

αiz
i and β(z) =

q∑
j=0

(−βj)zj = 1−
q∑
j=1

βjz
j , (3)

α0 = β0 = −1 and β(z) 6= 0, if |z| ≤ 1. It is also assumed that α(·) and β(·) have no common roots so that
the operator α(B)[β(B)]−1 is well defined.

The main advantages of EGARCH models over ARCH/GARCH ones are the fact that the volatility
is specified in terms of the logarithm function, assuring its positivity, and their capability of modeling the
volatility’s asymmetry3. ARCH and GARCH models do not account for asymmetry since they consider only
the squared returns in the volatility’s definition. On the other hand, it is easy to see that the function g(·),
given in the EGARCH definition, can be rewritten as

g(Zt) =

{
(θ + γ)Zt − γE(|Zt|), if Zt ≥ 0;

(θ − γ)Zt − γE(|Zt|), if Zt < 0.

This expression clearly shows the asymmetry in response to positive and negative returns. Also, it is easy
to see that g(·) is non-linear if θ 6= 0 and the asymmetry is due to the values of θ± γ. While the parameter
θ, also known in the literature as leverage parameter, shows the return’s sign effect, the parameter γ denotes
the return’s magnitude effect. Therefore, the model is able to capture the fact that a negative return usually
results in higher volatility than a positive one.

ARCH, GARCH and EGARCH are all short-range dependence models. Among the ARCH-type models
that capture the effects of long-range dependence characteristic in the conditional variance are the Fraction-
ally Integrated GARCH processes (see [5]), denoted by FIGARCH(p, d, q), and the Fractionally Integrated
EGARCH processes (see [6]), denoted by FIEGARCH (p, d, q). These models generalize, respectively, the

3By asymmetry we mean that the volatility reacts in an asymmetrical form to the returns, that is, volatility tends to rise
in response to “bad” news and to fall in response to “good” news.
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GARCH and EGARCH models, which are obtained, respectively, from (4) and (5), by letting d = 0. For a
FIGARCH(p, d, q), σ2

t is given by

σ2
t = ω[β(B)]−1 +

(
1− [β(B)]−1φ(B)(1− B)d

)
X2
t , for all t ∈ Z, (4)

while for a FIEGARCH(p, d, q), σ2
t is defined through the relation,

ln(σ2
t ) = ω +

α(B)

β(B)
(1− B)−dg(Zt−1), for all t ∈ Z, (5)

with φ(B) =
∑p
k=0 φkBk, where φ0 = 0, α(·) and β(·) given in (3), g(·) given in (2) and (1−B)d defined by

its Maclaurin series expansion, namely,

(1− B)d =

∞∑
k=0

Γ(k − d)

Γ(k + 1)Γ(−d)
:=

∞∑
k=0

δd,k Bk := δd(B), (6)

where Γ(·) is the gamma function, and the coefficients δd,k are such that δd,0 = 1 and δd,k = δd,k−1

(
k−1−d
k

)
,

for all k ≥ 1.

Remark 1. Expression (6) is valid only for non-integer values of d. When d ∈ N, (1 − B)d is merely the
difference operator 1 − B iterated d times. Also, one observe that, upon replacing d by −d, the operator
(1− B)−d has the same binomial expansion as the polynomial given in (6), that is

(1− B)−d =

∞∑
j=0

δ−d,jBj :=

∞∑
k=0

πd,kBk, (7)

where πd,j = δ−d,j , for all j ∈ N.

It is easy to see that, by letting λ(·) be the polynomial defined by

λ(z) =
α(z)

β(z)
(1− z)−d :=

∞∑
k=0

λd,kz
k, for all |z| < 1, (8)

where α(·) and β(·) are defined in (3), one can rewrite (5), equivalently (see Remark 2), as

ln(σ2
t ) = ω +

∞∑
k=0

λd,kg(Zt−1−k) = ω + λ(B)g(Zt−1), for all t ∈ Z. (9)

Remark 2. Since it is assumed that β(·) has no roots in the closed disk {z : |z| ≤ 1}, and also α(·) and
β(·) have no common roots, the function λ(z) is analytic in the open disk {z : |z| < 1} (if d ≤ 0, in the
closed disk {z : |z| ≤ 1}). Therefore, the power series representation for λ(·) is unique.

FIEGARCH models have not only the capability of modeling clusters of volatility (as ARCH and GARCH
models do) and capturing its asymmetry (as EGARCH models do) but they also take into account the char-
acteristic of long-range dependence in the volatility (as FIGARCH models do). Besides non-stationarity (in
the weak sense), FIGARCH(p, d, q) models have the drawback that we must have d ≥ 0 and the polynomial
coefficients in their definition must satisfy some restrictions so that the conditional variance will be positive.
FIEGARCH(p, d, q) models do not have this problem since the variance is defined in terms of the logarithm
function and, as we shall prove here, they are weakly stationary when d < 0.5.

Although, in practice, often a simple FIEGARCH(p, d, q) model with p, q ∈ {0, 1} suffices to fully de-
scribe financial time series (for instance, [7] and [8], consider FIEGARCH(0, d, 1) models and [9] considers
FIEGARCH(1, d, 1) models), there are evidences that for some financial time series higher values of p and q
are in fact necessary (see, for instance, [10],[11] and [12]). In view of that, the theoretical study carried on
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here considers FIEGARCH(p, d, q), with any p, q ≥ 0. One of the contributions of this paper is to extend, for
any p and q, the results already known in the literature for d = 0 and/or p, q ∈ {0, 1}. More specifically, we
show under which conditions the results regarding existence, stationarity and ergodicity in [4] (case d = 0)
also apply when d 6= 0. Moreover, we provide the expressions for the asymmetry and kurtosis measures of
FIEGARCH(p, d, q) processes, for all p, q ≥ 0, extending the results in [8] (these authors considered only the
case p = 0 and q = 1 and only the kurtosis measure was derived).

Another contribution of this work is to derive conditions under which {ln(X2
t )}t∈Z is well defined when

{Xt}t∈Z is a FIEGARCH process. We also show that, under mild conditions, it has an ARFIMA repre-
sentation. To the best of our knowledge, this result is absent in the literature. This representation is very
useful in model identification and parameter estimation since the literature regarding ARFIMA models is
well developed (see [13] and references therein). Since (1) implies that ln(X2

t ) = ln(σ2
t ) + ln(Z2

t ), for all
t ∈ Z, to derive the properties of {ln(X2

t )}t∈Z, we first analyze the properties of the non-observable process
{ln(σ2

t )}t∈Z. Studying the characteristics of {ln(σ2
t )}t∈Z includes deriving the properties of the polynomial

λ(·), given in (8). The conditions for the existence of a power series representation for λ(·) and the behavior
of the coefficients in this representation are fundamental not only for simulation purposes but also to draw
conclusions on the autocorrelation and spectral density functions decay of the processes {ln(σ2

t )}t∈Z and
{ln(X2

t )}t∈Z. We also provide a recurrence formula to calculate the coefficients of the series expansion of
λ(·), for any p, q ≥ 0. This recurrence formula allows to easily simulate FIEGARCH processes.

The fact that {ln(σ2
t )}t∈Z is an ARFIMA(q, d, p) process and the result that any FIEGARCH process is

a martingale difference with respect to the natural filtration {Ft}t∈Z, where Ft := σ({Zs}s≤t), are applied
to obtain the h-step ahead predictor for the processes {Xt}t∈Z and {X2

t }t∈Z. We also derive h-step ahead
predictors for both processes {ln(σ2

t )}t∈Z and {ln(X2
t )}t∈Z, considering different approaches. First, a h-step

ahead predictor is obtained by considering the conditional expectation method then another h-step ahead
predictor is derived by considering a second order Taylor expansion for the logarithm function. The relation
between these predictors is also derived. To the best of our knowledge, for FIEGARCH processes, the
predictor based on the second order Taylor’s expansion for the logarithm function was never proposed in
the literature.

This work also contributes to the literature of FIEGARCH models by presenting a simulation study
including generation, estimation and forecasting features of FIEGARCH models. One of the goals in this
study is to analyze the finite sample performance of the quasi-likelihood estimation procedure. We shall
notice that, despite the fact that the quasi-likelihood is one of the most applied methods in non-linear process
estimation, asymptotic results for FIEGARCH processes are still an open question (see [14])4. Another goal
of this study is to analyze the forecasting performance of the fitted models.

The paper is organized as follows: Section 2 presents the theoretical properties of FIEGARCH(p, d, q)
process. In particular, a recurrence formula to obtain the coefficients {λd,k}k∈Z in the power series expansion
of the polynomial λ(·) is provided and their asymptotic behavior is derived. The autocovariance and spectral
density functions of the processes {ln(σ2

t )}t∈Z and {ln(X2
t )}t∈Z are presented and analyzed. The asymmetry

and kurtosis measures of any stationary FIEGARCH process are also presented. Section 3 presents the
theoretical results regarding forecasting. Section 4 presents a Monte Carlo simulation study including the
generation of FIEGARCH time series, estimation of the model parameters and the forecasting procedure
based on the fitted model. Section 5 presents the analysis of an observed time series and the comparison
of the forecasting performance for different ARCH-type and radial basis models. Section 6 concludes the
paper.

2. FIEGARCH Process

In this section we discuss the properties of the Fractionally Integrated Exponential Generalized Autore-
gressive Conditional Heteroskedastic process (FIEGARCH), defined by (1) and (5). As mentioned before,

4The asymptotic properties for the quasi-likelihood method are well established for ARCH/GARCH models (see, for instance,
[15], [16], [17], [18] and [19]) and also for EGARCH models (see, for instance, [20]).
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this class of processes, introduced by [6], describes not only the volatility varying in time and the volatility
clusters (known as ARCH/GARCH effects) but also the volatility long-range dependence and its asymmetry.

For the sake of completeness, results previously established in the literature are also stated and the
references of their proofs are provided. Due to the extent of the work, all proofs are presented in the
appendix. Hereafter, given a ∈ R∪{−∞,+∞}, f(x) = O(g(x)) means that |f(x)| ≤ c|g(x)|, for some c > 0,
as x → a; f(x) = o(g(x)) means that f(x)/g(x) → 0, as x → a; f(x) ∼ g(x) means that f(x)/g(x) → 1,
as x → a. We also say that f(x) ≈ g(x), as x → ∞, if for any ε > 0, there exists x0 ∈ R such that
|f(x) − g(x)| < ε, for all x ≥ x0. Also, given any set T , T ∗ corresponds to the set T\{0} and IA(·) is the
indicator function defined as IA(z) = 1, if z ∈ A, and 0, otherwise.

For practical purpose, it is important to observe that slightly different definitions of FIEGARCH processes
are found in the literature. Usually it is easy to show that, under certain conditions, the different definitions
for the conditional variance are equivalent to (5). For instance, [21] defines σ2

t through the equation

β(B)(1− B)d ln(σ2
t ) = a+

p∑
i=0

[ψi|Zt−1−i|+ γiZt−1−i],

with β(·) given in (3). This is the definition considered, for instance, in the software S-Plus (see [21]) and
it is equivalent to (5) whenever d > 0, a = −γE(|Zt|)α(1), ψ0 = γ, γ0 = θ, ψi = −γαi and γi = −θαi for
all 1 ≤ i ≤ p. This equivalence is mentioned in [14] and a detailed proof is provided in [10]. In [8] only the
case p = 0 and q = 1 is considered and {ln(σ2

t )}t∈Z is defined as

(1− φB)(1− B)d ln(σ2
t ) = ω∗ + α

[
|Zt−1| −

√
2/π

]
+ γ∗Zt−1, for all t ∈ Z, (10)

where {Zt}t∈Z is a Gaussian white noise process with variance equal to one. This is the definition considered,
for instance, in the G@RCH package version 4.0 of [22]. Notice that, by setting φ = β1, α = γ and γ∗ = θ,
(10) is equivalent to (5) if and only if the equality ω∗ = (1 − β)(1 − B)dω holds. Example 1 presents two
FIEGARCH time series obtained by considering the definition obtained through (1) and (5).

Remark 3. Henceforth, GED shall stands for the so-called Generalized Error Distribution. Whenever we
consider Z0 ∼ GED(ν), and ν is the tail-thickness parameter, we assume that the random variable was
normalized to have mean zero and variance equal to one. In this case, the probability density function of
Z0 is given by

pZ(z|ν) =
ν exp

{
− 1

2 |zλ
−1
ν |ν

}
λν21+1/νΓ(1/ν)

where λν =

[
2−2/ν Γ(1/ν)

Γ(3/ν)

]1/2

, for all z ∈ R.

Example 1. Figure 1 presents samples from FIEGARCH(0, d, 1) processes, with n = 2000 observations,
considering two different underlying distributions for Z0. In both cases we set d = 0.3578, θ = −0.1661,
γ = 0.2792, ω = −7.2247 and β1 = 0.6860. These are the parameter values of the FIEGARCH model fitted to
the Bovespa index log-returns in Section 5. Figures 1 (a) - (c) consider Z0 ∼ N (0, 1) and show, respectively,
the time series {xt}nt=1, the conditional variance {σ2

t }nt=1 and the logarithm of the conditional variance
{ln(σ2

t )}nt=1. Figures 1 (d) - (e) show the same time series as in Figures 1 (a) - (c) when Z0 ∼ GED(1.5).

Proposition 1 below presents the properties of the stochastic process {g(Zt)}t∈Z. Although the proof is
straightforward, these properties are extremely important to prove the results stated in the sequel.

Proposition 1 (Prass, 2008). Let {Zt}t∈Z be a sequence of i.i.d. random variables, with E(|Z0|) < ∞.
Let {g(Zt)}t∈Z be defined by (2) and assume that θ and γ are not both equal to zero. Then {g(Zt)}t∈Z is a
strictly stationary and ergodic process. If E(Z2

0 ) < ∞, then {g(Zt)}t∈Z is also weakly stationary with zero
mean (therefore a white noise process) and variance σ2

g given by

σ2
g = θ2 + γ2 − [γE(|Z0|)]2 + 2 θ γ E(Z0|Z0|). (11)
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Figure 1: Samples from FIEGARCH(0, d, 1) processes, with n = 2000 observations, considering Z0 ∼ N (0, 1) (first row) and
Z0 ∼ GED(1.5) (second row). (a) and (d) show the time series {xt}nt=1; (b) and (e) show the conditional variance of {xt}nt=1;
(c) and (f) show the logarithm of the conditional variance.

Remark 4. We observe that the theory presented in this work can be easily adapted to a more general
framework than (5) by considering

ln(σ2
t ) = ωt +

∞∑
k=0

λkg(Zt−1−k) := ωt + λ(B)g(Zt−1), for all t ∈ Z, (12)

where {ωt}t∈Z and {λk}k∈N are real, nonstochastic, scalar sequences for which the process {ln(σ2
t )}t∈Z is

well defined, {Zt}t∈Z is a white noise process with variance not necessarily equal to one and g(·) is any
measurable function (notice that (9) is a particular case of this parametrization). In particular, Theorems
1 and 2 below, which are stated and proved in [4], assume that ln(σ2

t ) is given by (12) (the notation was
adapted to reflect the one used in this work), with {Zt}t∈Z and g(·) as in (1) and (2), respectively. However,
although (12) is more general than (5), in practice the applicability of the model is somewhat limited given
that the parameter estimation is far more complicated when compared to the model (5).

Theorem 1 below provides a criterion for the stationarity and the ergodicity of EGARCH (FIEGARCH)
processes. As pointed out by [4], the stationarity and ergodicity criterion in Theorem 1 is exactly the same
as for a general linear process with finite variance innovations. Obviously, different definitions of λ(·) in
(12) will lead to different conditions for the criterion in Theorem 1 to hold. In [4] it is stated that, in many
applications, an ARMA process provides a parsimonious parametrization for {ln(σ2

t )}t∈Z. In this case, λ(·)
is defined as λ(z) = α(z)[β(z)]−1, |z| ≤ 1, where α(·) and β(·) are the polynomials given in (3), leading to
an EGARCH(p, q) process. For this model, the criterion in Theorem 1 holds whenever the roots of β(·) are
outside of the closed disk {z : |z| ≤ 1}. We shall later discuss the condition for the criterion in Theorem 1
to hold when {ln(σ2

t )}t∈Z is defined by (5), leading to a FIEGARCH(p, d, q) process.
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Theorem 1 (Nelson, 1991). Define {σ2
t }t∈Z, {Xt}t∈Z and {Zt}t∈Z by

Xt = σtZt; Zt ∼ i.i.d., E(Zt) = 0 and Var(Zt) = 1; (13)

ln(σ2
t ) = ωt +

∞∑
k=1

λkg(Zt−k), λ1 = 1; g(Zt) = θZt + γ [|Zt| − E(|Zt|)] ; (14)

where {ωt}t∈Z and {λk}k∈N∗ are real, nonstochastic, scalar sequences, and assume that θ and γ do not both
equal zero. Then {e−ωtσ2

t }t∈Z, {e−ωt/2Xt}t∈Z and {ln(σ2
t )− ωt}t∈Z are strictly stationary and ergodic and

{ln(σ2
t ) − ωt}t∈Z is covariance stationary if and only if

∑∞
k=1 λ

2
k < ∞. If

∑∞
k=1 λ

2
k = ∞, then | ln(σ2

t ) −
ωt| = ∞ almost surely. If

∑∞
k=1 λ

2
k < ∞, then for k > 0, Cov

(
Zt−k, ln(σ2

t )
)

= λk[θ + γE(Zt|Zt|)], and

Cov
(

ln(σ2
t ), ln(σ2

t−k)
)

= Var
(
g(Zt)

)∑∞
j=1 λjλj+k.

Theorem 2 shows the existence of the r-th moment for the random variables Xt and σ2
t , defined by

(13)-(14), when
∑∞
k=1 λ

2
k < ∞ and the distribution of Z0 is the Generalized Error Distribution (GED). In

the sequel we shall present the condition under which
∑∞
k=0 λ

2
d,k < ∞ (see Theorem 3), with {λd,k}k∈Z

defined by (8), so the result of Theorem 2 also applies to FIEGARCH(p, d, q) processes.

Theorem 2 (Nelson, 1991). Define {σ2
t , Xt}t∈Z by (13)-(14), and assume that θ and γ do not both equal

zero. Let {Zt}t∈Z be i.i.d. GED with mean zero, variance one, and tail-thickness parameter ν > 1, and let∑∞
k=1 λ

2
k < ∞. Then {e−ωtσ2

t }t∈Z and {e−ωt/2Xt}t∈Z possess finite, time-invariant moments of arbitrary
order. Further, if 0 < r <∞, conditioning information at time 0 drops out of the forecast r-th moments of
e−ωtσ2

t and e−ωt/2Xt, as t→∞:

plim
t→∞

[
E(e−rωtσ2r

t

∣∣Z0, Z−1, Z−2, · · · )− E(e−rωtσ2r
t )
]

= 0 and

plim
t→∞

[
E(e−rωt/2|Xt|r

∣∣Z0, Z−1, Z−2, · · · )− E(e−rωt/2|Xt|r)
]

= 0,

where plim denotes the limit in probability.

Theorem 3 below gives the convergence order of the coefficients λd,k, defined by (8), as k goes to infinity.
This theorem is important for two reasons. First, it provides an approximation for λd,k, as k →∞, and this
result plays an important role when choosing the truncation point in the series representation for simulation
purposes. Second, and most important, the asymptotic representation provided in this theorem plays the
key role to establish the necessary condition for square summability of {λd,k}k∈N. More specifically, from
Theorem 3 one concludes that {λd,k}k∈N ∈ `2 if and only if d < 0.5 and {λd,k}k∈N ∈ `1 whenever d < 0.

Theorem 3. Let λ(·) be the polynomial defined by (8). Then, for all k ∈ N, the coefficients λd,k satisfy

λd,k ∼
1

Γ(d) k1−d

α(1)

β(1)
, as k →∞. (15)

Consequently, λd,k = O(kd−1), as k goes to infinity.

Proposition 2 presents a recurrence formula for calculating the coefficients λd,k, for all k ∈ N. This
formula is used to generate the FIEGARCH time series in the simulation study presented in Section 4.

Proposition 2. Let λ(·) be the polynomial defined by (8). The coefficients λd,k, for all k ∈ N, are given by

λd,0 = 1 and λd,k = −α∗k +

k−1∑
i=0

λi

k−i∑
j=0

β∗j δd,k−i−j , for all k ≥ 1, (16)

where the coefficients δd,k, for all k ∈ N, are given in (6) and

α∗m :=

{
αm, if 0 ≤ m ≤ p;

0, if m > p
and β∗m :=

{
βm, if 0 ≤ m ≤ q;

0, if m > q.
(17)
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The applicability of Theorem 1 to long-range dependence models was briefly mentioned (without going
into details) in [4]. Corollary 1 below is a direct application of Theorem 3 and provides a simple condition
for the criterion in Theorem 1 to hold when {ln(σ2

t )}t∈Z is defined by (5), which leads to a long-range
dependence model whenever d > 0.

Corollary 1. Let {Xt}t∈Z be a FIEGARCH(p, d, q) process defined by (1) and (5). If d < 0.5, {ln(σ2
t )}t∈Z

is stationary (weakly and strictly), ergodic and the random variable ln(σ2
t ) is almost surely finite, for all

t ∈ Z. Moreover, {Xt}t∈Z and {σ2
t }t∈Z are strictly stationary and ergodic processes.

The square summability of {λd,k}k∈N implies that the process {ln(σ2
t )}t∈Z is stationary (weakly and

strictly), ergodic and the random variable ln(σ2
t ) is almost surely finite, for all t ∈ Z (see Theorem 1). Now,

since {g(Zt)}t∈Z is a white noise process (see Proposition 1), it follows immediately that {ln(σ2
t )}t∈Z is an

ARFIMA(q, d, p) process (for details on ARFIMA processes see, for instance, [13] and [23]). This result is
very useful, not only for forecasting purposes (see Section 3) but also, to conclude the following properties

P1: if d < 0.5, the autocorrelation function of the process {ln(σ2
t )}t∈Z is such that

ρln(σ2
t )(h) ∼ ch2d−1, as h→∞,

where c 6= 0, and the spectral density function of the process {ln(σ2
t )}t∈Z is such that

fln(σ2
t )(λ) =

σ2
g

2π

|α(e−iλ)|2

|β(e−iλ)|2
|1− e−iλ|−2d ∼

σ2
g

2π

[
α(1)

β(1)

]2

λ−2d, as λ→ 0,

where σ2
g = Var

(
g(Zt)

)
is given in (11);

P2: if d ∈ (−1, 0.5) and α(z) 6= 0, for |z| ≤ 1, the process {ln(σ2
t )}t∈Z is invertible, that is,

lim
m→∞

E

(∣∣∣∣ m∑
k=0

λ̃d,k
[

ln(σ2
t−k)− ω − g(Zt−1)

]∣∣∣∣r) = 0, for all 0 < r ≤ 2,

where

∞∑
k=0

λ̃d,kz
k = λ̃(z) := λ−1(z) =

β(z)

α(z)
(1− z)d, |z| < 1.

Remark 5. The proof of P1 can be found in [23], theorem 13.2.2. Regarding P2, in the literature one usu-
ally finds that an ARFIMA(p, d, q) process is invertible for |d| < 0.5 (see, for instance, [23], theorem 13.2.2).
However, [24] already proved that this range can be extended to d ∈ (−1, 0.5), for an ARFIMA(0, d, 0) and,
more recently, [25] show that this result actually holds for any ARFIMA(p, d, q).

Corollary 1 shows that {Xt}t∈Z and {σ2
t }t∈Z are strictly statiqonary and ergodic processes. However,

as mentioned in [4], this does not imply weak stationarity when the random variable Zt, for t ∈ Z, is such
that either its mean or its variance is not finite. Theorem 2 considers the GED function and proves the
existence of the moment of order r > 0, for the random variables Xt and σ2

t , for all t ∈ Z, when the process
{ln(σ2

t )}t∈Z is defined in terms of a square summable sequence of coefficients. Corollary 2 below applies the
result of Theorem 3 to state a simple condition so that Theorem 2 holds for FIEGARCH(p, d, q) processes.

Corollary 2. Let {Xt}t∈Z be a FIEGARCH(p, d, q) process defined by (1) and (5). Assume that θ and γ
are not both equal to zero and that {Zt}t∈Z is a sequence of i.i.d. GED(ν) random variables, with ν > 1,
zero mean and variance equal to one. If d < 0.5, then E(Xr

t ) <∞ and E(σ2r
t ) <∞, for all t ∈ Z and r > 0.

As a consequence of Corollary 2, if d < 0.5 and {Zt}t∈Z is a sequence of i.i.d. GED(ν) random variables,
with v > 1, zero mean and variance equal to one, then E(X4

t ) < ∞ (consequently, E(X3
t ) < ∞) and both,

the asymmetry (AX) and kurtosis (KX) measures of {Xt}t∈Z exist. Now, since E(Xr
t ) = E(σrt )E(Zrt ), for
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all r > 0 (it follows from the independence of σt and Zt), E(Xt) = 0 and E(Z2
t ) = 1, the measures AX and

KX can be rewritten as

AX :=
E(X3

t )[
E(X2

t )
]3/2 =

E(σ3
t )E(Z3

t )[
E(σ2

t )
]3/2 and KX :=

E(X4
t )[

E(X2
t )
]2 =

E(σ4
t )E(Z4

t )[
E(σ2

t )
]2 , for all t ∈ Z. (18)

An expression for KX (as a function of the FIEGARCH model parameters) was already given in [8] by
assuming that {Zt}t∈Z is a Gaussian white noise process with variance equal to one, d > 0, p = 0, q = 1
and by defining {ln(σ2

t )}t∈Z through expression (10). In accordance with that definition it can be shown
that KX can be written as

KX = 3

∏∞
j=1E

(
exp{2λjg(Zt−j)}

)[∏∞
j=1E

(
exp{λjg(Zt−j)}

)]2 with


g(Zt) = θZt + γ[|Zt| −

√
2/π], t ∈ Z

λj =

j−1∑
i=0

Γ(i+ d)

Γ(i+ 1)Γ(d)
βj−i−1, j ∈ N∗ and d > 0.

In Proposition 3 below we consider stationary FIEGARCH(p, d, q) processes (therefore, d < 0.5) with
{ln(σ2

t )}t∈Z defined by (5) and show that a similar expression holds for any p, q ≥ 0. We do not impose
that {Zt}t∈Z is a Gaussian white noise process since Corollary 1 shows that the asymmetry and kurtosis
measures exist for a larger class of FIEGARCH models.

Proposition 3. Let {Xt}t∈Z be a stationary FIEGARCH(p, d, q) process defined by (1) and (5). Thus, if
E(X4

0 ) <∞, the asymmetry and kurtosis measures of {Xt}t∈Z are given, respectively, by

AX = E(Z3
0 )

∏∞
k=0E

(
exp

{
3
2λd,kg(Z0)

})
[∏∞

k=0E
(
exp{λd,kg(Z0)}

)]3/2 and KX = E(Z4
0 )

∏∞
k=0E(exp{2λd,kg(Z0)})[∏∞
k=0E

(
exp{λd,kg(Z0)}

)]2 ,
where λd,k are given in (8) and g(·) is defined by (2).
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Figure 2: (a) Kurtosis measure of a FIEGARCH(0, d, 1) process as a function of the parameter d with θ = −0.1661, γ = 0.2792,
ω = −7.2247 and β1 = 0.6860; (b) Kurtosis measure of a FIEGARCH(0, d, 1) process with the same parameters as in (a) but
with β1 replaced by β1 = −0.6860.

Example 2. Figure 2 shows the theoretical value of the kurtosis measure, as a function of the parameter
d, for a FIEGARCH(0, d, 1) process, with Gaussian noise and parameters θ = −0.1661, γ = 0.2792, ω =
−7.2247 and (a) β1 = 0.6860 (b) β1 = −0.6860. The parameter values considered in Figure 2 (a) are
the same ones (except for d) as considered in Figure 1 (a). For the specific model considered in Figure 1,
d = 0.3578 and the theoretical value of the kurtosis measure is 5.6733. The sample kurtosis value of the
simulated time series presented in Figure 1 (a) is 5.3197, which is very close to the theoretical one. It is
easy to see that, while in Figure 2 (a) the kurtosis values increase exponentially as d increases, in Figure
2 (b) the kurtosis values decrease for −0.5 ≤ d ≤ dc and increase for dc < d ≤ 0.5, for some critical value
dc ∈ [0.29, 0.3]. To generate Figure 2 (b) an equally spaced grid of d values, with increment ∆d = 0.01
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was considered. In this specific case the critical value is dc = 0.29. When ∆d = 0.001 and 0.0001 (the
corresponding graph can be obtained from the authors upon request), the corresponding critical values are
both equal to 0.293.

Although {ln(σ2
t )}t∈Z is an ARFIMA process, in practice it cannot be directly observed and frequently,

knowing its characteristics may not be sufficient for model identification and estimation purposes. On the
other hand, {Xt}t∈Z is an observable process and so is {ln(X2

t )}t∈Z. By noticing that, from (1), one can
rewrite

ln(X2
t ) = ln(σ2

t ) + ln(Z2
t ), for all t ∈ Z,

and now it is clear that the properties of {ln(σ2
t )}t∈Z are useful to characterize the process {ln(X2

t )}t∈Z.
This approach was already considered in the literature for parameter estimation purposes. For instance, [26]
and [27] consider models such that Xt can be written as in (1), but σt can have a more general definition than
(5). While [26] considers maximum likelihood and Whittle’s method of estimation in the class of exponential
volatility models, especially the EGARCH ones, [27] considers different semiparametric estimators of the
memory parameter in general signal-plus-noise models. In both cases, to obtain an estimator by Whittle’s
method, the authors consider the spectral density function of {ln(X2

t )}t∈Z.
In what follows, we focus our attention to the case where Xt can be written as in (1), and σt is defined

through the expression (5) and we present some properties of the process {ln(X2
t )}t∈Z. In particular, we

show that, under mild conditions, this process also has an ARFIMA representation. To the best of our
knowledge no formal proofs of these results are given in the literature of FIEGARCH(p, d, q) processes,
especially the ARFIMA(q, d, 0) representation of {ln(X2

t )}t∈Z.

Theorem 4. Let {Xt}t∈Z be a FIEGARCH(p, d, q) process defined by (1) and (5). If E([ln(Z2
0 )]2) <∞ and

d < 0.5, then the process {ln(X2
t )}t∈Z is well defined and it is stationary (weakly and strictly) and ergodic.

Moreover, the autocovariance function of {ln(X2
t )}t∈Z is given by

γln(X2)(h) = σ2
g

∞∑
k=0

λd,kλd,k+|h| + Var
(
ln(Z2

t )
)
I{0}(h) + λd,|h|−1KIZ∗(h), for all h ∈ Z, (19)

where σ2
g is given in (11) and K = Cov

(
g(Z0), ln(Z2

0 )
)
.
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Figure 3: (a) Theoretical autocovariance function of the process {ln(X2
t )}t∈Z, where {Xt}t∈Z is a FIEGARCH(0, d, 1) process

and (b) sample autocovariance function of a time series {ln(x2t )}2000t=1 derived from that FIEGARCH(0, d, 1) process; (c) sample
autocovariance function of the time series {ln(r2t )}1717t=1 , where {rt}1717t=1 is the Bovespa index log-returns time series.

Example 3. Figure 3 (a) presents the theoretical autocovariance function of the process {ln(X2
t )}t∈Z,

where {Xt}t∈Z is a FIEGARCH(0, d, 1) process, with the same parameter values considered in Figures
1 and 4. Figure 3 (b) shows the sample autocovariance function of the time series {ln(x2

t )}2000
t=1 , where

{xt}2000
t=1 is the simulated time series presented in Figure 1. Figure 3 (c) presents the sample autocovariance

function of the time series {ln(r2
t )}1717

t=1 , where {rt}1717
t=1 is the Bovespa index log-returns time series (see

10



Section 5). By comparing the three graphs in Figure 3, one concludes that all three functions present a
similar behavior in terms of function decay. Since the sample autocovariance function is an estimator of
the theoretical autocovariance function, it is expected that their graphs will have the same behavior. The
similarity between the decay in the graphs in Figures 3 (b) and (c) indicates that a FIEGARCH model could
be an appropriate candidate for fitting the Bovespa index log-returns time series.

Example 4. Theorem 4 provides the expression for the autocorrelation function of {ln(X2
t )}t∈Z. The

spectral density function of the process {ln(X2
t )}t∈Z is given by (see [27])

fln(X2
t )(λ) = fln(σ2

t )(λ) +
K
π
Re
(
e−iλΛ(λ)

)
+ fln(Z2

t )(λ)

=
σ2
g

2π

|α(e−iλ)|2

|β(e−iλ)|2
|1− e−iλ|−2d +

K
π
Re
(
e−iλΛ(λ)

)
+

1

2π
Var(ln(Z2

0 )), for all λ ∈ [0, π], (20)

where σ2
g = Var

(
g(Zt)

)
is given in (11), K = Cov

(
g(Z0), ln(Z2

0 )
)
, Re(z) is the real part of z and Λ(z) :=

λ(e−iz). As an illustration, Figure 4 (a) shows the spectral density function of the process {ln(X2
t )}t∈Z,

where {Xt}t∈Z is a FIEGARCH(0, d, 1) process with d = 0.3578, θ = −0.1661, γ = 0.2792, ω = −7.2247 and
β1 = 0.6860, assuming Z0 ∼ N (0, 1) (dashed line) and Z0 ∼ GED(1.5) (continuous line). The corresponding
values of σ2

g , K and Var(ln(Z2
0 )), used in the calculation of fln(X2

t )(·), are given in Table 1. Figure 4 (b)

shows the periodogram function of the time series {ln(x2
t )}2000

t=1 , where {xt}2000
t=1 is the simulated time series

presented in Figure 1 (a), with Z0 ∼ N (0, 1). Figure 4 (c) shows the periodogram function of the time series
{ln(r2

t )}1717
t=1 , where {rt}1717

t=1 is the Bovespa index log-returns time series.

Table 1: Theoretical values for the expectation and variance of functions of Z0 and the corresponding values of σ2
g and K

considering the Gaussian and the Generalized Error distribution functions. In both cases θ = −0.1661 and γ = 0.2792.

Distribution E(|Z0|) E(|Z0| ln(Z2
0 )) E(ln(Z2

0 )) Var(ln(Z2
0 )) σ2

g K
N (0, 1) 0.7979 0.0925 -1.2704 4.9348 0.0559 0.3088

GED(1.5) 0.7674 0.0975 -1.4545 5.4469 0.0596 0.3389
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Figure 4: (a) Theoretical spectral density function of the process {ln(X2
t )}t∈Z, where {Xt}t∈Z is a FIEGARCH(0, d, 1) process

with d = 0.3578, θ = −0.1661, γ = 0.2792, ω = −7.2247 and β1 = 0.6860, assuming Z0 ∼ N (0, 1) (dashed line) and Z0 ∼
GED(1.5) (continuous line); (b) the periodogram function related to a time series {xt}2000t=1 derived from this FIEGARCH(0, d, 1)
process with Z0 ∼ N (0, 1); (c) the periodogram function related to the time series {ln(r2t )}1717t=1 , where {rt}1717t=1 is the Bovespa
index log-returns time series.

Figure 4 (a) shows that the graphs for the spectral density functions fln(X2
t )(·) of FIEGARCH(0, d, 1)

processes with Z0 ∼ N (0, 1) (dashed line) and Z0 ∼ GED(1.5) (continuous line) are very close to each
other. This fact indicates that the probability distribution of Z0 may not be evident from the periodogram
function (which is an estimate of fln(X2

t )(·)). The small difference on the values of fln(X2
t )(·) for Z0 ∼ N (0, 1)

and Z0 ∼ GED(1.5) is explained by the fact that the values of σ2
g , K and fln(Z2

t )(λ) are relatively close
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for Z0 ∼ N (0, 1) and Z0 ∼ GED(1.5) as shown in Table 1. The graphs in Figures 4 (b) and (c) present
similar behavior, indicating that a FIEGARCH model could be adequate to fit the data. On the other
hand, as mentioned before, given the similarity of the graphs in 4 (a), there is not enough evidence to
conclude that the underlying probability distributions of {rt}1717

t=1 (the observed time series) and {xt}2000
t=1

(the simulated time series) are the same. In fact, we apply the two-sample Kolmogorov-Smirnov test to
verify the hypothesis that Iln(X2

t )(·) and Iln(r2t )(·) have the same probability distribution. We also apply the
test to the standardized versions of Iln(X2

t )(·) and Iln(r2t )(·) (that is, we subtracted the sample mean and
divided by the sample standard deviation). In the first case the test rejects the null hypothesis (α = 0.05,
test statistic = 0.2208, p-value < 2.2 × 10−16). In the second case (standardized version) the test did not
reject the null hypothesis (α = 0.05, test statistic = 0.0285, p-value = 0.8472).

To further investigate whether the correct probability distribution of Z0 can be identified through the
periodogram function of {ln(X2

t )}t∈Z when {Xt}t∈Z is a FIEGARCH process, we consider the same time
series {xt}2000

t=1 as in Figure 4 (b) (that is, the sample from a FIEGARCH(0, d, 1) process, with Gaussian
innovations) and perform the Kolmogorov-Smirnov hypothesis test proposed in [23] (pages 339 - 342) and
described in the following bullet points. The target spectral density function fln(X2

t )(·), given in (20), is

obtained by assuming both that Z0 ∼ N (0, 1), which corresponds to the correct choice since {xt}2000
t=1 was

generated assuming that the innovation process has Gaussian distribution, and Z0 ∼ GED(1.5). The test is
performed as follows

• the null hypothesis of the test is that ln(X2
t ) has spectral density function fln(X2

t )(·);

• the testing procedure consists of plotting the Kolmogorov-Smirnov boundaries

y =
x− 1

m− 1
± kα(m− 1)−1/2, 1 ≤ x ≤ m, kα =

{
1.36, if α = 0.05;
1.63, if α = 0.01;

and the function C(x) defined as

C(x) =

 0, if x < 1;
Yi, if i ≤ x < i+ 1, for i ∈ {1, · · · ,m};
1, if x ≥ m;

with Y0 := 0, Ym := 1 and

Yi :=

[
i∑

k=1

Iln(X2
t )(ωk)

fln(X2
t )(ωk)

][
m∑
k=1

Iln(X2
t )(ωk)

fln(X2
t )(ωk)

]−1

, with ωk =
2kπ

n
, k ∈ {1, · · · ,m},

where m is the integer part of (n− 1)/2 and n is the time series sample size;

• the null hypothesis is rejected if C(·) exits the boundaries for some 1 ≤ x ≤ m.

The results of the tests are given in Figure 5, where C1(·) and C2(·) denote the values of C(·) obtained,
respectively, when assuming Z0 ∼ N (0, 1) and Z0 ∼ GED(1.5). From Figures 5 (a) and (b) one concludes
that the Kolmogorov-Smirnov test does not reject the null hypothesis in both cases. This result was expected
given the small difference between the values of fln(X2

t )(·), shown in Figure 4 (a). In fact, by comparing
Figures 5 (a) and (b), one observes no visible difference between those graphs. Figure 5 (c) confirms that
the difference is too small to be noticed since |C1(x)− C2(x)| < 6× 10−4, for all 0 ≤ x ≤ 1000. This shows
that, for the FIEGARCH process considered in Example 4, the correct probability distribution of Z0 cannot
be identified through the periodogram function, given that the Kolmogorov-Smirnov hypothesis test failed
to reject the null hypothesis when it was false.

To conclude this section we present the following theorem which shows that, under mild conditions,
{ln(X2

t )}t∈Z is an ARFIMA(q, d, 0) process with correlated innovations. This result is very useful in model
identification and parameter estimation since the literature of ARFIMA models is well developed (see [13]
and references therein).
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Figure 5: Function C(x) and the Kolmogorov-Smirnov boundaries, with α = 0.05 (dashed line), when {xt}2000t=1 is a time series
derived from a FIEGARCH(0, d, 1) process with Z0 ∼ N (0, 1) and fln(X2

t )
(·) is the theoretical spectral density function of a

FIEGARCH(0, d, 1) process with (a) Z0 ∼ N (0, 1) (therefore, the null hypothesis is true); (b) Z0 ∼ GED(1.5) (therefore, the
null hypothesis is false). In all cases, d = 0.3578, θ = −0.1661, γ = 0.2792, ω = −7.2247 and β1 = 0.6860. Panel (c), the
difference between the values of C(x) (multiplied by 104) assuming, respectively, Z0 ∼ N (0, 1) and Z0 ∼ GED(1.5).

Theorem 5. Let {Xt}t∈Z be a FIEGARCH(p, d, q) process defined by (1) and (5). Suppose |d| < 0.5 and
E([ln(Z2

0 )]2) <∞. Then {ln(X2
t )}t∈Z is an ARFIMA(q, d, 0) process, with correlated innovations, given by

β(B)(1− B)d(ln(X2
t )− ω) = εt, for all t ∈ Z,

where {εt}t∈Z is a stochastic process with zero mean and autocovariance function γε(·) given by

γε(h) =



σ2
g

p∑
i=|h|

αiαi−|h| +K
p∑
i=0

αiφi+|h|+1 +K
p∑

i=|h|−1

αiφi−|h|+1 + σ2
`

∞∑
i=|h|

φiφi−|h|, if 0 ≤ |h| ≤ p;

Kαpφ1 + σ2
`

∞∑
i=p+1

φiφi−(p+1), if |h| = p+ 1;

σ2
`

∞∑
i=|h|

φiφi−|h|, if |h| > p+ 1,

(21)
with {φk}k∈N defined by

φ(z) := β(z)(1− z)d =

∞∑
k=0

φkz
k, for |z| < 1, (22)

σ2
g given in (11), K = Cov(g(Z0), ln(Z2

0 )), {αi}pi=0 given in (3) and σ2
` := Var(ln(Z2

0 )).

3. Forecasting

Let {Xt}t∈Z be a FIEGARCH(p, d, q) process defined by (1) and (5), and {xt}nt=1 a time series obtained
from this process. In this section, we prove that {Xt}t∈Z is a martingale difference with respect to the
filtration {Ft}t∈Z, where Ft := σ({Zs}s≤t), and we provide the h-step ahead forecast for the process
{Xt}t∈Z. Since the process {ln(σ2

t )}t∈Z, defined by (5), has an ARFIMA(q, d, p) representation, the h-step
ahead forecasting for this process and its mean square error value can be easily obtained (for instance,
see [13] and [29]). This fact is used to provide an h-step ahead forecast for {ln(X2

t )}t∈Z and the mean
square error of forecasting. We also consider the fact that E(X2

t ) = E(σ2
t ), for all t ∈ Z, to provide an

h-step ahead forecast for both processes, {X2
t }t∈Z and {σ2

t }t∈Z, based on the predictions obtained from the
process {ln(σ2

t )}t∈Z. The notation used in this section is introduced below.

Remark 6. Let Yt, for t ∈ Z, denote any random variable defined here. In the sequel we consider the
following notation:
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• we use the symbol “ˆ” to denote the h-step ahead forecast defined in terms of the conditional expecta-
tion, that is, Ŷt+h = E(Yt+h|Ft). Notice that this is the best linear predictor in terms of mean square
error value. The symbols “˜” and “ˇ” are used to denote alternative estimators (e.g. Ỹt+h and Y̌t+h);

• for simplicity of notation, for the h-step ahead forecast of ln(Yt+h), we write l̂n(Yt+h) instead of
̂ln(Yt+h) (analogously for “˜” and “ˇ”);

• we follow the approach usually considered in the literature and denote the h-step ahead forecast Y 2
t+h

as Ŷ 2
t+h instead of Ŷ 2

t+h. If necessary, to avoid confusion, we will denote the square of Ŷt+h as (Ŷt+h)2

(analogously for “˜” and “ˇ”).

The following lemma shows that a FIEGARCH(p, d, q) process is a martingale difference with respect to
{Ft}t∈Z. This result is useful in the proof of Lemma 2 that presents the h-step ahead forecast of Xn+h, for
a fixed value of n ∈ Z and all h ≥ 1, and the 1-step ahead forecast of X2

n+1, given Fn.

Lemma 1. Let {Xt}t∈Z be a FIEGARCH(p, d, q) process defined by (1) and (5) and Ft := σ({Zs}s≤t).
Then the process {Xt}t∈Z is a martingale difference with respect to {Ft}t∈Z.

Lemma 2. Let {Xt}t∈Z be a stationary FIEGARCH(p, d, q) process defined by (1) and (5). Then, for any
fixed n ∈ Z, the h-step ahead forecast of Xn+h, for all h > 0 and the 1-step ahead forecast of X2

n+1, given

Fn, are, respectively, X̂n+h = 0 and X̂2
n+1 = σ2

n+1.

To obtain the h-step ahead forecast for X2
n+h, notice that σt and Zt are independent and so are σ2

t and
Z2
t , for all t ∈ Z. Moreover, E(Z2

n+h|Fn) = E(Z2
n+h) = 1, for all h > 0. It follows that

X̂2
n+h := E(X2

n+h|Fn) = E(σ2
n+h|Fn) := σ̂2

n+h, for all h > 0.

While for ARCH/GARCH models, E(σ2
n+h|Ft) can be easily calculated, for FIEGARCH processes, only

the expression for the h-step ahead forecast for the process {ln(σ2
t )}t∈Z, for any h > 1, is easy to derive.

The expressions for l̂n(σ2
n+h) := E(ln(σ2

n+h)|Ft) and for the mean square error of forecast are given in
Proposition 4. We shall use this result to discuss the properties of the predictor obtained by considering
σ̌2
n+h := exp{l̂n(σ2

n+h)}, for all h > 0.

Proposition 4. Let {Xt}t∈Z be a FIEGARCH(p, d, q) process defined by (1) and (5). Then the h-step

ahead forecast l̂n(σ2
n+h) of ln(σ2

n+h), given Fn = σ({Zt}t≤n), n ∈ N, is given by

l̂n(σ2
n+h) = ω +

∞∑
k=0

λd,k+h−1 g(Zn−k), for all h > 0. (23)

Moreover, the mean square error of forecast is equal to zero, if h = 1, and it is given by

E
([

ln(σ2
n+h)− l̂n(σ2

n+h)
]2)

= σ2
g

h−2∑
k=0

λ2
d,k, if h ≥ 2, (24)

where σ2
g := E([g(Z0)]2) is given in (11).

In practice, E(σ2
n+h|Ft) cannot be easily calculated for FIEGARCH models and thus, a common approach

is to predict σ2
n+h through the relation σ̌2

n+h := exp{l̂n(σ2
n+h)}, with l̂n(σ2

n+h) defined by (23), for all h > 0.

As a consequence, a h-step ahead forecast for X2
n+h is defined as X̌2

n+h := σ̌2
n+h and a naive estimator for

ln(X2
n+h) is obtained by letting

ľn(X2
n+h) := ln(X̌2

n+h) = ln(σ̌2
n+h) = l̂n(σ2

n+h), for all h > 0. (25)

From expressions (1) and (25), it is obvious that ľn(X2
n+h) is a biased estimator for ln(X2

n+h), whenever
E(ln(Z2

n+h)) 6= 0. Proposition 5 gives the mean square error of forecast for the h-step ahead forecast of
ln(X2

n+h), defined through expression (25).
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Proposition 5. Let ľn(X2
n+h), for all h > 0, be the h-step ahead forecast of ln(X2

n+h), given the filtration
Fn = σ({Zs}s≤n), defined by expression (25). Then the mean square error of forecast is given by

E
([

ln(X2
n+h)− ľn(X2

n+h)
]2)

= σ2
g

h−2∑
k=0

λ2
d,k + E

([
ln(Z2

n+h)
]2)

, where σ2
g := E

(
[g(Z0)]2

)
.

Remark 7. If the values of Xt and σt are known only for t ∈ {1, · · · , n}, by setting g(Zn+h−1−k) = 0
whenever n + h − 1 − k < 1 (that is, k > n + h − 2) or n + h − 1 − k > n (that is, k < h − 1), the h-step

ahead forecast l̂n(σ̂2
n+h) of ln(σ2

n+h), is approximated by

l̂n(σ2
n+h) ' ω +

n−1∑
k=0

λd,k+h−1 g(Zn−k) = ω +

n+h−2∑
k=h−1

λd,k g(Zn+h−1−k), for all h > 0,

and, by definition, the same approximation follows for ľn(X2
n+h). It is easy to see that, in this case, the

error of forecast for the processes {ln(σ2
t )}t∈Z is given by

ln(σ2
n+h)− l̂n(σ2

n+h) =

[
ω +

∞∑
k=0

λd,k g(Zn+h−1−k)

]
−

[
ω +

n+h−2∑
k=h−1

λd,k g(Zn+h−1−k)

]

=

h−2∑
k=0

λd,k g(Zn+h−1−k) +

∞∑
k=n+h−1

λd,k g(Zn+h−1−k)

and the mean square error of forecast values for the processes {ln(σ2
t )}t∈Z and {ln(X2

t )}t∈Z are given,
respectively, by

E
([

ln(σ2
n+h)− l̂n(σ2

n+h)
]2)

= σ2
g

( h−2∑
k=0

λ2
d,k +

∞∑
k=n+h−1

λ2
d,k

)
and

E
([

ln(X2
n+h)− ľn(X2

n+h)
]2)

= σ2
g

( h−2∑
k=0

λ2
d,k +

∞∑
k=n+h−1

λ2
d,k

)
+ E(

[
ln(Z2

n+h)
]2
, for all h > 0.

From Jensen’s inequality, one concludes that

σ̌2
n+h := exp{l̂n(σ2

n+h)} = exp{E(ln(σ2
n+h)|Ft)} ≤ E(σ2

n+h|Fn) := σ̂2
n+h, for all h > 0,

so that E(σ̌2
n+h − σ2

n+h) = E(E(σ̌2
n+h − σ2

t+h|Fn)) = E(σ̌2
n+h − σ̂2

n+h) ≤ 0, for all h > 0. In fact, from (15)
and (23), we have

σ̌2
n+h := exp{l̂n(σ2

n+h)} = exp

{
ω +

∞∑
k=0

λd,k+h−1 g(Zn−k)

}
h→∞
−−→ eω = exp{E(ln(σ2

0))}. (26)

Another h-step ahead predictor for σ2
n+h can be defined as follows. Consider an order 2 Taylor expansion

of the exponential function and write

σ2
n+h = exp

{
E(ln(σ2

n+h)|Fn)
}

+
[
ln(σ2

n+h)− E(ln(σ2
n+h)|Fn)

]
exp

{
E(ln(σ2

n+h)|Fn)
}

+
1

2

[
ln(σ2

n+h)− E(ln(σ2
n+h)|Fn)

]2
exp

{
E(ln(σ2

n+h)|Fn)
}

+Rn+h, for all h > 0. (27)

From expression (27), a natural choice is to define a h-step ahead predictor for σ2
n+h as

σ̃2
n+h := exp

{
E(ln(σ2

n+h)|Fn)
}

+
1

2
E(
[
ln(σ2

n+h)− E(ln(σ2
n+h)|Fn)

]2
) exp

{
E(ln(σ2

n+h)|Fn)
}
, (28)
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for all h > 0.
From expressions (23), (24) and (28) one concludes that σ̌2

n+h and σ̃2
n+h are related through the equation

σ̃2
n+h =


exp{l̂n(σ2

n+h)} = σ̌2
n+h, if h = 1;

exp{l̂n(σ2
n+h)}

(
1 +

1

2
σ2
g

h−2∑
k=0

λ2
d,k

)
= σ̌2

n+h

(
1 +

1

2
σ2
g

h−2∑
k=0

λ2
d,k

)
, if h > 1.

(29)

Since σt+1 is a Ft-measurable random variable, for all t ∈ Z, we have E(σ̃2
n+1−σ2

n+1) = E(σ̌2
n+1−σ2

n+1) =
0. From equation (27), we easily conclude that, for all h > 1,

E(σ̃2
n+h − σ2

n+h) = −E(Rn+h) and E(σ̌2
n+h − σ2

n+h) = −
(

1 +
1

2
σ2
g

h−2∑
k=0

λ2
d,k

)
E(σ̌2

n+h)− E(Rn+h).

Therefore, the relation between the bias for the estimators σ̌2
n+h and σ̃2

n+h is given by

E(σ̃2
n+h − σ2

n+h) = E(σ̌2
n+h − σ2

n+h) + E(σ̌2
n+h)

(
1 +

1

2
σ2
g

h−2∑
k=0

λ2
d,k

)
, for all h > 1.

In Section 4 we analyze the performance of σ̃2
n+h through a Monte Carlo simulation study.

4. Simulation Study

In this section we present a Monte Carlo simulation study to analyze the performance of the quasi-
likelihood estimator and also the forecasting of FIEGARCH(p, d, q) processes. Six different models are
considered and, from now on, they shall be referred to as model Mi, for i ∈ {1, · · · , 6}. For all models
we assume that the distribution of Z0 is the Generalized Error Distribution (GED) with tail-thickness
parameter ν = 1.5 (since ν < 2 the tails are heavier than the Gaussian distribution tail). The set of
parameters considered in this study is the same as in [11] and [12]5, except for models M5 and M6 (see
Table 2). While model M5 considers d = 0.49, which is close to the non-stationary region (d ≥ 0.5), model
M6 considers p = 1 and q = 0. For comparison, we shall consider for model M6 the same parameter values
as in model M3 (obviously, with the necessary adjustments regarding α1 and β1). We also present here the
h-step ahead forecast, for h ∈ {1, · · · , 50}, for the conditional variance of simulated FIEGARCH processes.

4.1. Data Generating Process (DGP)

To generate samples from FIEGARCH(p, d, q) processes we proceed as described in steps DGP1 - DGP3
below. Notice that, while step 1 only needs to be repeated for each model, steps 2 and 3 must be repeated
for each model and each replication. The parameters values considered in this simulation study are given in
Table 2. For each model we consider re = 1000 replications, with sample size N = 5050.

DGP1: Apply the recurrence formula given in Proposition 2, to obtain the coefficients of the polynomial
λ(z) =

∑∞
k=0 λd,kz

k, defined by (8). For this simulation study the infinite sum (8) is truncated at m =
50, 000. To select the truncation point m we consider Theorem 3 and the results presented in Table 3.

From Theorem 3, we have

λd,k ∼
1

Γ(d)k1−d
α(1)

β(1)
, as k →∞,

5[11] present a Monte Carlo simulation study on risk measures estimation in time series derived from a FIEGARCH process.
[12] analyze a portfolio composed of stocks from the Brazilian market Bovespa. The authors consider the econometric approach
to estimate the risk measure VaR and use FIEGARCH models to obtain the conditional variance of the time series.
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Table 2: Parameters value for the models. By definition, M1:= FIEGARCH(2, d, 1); M2 := FIEGARCH(0, d, 4); M3 :=
FIEGARCH(0, d, 1); M4 := FIEGARCH(0, d, 1), M5 := FIEGARCH(1, d, 1) and M6 := FIEGARCH(1, d, 0).

Model
Parameter

d θ γ ω α1 α2 β1 β2 β3 β4

M1 0.4495 -0.1245 0.3662 -6.5769 -1.1190 -0.7619 -0.6195 - - -

M2 0.2391 -0.0456 0.3963 -6.6278 - - 0.2289 0.1941 0.4737 -0.4441

M3 0.4312 -0.1095 0.3376 -6.6829 - - 0.5454 - - -

M4 0.3578 -0.1661 0.2792 -7.2247 - - 0.6860 - - -

M5 0.4900 -0.0215 0.3700 -5.8927 0.1409 - -0.1611 - - -

M6 0.4312 -0.1095 0.3376 -6.6829 0.5454 - - - - -

and we conclude that λd,k = o(kd) and λd,k = O(kd−1), as k goes to infinity. However, the convergence
speed varies from model to model, as we show in Table 3. For simplicity, in this table, let Q1(·) and Q2(·)
be defined as

Q1(k) :=
λd,k
kd

and Q2(k) := λd,k

(
1

Γ(d)k1−d
α(1)

β(1)

)−1

, for all k > 0.

Table 3 presents the values of the coefficients λd,k, given in Proposition 2, for k ∈ {10; 100; 1000; 5000;
10000; 20000; 50000; 100000}, for each simulated model Mi, i ∈ {1, · · · , 6}. Note that, for k ≥ 5000, the
coefficient values decrease slowly. We also report in Table 3 Q1(k) and Q2(k) values for the correspondent
λd,k value. Note that, for k ∈ {10,000; 50,000; 100,000}, the value Q1(k) is very close to zero, for all models.
Also, notice that Q2(k) converges to 1 faster for model M1 than for the other models.

Table 3: Coefficients λd,k and the quotients Q1(k) and Q2(k), for different values of k, for all models.

k 10 100 1000 5000 10000 25000 50000 100000

M1 := FIEGARCH(2, d, 1)

λd,k 0.26537 0.07167 0.02015 0.00830 0.00567 0.00342 0.00234 0.00160

Q1(k) 0.09426 0.00904 0.00090 0.00018 0.00009 0.00004 0.00002 0.00001

Q2(k) 1.04410 1.00173 1.00017 1.00003 1.00002 1.00001 1.00000 1.00000

M2 := FIEGARCH(0, d, 4)

λd,k -0.09039 0.01450 0.00251 0.00074 0.00043 0.00022 0.00013 0.00008

Q1(k) -0.05212 0.00482 0.00048 0.00010 0.00005 0.00002 0.00001 0.00000

Q2(k) -1.08434 1.00292 1.00027 1.00005 1.00003 1.00001 1.00001 1.00000

M3 := FIEGARCH(0, d, 1)

λd,k 0.31434 0.07844 0.02106 0.00843 0.00568 0.00337 0.00227 0.00153

Q1(k) 0.11647 0.01077 0.00107 0.00021 0.00011 0.00004 0.00002 0.00001

Q2(k) 1.08789 1.00576 1.00056 1.00011 1.00006 1.00002 1.00001 1.00001

M4 := FIEGARCH(0, d, 1)

λd,k 0.36874 0.06738 0.01517 0.00539 0.00345 0.00192 0.00123 0.00079

Q1(k) 0.16178 0.01297 0.00128 0.00026 0.00013 0.00005 0.00003 0.00001

Q2(k) 1.26414 1.01350 1.00129 1.00026 1.00013 1.00005 1.00003 1.00001

M5 := FIEGARCH(1, d, 1)

λd,k 0.12291 0.03897 0.01207 0.00531 0.00373 0.00234 0.00164 0.00115

Q1(k) 0.03977 0.00408 0.00041 0.00008 0.00004 0.00002 0.00001 0.00000

Q2(k) 0.97189 0.99720 0.99972 0.99994 0.99997 0.99999 0.99999 1.00000

M6 := FIEGARCH(1, d, 0)

λd,k 0.05472 0.01599 0.00435 0.00174 0.00117 0.00070 0.00047 0.00032

Q1(k) 0.02027 0.00219 0.00022 0.00004 0.00002 0.00001 0.00000 0.00000

Q2(k) 0.91632 0.99192 0.99919 0.99984 0.99992 0.99997 0.99998 0.99999
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DGP2: Set Z0 ∼ GED(ν), with ν = 1.5, and obtain an i.i.d. sample {zt}Nt=−m.

DGP3: By considering (1), (5) and the equality in (8), the sample {xt}nt=1 is obtained through the relation

ln(σ2
t ) =

m∑
k=0

λd,kg(zt−1−k) and xt = σtzt, for all t = 1, · · · , N.

Remark 8. For parameter estimation and forecasting procedures we shall consider sub-samples from these
time series, with size n ∈ {2000; 5000}. The sub-samples of size n = 2000 correspond to the last 2000
values of the generated time series (after removing the last 50 values which are used only to compare the
out-of-sample forecasting performance of the models). The value n = 2000 is the approximated size of the
observed time series considered in [12]. The value n = 5000 was chosen to analyze the estimators’ asymptotic
properties.

4.2. Estimation Procedure

In this study we consider the quasi-likelihood method to estimate the parameters of FIEGARCH models
for the simulated time series. Given any time series {xt}nt=1, this method assumes that Xt|Ft−1, for all
t ∈ Z, is normally distributed. The vector of unknown parameters is denoted by

η = (d;ω; θ;λ;α1, · · · , αp;β1, · · · , βq)′ ∈ Rp+q+4

and the estimator η̂ of η is the value that maximizes

ln(`(η;x1, · · · , xn)) = −n
2

ln(2π)− 1

2

n∑
t=1

[
ln(σ2

t ) +
x2
t

σ2
t

]
. (30)

Since the processes {xt}t<1 and {zt}t<1 are unknown, we need to consider a set I0 of initial conditions
in order to start the recursion and to obtain the random variables ln(σ2

t ), for t ∈ {1, · · · , n}. Then we use
these estimated values to solve (30). For this simulation study we assume, as initial conditions, g(zt) = 0,
σ2
t = σ̂2

X and xt := σtzt = 0, whenever t < 1, where σ̂2
X is the sample variance of {xt}nt=1. This is the initial

set suggested by [6]. The random variables ln(σ2
t ), for t ∈ {1, · · · , n}, are then estimated upon considering

the set I0 of initial conditions and the known values {xt}nt=1. The infinite sum in the polynomial λ(·) is
truncated at m = n, where n is the available sample size.

4.3. Performance Measures

For any model, let η̂k denote the estimate of η in the k-th replication, where k ∈ {1, · · · , re}, re = 1, 000
and η is any element of the parameter vector given in Table 2. To access the performance of the quasi-
likelihood procedure we calculate the mean η̄i, the standard deviation (sd), the bias (bias), the mean absolute
error (mae) and the mean square error (mse) values, defined by

η̄ :=
1

re

re∑
k=1

η̂k, sd :=

√√√√ 1

re

re∑
k=1

(η̂k − η̄)2, bias :=
1

re

re∑
k=1

ek, mae :=
1

re

re∑
k=1

|ek| and mse :=
1

re

re∑
k=1

e2
k,

where ek := η̂k − η, for k ∈ {1, · · · , re}.

4.4. Estimation Results

Table 4 summarizes the results of the parameter estimation procedure. Figures 6 - 11 present the kernel
estimates of the probability density function of the parameter estimates of each considered model when
n ∈ {2000; 5000}. These graphs help to illustrate the results presented in Table 4.

By observing Figures 6 - 11, it is easy to see that, for most estimates, the density function is approximately
symmetric. For some parameters, we notice the presence of possible outliers, see for instance the graphs for
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Figure 6: Kernel estimates of the probability density function of the parameter estimates corresponding to model M1, for
n ∈ {2000; 5000}.

the parameters d (in particular, models M2, M3 and M4), αi (model M1) and βj (in particular, models M1
and M2), with i ∈ {1, 2} and j ∈ {1, 2, 3, 4}. Although the graphs for n = 2000 and n = 5000 are similar,
one observes that, as expected, the observations tend to concentrate closer to the mean when n = 5000.

From Table 4 we conclude that, given the models’ complexity, the quasi-likelihood method performs
relatively well. Since model M2 presents more parameters than the other models, which implies a higher
dimension maximization problem, one would expect that the quasi-likelihood method would present the
worst performance in this case. However, in terms of mae or mse values, the estimation results for model
M2 (p = 0, d = 0.2391 and q = 4), M3 (p = 0, d = 0.4312 and q = 1), M4 (p = 0, d = 0.3578 and q = 1)
and M6 (p = 1, d = 0.4312 and q = 0) are similar (except for the parameter d in model M6) and the
quasi-likelihood method performs better for model M2 (except for the parameter d) than for models M1
(p = 2, d = 0.4495 and q = 1) and M5 (p = 1, d = 0.49 and q = 1).
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Figure 7: Kernel estimates of the probability density function of the parameter estimates corresponding to model M2, for
n ∈ {2000; 5000}.

Table 4 also indicates that the quasi-likelihood procedure may perform better for p = 0 and q > 0 than
for p > 0 and q = 0 (we shall investigate this in a future work). This conclusion is based on the fact that
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Table 4: Estimation results for the simulated FIEGARCH models considering re = 1000 replications.

Sample Size (n) 2000 5000

Parameter (η) η̄ sd bias mae mse η̄ sd bias mae mse

M1 := FIEGARCH(2, d, 1)

0.4495 (d) 0.4022 0.0854 -0.0473 0.0688 0.0095 0.4309 0.0468 -0.0186 0.0357 0.0025

-0.1245 (θ) -0.1240 0.0266 0.0005 0.0213 0.0007 -0.1237 0.0168 0.0008 0.0133 0.0003

0.3662 (γ) 0.3612 0.0543 -0.0050 0.0438 0.0030 0.3610 0.0337 -0.0052 0.0271 0.0012

-6.5769 (ω) -6.2516 0.4270 0.3253 0.4358 0.2881 -6.1284 0.3830 0.4485 0.4930 0.3479

-1.1190 (α1) -0.9067 0.4519 0.2123 0.3567 0.2492 -1.0344 0.3259 0.0846 0.2010 0.1134

-0.7619 (α2) -0.6517 0.4035 0.1102 0.2832 0.1750 -0.7281 0.2623 0.0338 0.1534 0.0700

-0.6195 (β1) -0.3415 0.4774 0.2780 0.3474 0.3052 -0.5052 0.3214 0.1143 0.1764 0.1164

M2 := FIEGARCH(0, d, 4)

0.2391 (d) 0.1683 0.1538 -0.0708 0.1216 0.0287 0.2077 0.0767 -0.0314 0.0650 0.0069

-0.0456 (θ) -0.0469 0.0275 -0.0013 0.0220 0.0008 -0.0461 0.0169 -0.0005 0.0134 0.0003

0.3963 (γ) 0.3931 0.0536 -0.0032 0.0426 0.0029 0.3959 0.0326 -0.0004 0.0256 0.0011

-6.6278 (ω) -6.5525 0.1146 0.0753 0.1075 0.0188 -6.5077 0.0905 0.1201 0.1253 0.0226

0.2289 (β1) 0.2841 0.1284 0.0552 0.1083 0.0195 0.2488 0.0721 0.0199 0.0593 0.0056

0.1941 (β2) 0.2078 0.0865 0.0137 0.0657 0.0077 0.1990 0.0456 0.0049 0.0367 0.0021

0.4737 (β3) 0.4710 0.0935 -0.0027 0.0667 0.0088 0.4784 0.0441 0.0047 0.0349 0.0020

-0.4441 (β4) -0.4704 0.1063 -0.0263 0.0867 0.0120 -0.4500 0.0592 -0.0059 0.0466 0.0035

M3 := FIEGARCH(0, d, 1)

0.4312 (d) 0.3606 0.1268 -0.0706 0.1043 0.0211 0.3933 0.0648 -0.0379 0.0569 0.0056

-0.1095 (θ) -0.1111 0.0255 -0.0016 0.0201 0.0007 -0.1090 0.0157 0.0005 0.0125 0.0002

0.3376 (γ) 0.3346 0.0493 -0.0030 0.0394 0.0024 0.3331 0.0300 -0.0045 0.0241 0.0009

-6.6829 (ω) -6.3686 0.4230 0.3143 0.4271 0.2778 -6.2413 0.3715 0.4416 0.4814 0.3330

0.5454 (β1) 0.5976 0.1472 0.0522 0.1231 0.0244 0.5822 0.0851 0.0368 0.0731 0.0086

M4 := FIEGARCH(0, d, 1)

0.3578 (d) 0.2950 0.1338 -0.0628 0.1056 0.0218 0.3258 0.0721 -0.0320 0.0569 0.0062

-0.1661 (θ) -0.1702 0.0248 -0.0041 0.0198 0.0006 -0.1666 0.0156 -0.0005 0.0124 0.0002

0.2792 (γ) 0.2793 0.0415 0.0001 0.0326 0.0017 0.2769 0.0248 -0.0023 0.0197 0.0006

-7.2247 (ω) -6.9615 0.3122 0.2632 0.3284 0.1667 -6.8766 0.2604 0.3481 0.3689 0.1889

0.6860 (β1) 0.7160 0.1128 0.0300 0.0915 0.0136 0.7067 0.0665 0.0207 0.0535 0.0048

M5 := FIEGARCH(1, d, 1)

0.4900 (d) 0.4258 0.1273 -0.0642 0.1096 0.0203 0.4453 0.0645 -0.0447 0.0629 0.0062

-0.0215 (θ) -0.0229 0.0355 -0.0014 0.0282 0.0013 -0.0229 0.0218 -0.0014 0.0175 0.0005

0.3700 (γ) 0.3751 0.0577 0.0051 0.0455 0.0034 0.3742 0.0354 0.0042 0.0285 0.0013

-5.8927 (ω) -5.7507 0.2688 0.1420 0.2415 0.0924 -5.6414 0.2494 0.2513 0.2902 0.1253

0.1409 (α1) 0.1152 0.4082 -0.0257 0.3232 0.1673 0.1012 0.3310 -0.0397 0.2613 0.1111

-0.1611 (β1) -0.1383 0.3799 0.0228 0.3189 0.1448 -0.1581 0.3213 0.0030 0.2579 0.1032

M6 := FIEGARCH(1, d, 0)s

0.4312 (d) 0.3220 0.1825 -0.1092 0.1706 0.0452 0.3449 0.1135 -0.0863 0.1107 0.0203

-0.1095 (θ) -0.1132 0.0351 -0.0037 0.0282 0.0012 -0.1114 0.0222 -0.0019 0.0176 0.0005

0.3376 (γ) 0.3368 0.0585 -0.0008 0.0467 0.0034 0.3380 0.0355 0.0004 0.0283 0.0013

-6.6829 (ω) -6.6233 0.1144 0.0596 0.1014 0.0166 -6.5926 0.0978 0.0903 0.1071 0.0177

0.5454 (α1) 0.4189 0.2297 -0.1265 0.2109 0.0688 0.4429 0.1492 -0.1025 0.1428 0.0328

models M3 and M6 have the same parameter values (with the necessary adjustments in α1 and β1) and all
parameters, except ω, were better estimated in model M3 than M6.

By comparing the mae and mse values, given in Table 4, we conclude that the worst performance
occurs for models M1 and M5 (in particular, see the estimation results for ω, αi and βj , i = 1, · · · , p and
j = 1, · · · , q). This outcome is explained by the fact that the parameter d is very close to the non-stationary
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Figure 8: Kernel estimates of the probability density function of the parameter estimates corresponding to model M3, for
n ∈ {2000; 5000}.
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Figure 9: Kernel estimates of the probability density function of the parameter estimates corresponding to model M4, for
n ∈ {2000; 5000}.
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Figure 10: Kernel estimates of the probability density function of the parameter estimates corresponding to model M5, for
n ∈ {2000; 5000}.
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Figure 11: Kernel estimates of the probability density function of the parameter estimates corresponding to model M6, for
n ∈ {2000; 5000}.
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region for model M5 and, for model M1, not only p = 2 but also d = 0.4495, which implies a more complex
model with stronger long-range dependence. The small bias values indicate that, for all parameters, the mean
estimated value is very close to the true value. Although for n = 2000 the standard deviation of several
estimates is high if compared with the mean estimated value, as expected, the estimators’ performance
improves as the sample size increases, except for the parameter ω.

4.5. Forecasting Procedure

To obtain the predicted values, for each replication of model Mi, with i ∈ {1, · · · , 6}, and each sub-sample
{xt}nt=1, with n ∈ {2000; 5000}, we repeat steps F1 - F5 below.

F1: Replace the true parameter values η = (d;ω; θ;λ;α1, · · · , αp;β1, · · · , βq)′ by the estimated ones, namely,

η̂ = (d̂; ω̂; θ̂; λ̂; α̂1, · · · , α̂p; β̂1, · · · , β̂q)′, and use the recurrence formula given in Proposition 2 to calculate

the corresponding coefficients {λ̂d,k}n+50
k=0 .

F2: Obtain the time series {zt}nt=1 (which corresponds to the residuals of the fitted model) and {σt}nt=1.
To do so, let g(zt) = 0, whenever t < 0, and calculate σt and zt recursively as follows:

σ1 = e0̂.5ω; z1 =
x1

σ1
; σt = exp

{
ω̂

2
+

1

2

n−1∑
k=0

λ̂d,k

[
θ̂zt−1−k + γ̂(|zt−1−k| −

√
2/π)

]}
and zt =

xt
σt
,

for all t = 2, · · · , n.

F3: In expression (11), replace E(|Z0|) and E(Z0|Z0|) by their respective sample estimates, and obtain an
estimate σ̂2

g for σ2
g given by

σ̂2
g = θ̂2 + γ̂2 − γ̂2

[
1

n

n∑
t=1

|zt|

]2

+ 2 θ̂ γ̂

[
1

n

n∑
t=1

zt|zt|

]
.

F4: By considering expressions (23) and (28), obtain the predicted values {σ̃2
N+h}50

h=1,

σ̃2
N+1 = σ̌2

N+1 and σ̃2
N+h = σ̌2

N+h

(
1 +

1

2
σ̂2
g

h−2∑
k=0

λ̂2
d,k

)
, for all h > 1,

where

σ̌2
N+h = exp

{
ω̂ +

n−1∑
k=0

λ̂d,k+h−1

[
θ̂zn−k + γ̂(|zn−k| − µ̂|z|)

]}
, for all h > 0,

with µ̂|z| := 1
n

∑n
t=1 |zt|.

F5: Based on the fact that E(X2
N+h|FN ) = E(σ2

N+h|FN ), set X̃2
N+h := σ̃2

N+h, for all h > 0.

4.6. Forecasting Results

In what follows we discuss the simulation results related to forecasting based on the fitted FIEGARCH
models. To access the models’ forecast performance, during the generating process, we create 50 extra values
for each simulated time series. Those values are used here to compare with the h-step ahead forecast, for
h ∈ {1, · · · , 50}.

Table 5 presents the mean over 1000 simulated values of σ2
N+h and X2

N+h obtained from model Mi, for

each i ∈ {1, · · · , 6}, and the corresponding h-step ahead predicted values σ̃2
N+h := X̃2

N+h, for h ∈ {1, · · · , 5},

22



forecasting origin N = 5000 and sub-samples n ∈ {2000; 5000}. This table also reports the mean square
error (mse) of forecast, defined as

mse(YN+h) :=
1

re

re∑
k=1

(
Y

(k)
N+h − Y̌

(k)
N+h(n)

)2
, for any h ∈ {1, · · · , 5} and n ∈ {2000; 5000},

where re = 1000 is the number of replications, YN+h denotes the true value of σ2
N+h (or X2

N+h) and Y̌
(k)
N+h(n)

is the predicted value obtained in the k-th replication, for k ∈ {1, · · · , re}, based on the model fitted to the
sub-sample with size n. Notice that, due to the small magnitude of the sample means, all values in Table 5
are multiplied by 100.

From Table 5 (see also Figure 12 below) we conclude that,

• when we consider σ2
N+h, the predicted values are relatively close to the simulated ones, which is

indicated by the small mse values, for all models and any h ∈ {1, · · · , 6};

• the mse value increases as h increases. This result is expected and it is theoretically explained in
Proposition 4 which shows that

E
([

ln(σ2
n+h)− l̂n(σ2

n+h)
]2)

= σ2
g

h−2∑
k=0

λ2
d,k

h→∞−→ σ2
g

∞∑
k=0

λ2
d,k,

where σ2
g := E([g(Z0)]2) is given in (11);

• when we consider X2
N+h, the mse is usually high, if compared to the mean simulated and mean

predicted values. Therefore, we conclude that X̃2
n+h := σ̃2

n+h is a poor estimator for X2
n+h. This result

is not a surprise since the main purpose of FIEGARCH models is to estimate the logarithm of the
conditional variance of the process and not the process itself;

• as expected, in all cases, the models’ forecasting performance improves as n increases. Notice, however,
that the difference in the mse values, from n = 2000 to n = 5000, is small (recall that the values are
multiplied by 100). This is so because the coefficients λd,k converges to zero, as k goes to infinity.
Therefore, it is expected that, for some m ∈ N and any M > 0, using the last m or the last m + M
known values to calculate the h-step ahead forecast value for the process will not considerably change
the results.

Figure 12 shows the mean taken over 1000 replications for:

• the simulated values σ2
N+h and X2

N+h obtained from model Mi, for each i ∈ {1, · · · , 6}, N = 5000 and
h ∈ {1, · · · , 50};

• the one-step ahead forecast values σ̌2
N∗+1 := σ̃2

N∗+1 (denoted in the graphs by σ̂2
N+h−1(1)), for N∗ =

N + h, N = 5000 and h ∈ {1, · · · , 50}. The predictor σ̌2
N (1) is obtained directly from the sub-sample

{xt}nt=1, by following steps F1 -F5 (this figure only reports the graphs for the case n = 5000). The
remaining predicted values {σ̌2

N+h−1(1)}50
h=2 are calculated by updating the forecasting origin from

N = 5000 to N∗ = N +h− 1, that is, by introducing the observations {XN+h}49
h=1, one at a time, and

following steps F2 -F5;

• the h-step ahead forecast values considering the predictors σ̃2
N+h and σ̌2

N+h (denoted in the graphs by
σ2
N (h)). These values are obtained by following steps F1 -F5 with forecasting originN = 5000 (without

update). For all graphs the size of the sub-sample used for parameter estimation and forecasting is
n = 5000.

The dashed lines in Figure 12 correspond to the limiting constants L1(i) and L2(i), for i ∈ {1, · · · , 6},
described in the sequel.
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Table 5: Mean simulated values for σ2
N+h and X2

N+h, obtained from model Mi, the corresponding mean predicted values

σ̃2
N+h = X̃2

N+h and the mean square error of forecast, for h ∈ {1, · · · , 5} and i ∈ {1, · · · , 6}. The forecasting origin is

N = 5000 and n ∈ {2000; 5000} is the sub-sample size used to fit the models and to obtain the predicted values. All values
reported correspond to the calculated values multiplied by a scaling constant (except h). The scaling constant is equal to 102,
for σ2

N+h, X2
N+h and σ̃2

N+h, and to 104, for the mse values. The number of considered replications is re = 1000.

n 2000 5000

h σ2
N+h X2

N+h Predictor mse(σ2
N+h) mse(X2

N+h) Predictor mse(σ2
N+h) mse(X2

N+h)

M1 := FIEGARCH(2, d, 1)

1 0.1698 0.1575 0.1652 0.0010 0.0993 0.1634 0.0003 0.0969

2 0.1635 0.1473 0.1640 0.0038 0.0900 0.1611 0.0032 0.0875

3 0.1636 0.1540 0.1655 0.0078 0.1122 0.1632 0.0075 0.1116

4 0.1629 0.1490 0.1662 0.0122 0.1117 0.1633 0.0114 0.1101

5 0.1641 0.1542 0.1665 0.0147 0.1906 0.1642 0.0141 0.1903

M2 := FIEGARCH(0, d, 4)

1 0.1387 0.1284 0.1359 0.0004 0.0521 0.1369 0.0002 0.0515

2 0.1383 0.1246 0.1395 0.0024 0.0506 0.1398 0.0021 0.0501

3 0.1357 0.1299 0.1374 0.0027 0.0551 0.1381 0.0024 0.0547

4 0.1378 0.1276 0.1390 0.0029 0.0562 0.1399 0.0028 0.0559

5 0.1356 0.1253 0.1409 0.0036 0.0568 0.1414 0.0034 0.0570

M3 := FIEGARCH(0, d, 1)

1 0.1487 0.1380 0.1452 0.0007 0.0833 0.1439 0.0002 0.0848

2 0.1456 0.1287 0.1459 0.0026 0.0681 0.1442 0.0022 0.0674

3 0.1426 0.1350 0.1466 0.0052 0.0773 0.1447 0.0045 0.0777

4 0.1438 0.1200 0.1473 0.0075 0.0619 0.1453 0.0068 0.0600

5 0.1411 0.1354 0.1479 0.0076 0.1316 0.1459 0.0069 0.1309

M4 := FIEGARCH(0, d, 1)

1 0.0932 0.0894 0.0918 0.0005 0.0411 0.0910 0.0002 0.0416

2 0.0905 0.0809 0.0918 0.0013 0.0275 0.0908 0.0010 0.0270

3 0.0885 0.0810 0.0917 0.0027 0.0293 0.0907 0.0022 0.0291

4 0.0886 0.0764 0.0918 0.0040 0.0251 0.0908 0.0036 0.0242

5 0.0876 0.0831 0.0919 0.0042 0.0461 0.0909 0.0037 0.0456

M5 := FIEGARCH(1, d, 1)

1 0.2898 0.2669 0.2808 0.0012 0.2096 0.2795 0.0005 0.2087

2 0.2883 0.2800 0.2833 0.0069 0.2489 0.2817 0.0065 0.2494

3 0.2908 0.2836 0.2844 0.0081 0.2452 0.2821 0.0081 0.2461

4 0.2909 0.2963 0.2847 0.0077 0.3178 0.2827 0.0076 0.3174

5 0.2923 0.2971 0.2852 0.0097 0.3695 0.2832 0.0096 0.3704

M6 := FIEGARCH(0, d, 1)

1 0.1271 0.1143 0.1242 0.0001 0.0367 0.1247 0.0001 0.0367

2 0.1260 0.1140 0.1265 0.0013 0.0379 0.1265 0.0013 0.0377

3 0.1259 0.1228 0.1262 0.0014 0.0471 0.1263 0.0013 0.0471

4 0.1284 0.1188 0.1263 0.0018 0.0479 0.1264 0.0017 0.0477

5 0.1261 0.1192 0.1264 0.0015 0.0473 0.1265 0.0014 0.0474

From Figure 12 we observe that, for all models, the means for the one-step ahead forecast values σ̌2
N∗+1,

show the same behavior over time as the means for the true values σ2
N∗+1, where N∗ = N +h−1, N = 5000

and h ∈ {1, · · · , 50}. As expected, due to the error carried from the parameter estimation (specially, from
the distribution misspecification), we observe a small forecasting bias, which decreases as h increases. The
decrease in the forecasting bias, as the forecasting origin is updated, can be attributed to the fact that we
start the recurrence formula (step F2) assuming E(|Z0|) =

√
2/π and as the new observations XN+h are

introduced, the constant E(|Z0|) is replaced by its sample estimate (step F3), which provides more accurate
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Figure 12: For each model Mi, i ∈ {1, · · · , 6}: the simulated values for σ2
N+h; the one-step ahead forecast σ̌2

N∗+1 := σ̃2
N∗+1

(denoted in the graphs by σ̂2
N+h−1(1)), obtained by updating the forecasting origin to N∗ = N + h − 1; the h-step ahead

forecast values considering the predictors σ̃2
N+h and σ̌2

N+h (denoted in the graphs by σ2
N (h)), with forecasting origin N . For

all models h ∈ {1, · · · , 50}, N = 5000 and the size of the sub-sample used for parameter estimation and forecasting is n = 5000.
All values in the graphs correspond to the mean taken over 1000 replications.
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values for g(Zt) as t increases (t > N).
Regarding the h-step ahead predictors σ̌2

i,n+h and σ̃2
i,n+h, Figure 12 shows that the estimation bias is

higher if we consider the former one. This figure also shows that, for all models, the predicted value converges
to a constant as h increases. This is expected since the h-step ahead predictor is defined in terms of the
conditional expectation. In fact, from expression (26), σ̌2

N+h converges to L1(i) := eω(i) as h goes to infinity,
where ω(i) denotes the parameter ω for model Mi and hence, from expression (29),

σ̃2
N+h := σ̌2

N+h

(
1 +

1

2
σ2
g

h−2∑
k=0

λ2
d,k

)
h→∞
−−→ eω(i)

(
1 +

1

2
σ2
g(i)

∞∑
k=0

λ2
d,k(i)

)

≈ eω(i)

(
1 +

1

2
σ2
g(i)

m∑
k=0

λ2
d,k(i)

)
:= L2(i), (31)

for each i ∈ {1, · · · , 6} and m sufficiently large. The values of ω(i) (also given in Table 2), L1(i) and L2(i),
for m = 50, 000 and i ∈ {1, · · · , 6}, are presented in Table 6.

Table 6: Values of ω(i), L1(i) := eω(i) and L2(i), defined in (31), for m = 50, 000 and i ∈ {1, · · · , 6}.

i 1 2 3 4 5 6

ω(i) -6.5769 -6.6278 -6.6829 -7.2247 -5.8927 -6.6829

L1(i)× 100 0.1392 0.1323 0.1252 0.0728 0.2760 0.1252

L2(i)× 100 0.1775 0.1431 0.1581 0.0919 0.2966 0.1298

Upon comparing the values of L1(i) and L2(i), given in Table 6 (also reported in Figure 12 as L1 and
L2), for each i ∈ {1, · · · , 6}, respectively, with the limits limh→∞ σ̌2

N+h and limh→∞ σ̃2
N+h (see Figure 12),

we conclude that these values are close to each other, for all models. A small difference between L1(i) and
limh→∞ σ̌2

N+h (respectively, L2(i) and limh→∞ σ̃2
N+h) is expected since the former is calculated using the

true parameter values while σ̌2
N+h is obtained by considering the estimates for the parameter values.

5. Analysis of an Observed Time Series

This section presents the analysis of the São Paulo Stock Exchange Index (Bovespa Index or IBovespa)
log-return time series. We consider the FIEGARCH model, fully described in this paper, and we compare its
forecasting performance with other ARCH-type models. The total number of observations for the IBovespa
time series is n = 1737. We consider the first 1717 observations to fit the models and we reserve the last 20
ones to compare with the out-of-sample forecast.

Figure 13 (a) presents IBovespa time series {Pt}1718
t=1 , in the period of January/1995 to December/2001.

We observe a strong decay in the index value close to t = 1000 (that is, January 15, 1999). This period is
characterized by the Real (the Brazilian currency) devaluation. Figures 13 (b) and (c) present, respectively,
the IBovespa log-return time series, {rt}1717

t=1 , and the square of the log-return time series, {r2
t }1717
t=1 , in the

same period. Observe that the log-return time series presents the stylized facts of financial time series such
as apparent stationarity, mean around zero and clusters of volatility. Also, in Figure 14 we observe that,
while the log-return time series presents almost no correlation, the sample autocorrelation of the square of
the log-return time series assumes high values for several lags, pointing to the existence of heteroskedasticity
and possibly long-range dependence. Notice that the periodogram of {ln(r2

t )}1717
t=1 , presented in Figure 4 (c),

also indicates possibly long-range dependence in the conditional variance. Regarding the histogram and the
QQ-plot, we observe that the distribution of the log-return time series seems approximately symmetric and
leptokurtic.

To investigate whether the stationarity property holds for the time series {rt}1717
t=1 we apply the runs

test (or Wald-Wolfwitz test), as described in [30]. Due to the magnitude of the data we multiply the time
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(a) {Pt}1718t=1 (b) {rt}1717t=1 (c) {r2t }1717t=1

Figure 13: Time series: (a) Bovespa index; (b) IBovespa log-returns; (c) square of the IBovespa log-returns, in the period of
January/1995 to December/2001.
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Figure 14: (a) Histogram; (b) QQ-plot; (c) sample autocorrelation of the IBovespa log-return time series; (d) sample autocor-
relation of the square of the IBovespa log-return time series.

series values by 100 before applying the test. The p-values for the test considering the moments of order6

r ∈ {1, · · · , 10} are reported in Figure 15. For comparison, this figure also shows the p-values of the test
applied to the simulated time series presented in Figure 1. Notice that, for all r ∈ {1, · · · , 10} the test does
not reject the null hypothesis of stationarity at a 5% significance level.

●
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●FIEGARCH with Z0 ~ N(0,1) FIEGARCH with Z0 ~ GED(1.5) Observed Time Series

Figure 15: The p-values for the stationarity hypothesis test considering the moments of order r ∈ {1, · · · , 10}. The dashed line
corresponds to p-value = 0.05.

To analyze if the ergodicity property holds for the time series {rt}1717
t=1 we perform the test described in

[31]. For comparison, we also apply this test to the simulated time series (only for sample size n = 2000)
considered in Section 4. The test results are given in Table 7. The reported values are the proportion
of p-values smaller than 0.05 and 0.10 in a total of 100 repetitions of step 3 of the Algorithm 1 given in

6For r > 10 the values of {rrt }
1,717
t=1 are too close to zero and the test always returns the same p-value as for r = 10.
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[31]. Moreover, for the simulated time series, the values in Table 7 correspond to the mean taken over 1000
replications. Notice that the proportion of p-values smaller than 0.05 (respectively, 0.10) is always higher for
the simulated time series (known to be ergodic) then for the observed time series. Given that the proportion
of p-values smaller than 0.05 and 0.10 is close to the expected, we conclude that the ergodicity property
holds for {rt}1717

t=1 .

Table 7: Proportion of p-values smaller than 0.05 and 0.10 in a total of 100 repetitions of step 3 of the Algorithm 1 given in
[31] for the simulated time series obtained from model Mi, with i ∈ {1, · · · , 6}, and for the observed time series {rt}1717t=1 .

p-values M1 M2 M3 M4 M5 M6 {rt}1717t=1

0.05 0.10 0.08 0.09 0.09 0.07 0.07 0.05

0.10 0.17 0.13 0.14 0.15 0.13 0.12 0.11

The analysis of the sample autocorrelation function suggests an ARMA(p1, q1)-FIEGARCH(p2, d, q2)
model. While an ARMA model accounts for the correlation among the log-returns, a FIEGARCH model
takes into account the long-range dependence (in the conditional variance) and the heteroskedasticity char-
acteristics of the time series. To select the best ARMA(p1, q1)-FIEGARCH(p2, d, q2) model for the data we
initially considered all possible models with p1, q1 ∈ {0, 1, 2, 3} and p2, q2 ∈ {0, 1, 2} and applied the quasi-
likelihood method to estimate the unknown parameters. Then we eliminated the models with correlated
residuals and selected the best models, with respect to the log-likelihood, Bayesian (BIC), Akaike (AIC) and
Hannan-Quinn (HQC) information criteria (in this step three models were selected). The models order and
the corresponding AIC, BIC and HQC values are reported in Table 8. Boldface indicates that the model
was the best with respect to the corresponding criterion.

Table 8: Log-likelihood value and Bayesian (BIC), Akaike (AIC) and Hannan-Quinn (HQC) information criteria values for
three competitive ARMA(p1, q1)-FIEGARCH(p2, d, q2) models fitted to the IBovespa log-return time series.

Order Criterion

p1 q1 p2 d q2 Log-likelihood BIC AIC HQC

3 2 1 0.3651 1 4142.260 -8202.588 -8262.520 -8240.344

0 1 0 0.3578 1 4138.552 -8232.414 -8265.104 -8253.008

0 2 0 0.3785 1 4141.197 -8230.256 -8268.394 -8254.282

Note: Boldface indicates that the model was the best, among all combinations of p1, q1 ∈ {0, 1, 2, 3} and p2, q2 ∈ {0, 1, 2},
with respect to the corresponding criterion.

As shown in Table 8, the values of the selection criteria did not vary much amongst the tested models so
we choose the most parsimonious one, namely, ARMA(0,1)-FIEGARCH(0, d, 1). We compare the forecasting
performance of this model with other ARCH-type models and with a radial basis function model (a detailed
description of this approach is given in the sequel). For this comparison the order of the ARMA(p1, q1)
part of the model was not changed, that is, we fixed p1 = 0 and q1 = 1 for all ARCH-type models. The
EGARCH(p2, q2) model was set to have the same values for p2 and q2 as the FIEGARCH model so we
could investigate the influence of the long-range dependence parameter d. For the GARCH(p2, q2) model
we choose the smallest values of p2 and q2 for which the residuals of the model are not correlated. The
same was done for the ARCH(p2) model (which resulted in p2 = 6). The ARCH(1) model was presented
only for comparison. The estimated coefficients for the ARCH-type models are given in Table 9, with the
corresponding log-likelihood value. Notice that, the FIEGARCH model fitted to this time series present the
same parameter values as model M4 considered in the Monte Carlo simulation study in Section 4.

In what follows we consider the so-called radial basis function network model to estimate the conditional
mean and the conditional volatility of {rt}t∈Z (the same approach is considered, for instance, in [32] and [33]).
We recall that the radial basis function network is an artificial neural network that uses radial basis functions
as activation functions. To fit a radial basis model to the data (no exogenous variables are considered) we
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Table 9: Fitted models and their respective log-likelihood, BIC, AIC and HQC values. The number in parenthesis corresponds
to the standard error of the estimate.

Estimate
ARMA(0,1) + ARMA(0,1) + ARMA(0,1) + ARMA(0,1) + ARMA(0,1) +

ARCH(1) ARCH(6) GARCH(1,1) EGARCH(0,1) FIEGARCH(0,d,1)

θ̂1 -0.1138 (0.0200) -0.0642 (0.0267) -0.0647 (0.0266) -0.0751 (0.0254) -0.0776 (0.0257)

ω̂ 0.0004 (0.0000) 0.0002 (0.0000) 0.0000 (0.0000) -7.4694 (0.0969) -7.2247 (0.2143)

α̂1 0.6071 (0.0581) 0.2307 (0.0417) 0.2019 (0.0247) - -

α̂2 - 0.1540 (0.0333) - - -

α̂3 - 0.1852 (0.0390) - - -

α̂4 - 0.1145 (0.0348) - - -

α̂5 - 0.0641 (0.0290) - - -

α̂6 - 0.0635 (0.0257) - - -

β̂1 - - 0.7659 (0.0271) 0.9373 (0.0103) 0.6860 (0.0986)

d̂ - - - - 0.3578 (0.0810)

θ̂ - - - -0.1653 (0.0197) -0.1661 (0.0224)

γ̂ - - - 0.2782 (0.0300) 0.2972 (0.0332)

log-likelihood 3934.337 4060.372 4072.622 4137.625 4138.552

BIC -7846.329 -8061.157 -8115.451 -8238.008 -8232.414

AIC -7862.674 -8104.744 -8137.244 -8265.250 -8265.104

HQC -7856.626 -8088.616 -8129.180 -8255.170 -8253.008

assume that {rt}t∈Z can be written as

rt = φ(yt−1) + ψ(yt−1)Zt := φ(yt−1) + εt, for all t ∈ Z,

with yt−1 = (rt−1, · · · , rt−p), for some p > 0, εt := ψ(yt−1)Zt, E(Zt) = 0 and E(Z2
t ) = 1. Under these

assumptions, E(rt|yt−1) = φ(yt−1) and E(ε2
t |yt−1) = ψ2(yt−1), for all t ∈ Z. Therefore, we use neural

networks Φn and Ψn to approximate, respectively, φ(y) and ψ2(y), and to obtain

φ̂(y) = Φn(y; ŵ1) and ψ̂2(y) = Ψn(y; ŵ2), for all y ∈ Rp,

where

ŵ1 = arg min

{
1

n− p

n∑
t=p+1

[
rt − Φn(yt−1;w)

]2}
and ŵ2 = arg min

{
1

n− p

n∑
t=p+1

[
ε̂2t −Ψn(yt−1;w)

]2}
,

with ε̂t = rt − φ̂(yt−1), for all t ∈ Z. In both cases, we consider one hidden layer containing J neurons, for
some J ∈ N, that is,

Φn(y;w1) =

J∑
i=1

aiρi(||y − ci||) and Ψn(y;w2) =

J∑
i=1

a∗i ρ
∗
i (||y − c∗i ||), for all y ∈ Rp,

with w1 = (a1, · · · , aJ , b1, · · · , bJ , c1, · · · , cJ), w2 = (a∗1, · · · , a∗J , b∗1, · · · , b∗J , c∗1, · · · , c∗J), ai, bi, a
∗
i , b
∗
i ∈ R,

ci, c
∗
i ∈ Rp, ||·|| the Euclidean norm, ρi(z) = e−(biz)

2

and ρ∗i (z) = e−(b∗i z)
2

, for any z ∈ R and i ∈ {1, · · · , J}.
To obtain a h-step ahead predictor for r2

n+h given {rt}nt=1, we observe that, for all t ∈ Z,

E
(
rt|{rk}k<t

)
= E(rt|yt−1) = φ(yt−1) and Var

(
rt|{rk}k<t

)
= Var(rt|yt−1) = ψ2(yt−1).

Therefore, E
(
r2
t |{rk}k<t

)
= E(r2

t |yt−1) = ϕ(yt−1) = ψ2(yt−1) + φ2(yt−1), for some ϕ : Rp → Rp. Thus,
once φ(·) and ψ2(·) are estimated, the predictors r̂n+h and r̂2

n+h can be obtained recursively as

r̂n+1 = φ̂(yn) and r̂2
n+1 = ψ̂2(yn) + φ̂2(yn),

r̂n+h = φ̂(ŷn+h−1) and r̂2
n+h = ψ̂2(ŷn+h−1) + φ̂2(ŷn+h−1), for all h > 1,
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where ŷn+h−1 = (r̂n+h−1, · · · , r̂n+h−1−p), with r̂n+h−1−k = rn+h−1−k, whenever n+ h− 1− k ≤ n.
Tables 10 and 11 present some statistics to access the out-of-sample forecasting performance, respectively,

of ARCH-type and radial basis models. The values in these tables correspond to the mean absolute error
(mae), the mean percentage error (mpe) and the maximum absolute error (maxae) of forecast, respectively
defined as

mae =
1

20

20∑
h=1

|en+h|, mpe :=
1

20

20∑
h=1

|en+h|
r2
n+h

and maxae := max
h∈{1,··· ,20}

{|en+h|},

where en+h := r̂2
n+h − r2

n+h, for h ∈ {1, · · · , 20} and n = 1717, is the h-step ahead forecast error. Note
that, when considering the ARMA model combined with ARCH-type models, the ARMA(0,1) part of the
models implies that rt = Xt − θ1Xt−1, where Xt = σtZt, for all t ∈ Z. Since we define r̂2

t+h = E(r2
t+h|Ft)

and σ2
t is Ft−1-measurable, for all t ∈ Z, by elementary calculations we conclude that, r̂2

n+1 = σ2
n+1 + θ2

1X
2
n

and r̂2
n+h = σ̂2

n+h + θ2
1σ̂

2
n+h−1, for all h > 1, with σ̂2

n+1 = σ2
n+1. For EGARCH and FIEGARCH models,

σ̂2
n+1 is replaced by σ̃2

n+1, given in expression (28), and σ̌2
n+h := exp{l̂n(σ2

n+h)}, where l̂n(σ2
n+h) is defined

in Proposition 4.

Table 10: Mean absolute error (mae), mean percentage error (mpe) and maximum absolute error (maxae) of forecasting for
the models in Table 9.

Model
ARMA(0,1) + ARMA(0,1) + ARMA(0,1) + ARMA(0,1) + ARMA(0,1) +

ARCH(1) ARCH(6) GARCH(1,1) EGARCH(1,1) FIEGARCH(1,d,1)

Predictor σ̂2
t+h σ̂2

t+h σ̂2
t+h σ̃2

t+h σ̌2
t+h σ̃2

t+h σ̌2
t+h

mae 0.00053 0.00045 0.00043 0.00045 0.00044 0.00045 0.00043

mpe 109.40844 68.97817 60.29677 71.33057 61.26625 68.42884 59.88066

maxae 0.00094 0.00094 0.00094 0.00082 0.00087 0.00084 0.00088

Note: The high mpe values are due to 5 observations close to zero.

From Table 10 we conclude that, given its high mpe value, the ARMA(0,1)-ARCH(1) does not fit the
data well. In fact, the squared residuals from this model are still correlated and we use the model only for
comparison. The ARMA(0,1)-ARCH(6) model performs similarly to the ARMA(0,1)-GARCH(1,1) model,
in terms of both, mae and maxae values, presenting a higher mpe value. However, the latter is more parsi-
monious. Although the log-likelihood value is higher (and the maxae value is smaller) for the ARMA(0,1)-
EGARCH(0,1) model, the mae and the mpe values are smaller for the ARMA(0,1)-GARCH(0,d,1) model.
Overall, the ARMA(0,1)-FIEGARCH(0,d,1) performs slightly better than the other models.

The fact that all models present a similar perfomance confirms the following, already known in the
literature.

• In practice, ARCH(p) models perform relatively well for most applications.

• GARCH(p, q) models are more parsimonious than the ARCH ones. For instance, notice that similar
results were obtained here by considering an ARCH(6) model and a GARCH(1, 1) model.

• For EGARCH(p, q) models the conditional variance is defined in terms of the logarithm function and
less (usually none) restrictions have to be imposed during parameter estimation. Moreover, EGARCH
models are not necessarily more parsimonious than ARCH/GARCH ones since they also carry infor-
mation on the returns’ asymmetry (θ and γ parameters).

• FIEGARCH(p, d, q) models can describe not only the same characteristics as ARCH, GARCH and
EGARCH models do, but also the long-range dependence in the volatility. Also, the performance of
all models will be very similar if the volatility presents high persistence. For instance, notice that for
the ARCH(6) model α1 + · · · + α6 = 0.812, for the GARCH(1, 1) model α1 + β1 = 0.9678 and for
the EGARCH model β1 = 0.9373, which implies high persistence in the volatility. Moreover, for the
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FIEGARCH model, we found d = 0.3578 with standard error equal to 0.0810, which indicates that the
parameter d is statistically different from zero and thus, there is evidence of long-range dependence in
the volatility.

• Given their definition, it is expected that EGARCH and FIEGARCH models will provide better
forecasts for ln(σ2

t+h) than for σ2
t+h and, consequently, for X2

t+h.

Table 11: Mean absolute error (mae), mean percentage error (mpe) and maximum absolute error (maxae) of forecasting for
radial basis models with J ∈ {5, 10, · · · , 45} hidden neurons and p ∈ {1, 5, 10, 15}.

p J mae mpe maxae p J mae mpe maxae
1 5 0.00189 168.16694 0.00276 10 5 0.00046 84.07916 0.00096

10 0.00464 360.57740 0.02105 10 0.00209 211.49929 0.00288

15 0.00306 205.95363 0.01798 15 0.00076 40.16931 0.00156

20 0.00284 405.17466 0.00406 20 0.00251 353.29510 0.00329

25 0.00106 69.24385 0.00193 25 0.00099 65.04972 0.00177

30 0.00077 35.08914 0.00165 30 0.00214 309.03589 0.00292

35 0.00117 81.84698 0.00204 35 0.00047 60.11370 0.00083

40 0.00082 40.86115 0.00169 40 0.00224 214.27183 0.00302

45 0.00044 7.76332 0.00130 45 0.00043 46.54092 0.00084

5 5 0.00040 49.60723 0.00090 15 5 0.00040 20.88682 0.00111

10 0.00050 92.13256 0.00092 10 0.00063 42.05418 0.00164

15 0.00058 111.93650 0.00109 15 0.00110 185.41861 0.00212

20 0.00040 21.32100 0.00116 20 0.00277 326.16372 0.00378

25 0.00052 5.95880 0.00138 25 0.00045 63.80141 0.00082

30 0.00046 4.61686 0.00129 30 0.00047 3.95304 0.00123

35 0.00041 19.79905 0.00116 35 0.00045 72.19310 0.00098

40 0.00040 31.93826 0.00107 40 0.00044 63.04763 0.00079

45 0.00120 88.07146 0.00207 45 0.00271 363.47039 0.00343

Note: Boldface indicates the best model for each criterion.

From Table 11 we observe that

• in terms of mae or maxae, both radial basis and ARCH-type (see Table 10) models have a similar
performance. In this case, ARCH-type models seem a better choice given the smaller number of
parameter to be estimated;

• for each p there exists at least one J for which the mpe value for the radial basis model is much smaller
then for any ARCH-type models. However, given the similarity regarding mae, the small mpe values
only indicate that radial basis models provide a better forecast for observations that are close to zero.

6. Conclusions

Here we presented complete mathematical proofs for the stationarity, the ergodicity, the conditions for
the causality and invertibility properties, the autocorrelation and spectral density functions’ decay and the
convergence order for the polynomial coefficients that describe the volatility for any FIEGARCH(p, q, d) pro-

cess. We proved that if {Xt}t∈Z is a FIEGARCH(p, d, q) process and E(
[
ln(Z2

0 )
]2

) <∞, then {ln(X2
t )}t∈Z

is an ARFIMA(q, d, 0) process with correlated innovations. Expressions for the kurtosis and the asymmetry
measures of any stationary FIEGARCH(p, d, q) process were also provided.

We also proved that if {Xt}t∈Z is a FIEGARCH(p, d, q) process then it is a martingale difference with
respect to the filtration {Ft}t∈Z, where Ft := σ({Zs}s≤t). The h-step ahead forecast for the processes
{Xt}t∈Z, {ln(σ2

t )}t∈Z and {ln(X2
t )}t∈Z were given with their respective mean square error of forecast. Since

E(σ2
t+h|Ft) cannot be easily calculated for FIEGARCH models, we also discussed some alternative estimators

for the h-step ahead forecast of σ2
t+h, for all h > 0.
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We presented a Monte Carlo simulation study showing how to perform the generation, the estimation
and the forecasting of six different FIEGARCH models. The parameter selection of these six models was
related to the real time series analyzed in [11]. Parameter estimation was performed by considering the
well known quasi-likelihood method. We concluded that, given the complexity of FIEGARCH models, the
quasi-likelihood method performs relatively well, which was indicated by the small bias, mae and mse values
for the estimates. Regarding the h-step ahead forecast for the processes {σ2

t }t∈Z and {X2
t }t∈Z, we observed

that the mean square error of forecast decreases as the sample size increases. However, while the conditional
variance was well estimated, which was indicated by the small mae values, the estimator X̃2

n+h := σ̃2
t+h,

which is an approximation for X̂2
t+h := E(X2

n+h|Fn) = σ̂2
n+h, did not perform well in predicting X2

n+h. This
result was expected since the purpose of the model is to forecast the logarithm of the conditional variance
and not the process {Xt}t∈Z itself.

Finally, we presented the analysis of the São Paulo Stock Exchange Index (Bovespa Index or IBovespa)
log-return time series. We compared the forecasting performance of FIEGARCH models, fully described in
this paper, with other ARCH-type models. All models presented a similar performance which was attributed
to the fact that the ARCH, GARCH and EGARCH models indicated high persistence in the volatility. We
also compared the forecasting performance of ARCH-type with radial basis models. Given the similarity
regarding the mean (and maximum) absolute error of forecast we concluded that both classes show a similar
forecasting performance. Comparing the mean percentage error of forecasts we concluded that radial basis
models provide a better forecast for observations which are close to zero.
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Appendix: Proofs

In this section we provide the proofs of all propositions, lemmas, corollaries and theorems stated in
Sections 2 and 3, in the same order as they appear in the text.

Proof of Proposition 1:
See [10].

Proof of Theorem 1:
See theorem 2.1 in [4].

Proof of Theorem 2:
See theorem 2.2 in [4].

Proof of Theorem 3:
Denote β(z)−1 by f(z). Since β(·) has no roots in the closed disk {z : |z| ≤ 1}, one has

β(z)−1 := f(z) =

∞∑
k=0

fkz
k, where fk =

f (k)(0)

k!
, for all k ∈ N. (A.1)

From expressions (7), (8) and (A.1) it follows that

λ(z) =

∞∑
k=0

[min{p,k}∑
i=0

(−αi)
k−i∑
j=0

πd,k−i−jfj

]
zk. (A.2)
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From (A.2), one has

λd,k =

min{p,k}∑
i=0

(−αi)
k−i∑
j=0

πd,k−i−jfj , for all k ∈ N.

In particular, λd,k =

p∑
i=0

(−αi)
k−i∑
j=0

πd,jfk−i−j , for all k > p.

Moreover, since fk → 0, as k →∞, it follows that for all ε > 0, there exists k0 > 0, such that, for a given
m > 0 and for all k > k0, |πd,jfk−i−j | < ε

m , for all 0 ≤ j ≤ m and 0 ≤ i ≤ p. Hence, for k sufficiently large,

λd,k ∼
p∑
i=0

(−αi)
k−i∑

j=m+1

πd,jfk−i−j .

Notice that, since πd,k ∼ 1
Γ(d) k1−d , as k → ∞, one can choose m0 such that πd,k ∼ πd,k−i ∼ πd,j , for all

m0 < m+ 1 ≤ j ≤ k − i and 0 ≤ i ≤ p. Consequently,

λd,k ∼ πd,k
p∑
i=0

(−αi)
k−i−(m+1)∑

j=0

fj ∼ πd,k
p∑
i=0

(−αi)
∞∑
j=0

fj .

However,
∑∞
j=0 fj = f(1) =

1

β(1)
and πd,k ∼ 1

Γ(d) k1−d , as k →∞. So, we have

λd,k ∼ πd,k
α(1)

β(1)
∼ 1

Γ(d) k1−d
α(1)

β(1)
.

It follows that λd,k → 0 and λd,kk
1−d → 1

Γ(d)
α(1)
β(1) , as k → ∞. Hence, λd,k = O(kd−1), as k → ∞, which

concludes the proof.

Proof of Proposition 2:
Let λ(·) be defined by (8). Consequently,

α(z) = β(z)(1− z)d
∞∑
k=0

λd,kz
k. (A.3)

By defining β∗k as in expression (17), for all k ∈ N, and upon considering expression (6), observing that
δd,0 = −1 = β0, the right hand side of expression (A.3) can be rewritten as

β(z)(1− z)d
∞∑
k=0

λd,kz
k =

[ ∞∑
k=0

( k∑
j=0

−β∗j δd,k−j
)
zk
] ∞∑
k=0

λd,kz
k =

∞∑
k=0

[ k∑
i=0

λd,i

(
−
k−i∑
j=0

β∗j δd,k−i−j

)]
zk

=

∞∑
k=0

[
λd,k −

k−1∑
i=0

λd,i

k−i∑
j=0

β∗j δd,k−i−j

]
zk. (A.4)

Now, by setting α∗k as in expression (17), for all k ∈ N, from expression (A.4) one concludes that the
equality (A.3) holds if and only if,

−α∗0 = λd,0 and − α∗k = λd,k −
k−1∑
i=0

λd,i

k−i∑
j=0

δd,k−i−jβ
∗
j , for all k ≥ 1.

Therefore, expression (16) holds. It is easy to see that by replacing the coefficients λd,k, given by (16), in
the expression (A.4), for all k ∈ N, we get

∑∞
k=0(−α∗k)zk = α(z), which completes the proof.
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Proof of Corollary 1:
Let {λd,k}k∈N be defined by (8) and rewrite (5) as (9). Observe that, by Theorem 3, the condition

d < 0.5 implies that
∑∞
k=0 λ

2
d,k < ∞. Therefore, the results follow from Theorem 1 by taking ωt := ω, for

all t ∈ Z, and λk := λd,k−1, for all k ≥ 1.

Proof of Corollary 2:
Let {λd,k}k∈N be defined by (8) and rewrite (5) as (9). Define ωt := ω, for all t ∈ Z, and λk := λd,k−1,

for all k ≥ 1. Observe that, from Theorem 3, d < 0.5 implies
∑∞
k=1 λ

2
k <∞. Therefore, the assumptions of

Theorem 2 hold and the results follow.

Proof of Proposition 3:
Let {Xt}t∈Z be any stationary FIEGARCH(p, d, q) process and λ(·) be the polynomial defined by (8).

Notice that, since {g(Zt)}t∈Z is a sequence of i.i.d. random variables, from (5) it follows that

E(σr0) = e
rω
2

∞∏
k=0

E
(

exp
{r

2
λd,kg(Z0)

})
, for all r > 0. (A.5)

From the fact that σt and Zt are independent random variables one has

E(|Xt|r) = E(|X0|r) = E(|Z0|r)E(|σ0|r), for all t ∈ Z and r > 0.

Thus, given r > 0, E(Xr
0 ) < ∞ if and only if E(σr0) and E(Zr0) are both finite. Therefore, if E(X3

0 ) < ∞
(analogously, E(X4

0 ) <∞), the asymmetry (analogously, the kurtosis) measure exists, and expression (A.5)
converges, for any r ≤ 3 (analogously, r ≤ 4). Upon replacing (A.5) in (18) we conclude the proof.

Proof of Theorem 4:
Assume that E([ln(Z2

0 )]2) <∞ and d < 0.5. Let {λd,k}k∈Z be given by (8) and rewrite (5) as (9).
Observe that E([ln(Z2

0 )]2) <∞ implies E(| ln(Z2
0 )|) <∞ and thus | ln(Z2

t )| is finite with probability one,
for all t ∈ Z. Since d < 0.5, it follows that ln(σ2

t ) is finite with probability one, for all t ∈ Z (see Corollary 1).
Therefore, ln(X2

t ) is finite with probability one, for all t ∈ Z, and hence the stochastic process {ln(X2
t )}t∈Z is

well defined. The strict stationarity and ergodicity of {ln(X2
t )}t∈Z follow immediately from the measurability

of ln(Z2
t ) + ln(σ2

t ) and the i.i.d. property of {Zt}t∈Z (see [28]). To prove that {ln(X2
t )}t∈Z is also weakly

stationary notice that E([ln(Z2
0 )]2) < ∞ implies Var(ln(Z2

t )) < ∞, d < 0.5 implies Var(ln(σ2
t )) < ∞ (see

Corollary 1) and the independence of {Zt}t∈Z implies that ln(Z2
t ) and ln(σ2

t ) are independent random
variables. Hence,

Var(ln(X2
t )) = Var(ln(σ2

t )) + Var(ln(Z2
t )) <∞, for all t ∈ Z.

To complete the proof it remains to show that the autocovariance function γln(X2)(h), for all h ∈ Z, is

given by expression (19). From the definition of ln(X2
t ), it follows that

Cov
(
ln(X2

t+h), ln(X2
t )
)

= Cov
(
ln(σ2

t+h), ln(σ2
t )
)

+ Cov
(
ln(Z2

t+h), ln(Z2
t )
)

+ Cov
(
ln(σ2

t+h), ln(Z2
t )
)

+ Cov
(
ln(Z2

t+h), ln(σ2
t )
)
. (A.6)

Theorem 1 shows that

Cov
(
ln(σ2

t+h), ln(σ2
t )
)

= σ2
g

∞∑
k=0

λd,kλd,k+|h|, for all h ∈ Z.

From the independence of the random variables ln(Z2
t ), for all t ∈ Z, and from expression (9), we have

Cov
(
ln(Z2

t+h), ln(Z2
t )
)

=

{
0, if h 6= 0;

Var
(

ln(Z2
t )
)
, if h = 0

and Cov
(
ln(σ2

t+h), ln(Z2
t )
)

=

{
λd,h−1K , if h > 0;

0, if h ≤ 0.

where K = Cov
(
g(Z0), ln(Z2

0 )
)
. Now, since
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(a) when h < 0,
Cov

(
ln(σ2

t+h), ln(Z2
t )
)

= Cov
(
ln(σ2

t−|h|), ln(Z2
t )
)

= 0

and, by setting u = t+ h,

Cov
(
ln(Z2

t+h), ln(σ2
t )
)

= Cov
(
ln(Z2

u), ln(σ2
u+|h|)

)
= λd,|h|−1KIZ∗(h).

(b) when h > 0
Cov

(
ln(σ2

t+h), ln(Z2
t )
)

= λd,h−1KIZ∗(h) = λd,|h|−1KIZ∗(h)

and, by setting u = t+ h,

Cov
(
ln(Z2

t+h), ln(σ2
t )
)

= Cov
(
ln(Z2

u), ln(σ2
u−|h|)

)
= 0

one concludes that

Cov
(
ln(σ2

t+h), ln(Z2
t )
)

+ Cov
(
ln(Z2

t+h), ln(σ2
t )
)

= Cov
(

ln(σ2
t+|h|), ln(Z2

t )
)

= λd,|h|−1KIZ∗(h).

By replacing these results on expression (A.6) we conclude that the autocovariance function of {ln(X2
t )}t∈Z

is given by (19).

Proof of Theorem 5:
Let {Xt}t∈Z be a FIEGARCH process. From expressions (1) and (5) we have

β(B)(1− B)d(ln(X2
t )− ω) = εt, for all t ∈ Z,

where
εt = α(B)g(Zt−1) + β(B)(1− B)d ln(Z2

t ), for all t ∈ Z.

In particular, if d > 0, we have β(B)(1− B)dω = 0 and β(B)(1− B)d ln(X2
t ) = εt, for all t ∈ Z.

Now, suppose that E([ln(Z2
0 )]2) < ∞. Since {Zt}t∈Z is a sequence of i.i.d. random variables and

0 ≤ |E(ln(Z2
0 ))| ≤ E(| ln(Z2

0 )|) ≤ [E([ln(Z2
0 )]2)]1/2, one concludes that E(ln(Z2

t )) = E(ln(Z2
0 )) < ∞, for all

t ∈ Z. Therefore, β(B)(1 − B)dE(ln(Z2
t )) = 0 and α(B)E(g(Zt−1)) = 0. Consequently, E(εt) = 0, for all

t ∈ Z.
Let φ(·) be defined by expression (22). Assume, for the moment, that Var(ε2

t ) < ∞, for all t ∈ Z. It
follows that

Cov(εt+h, εt) = Cov
(
α(B)g(Zt+h−1), α(B)g(Zt−1)

)
+ Cov

(
φ(B) ln(Z2

t+h), φ(B) ln(Z2
t )
)

+ Cov
(
α(B)g(Zt+h−1), φ(B) ln(Z2

t )
)

+ Cov
(
φ(B) ln(Z2

t+h), α(B)g(Zt−1)
)
. (A.7)

Since {g(Zt)}t∈Z is a white noise process we have

Cov
(
α(B)g(Zt+h−1), α(B)g(Zt−1)

)
=

Var
(
g(Z0)

) p∑
i=|h|

αiαi−|h|, if |h| ≤ p;

0, if |h| > p,

which does not depend on t ∈ Z. From the independence of the random variables Zt, for all t ∈ Z, one has

Cov
(
α(B)g(Zt+h−1), φ(B) ln(Z2

t )
)

=



K
p∑
i=0

αiφi−h+1, if h < 1;

K
p∑

i=h−1

αiφi−h+1, if 1 ≤ h ≤ p+ 1;

0, if h > p+ 1
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and

Cov
(
φ(B) ln(Z2

t+h), α(B)g(Zt−1)
)

=



0, if h < −(p+ 1);

K
p∑

i=|h|−1

αiφi+h+1, if −(p+ 1) ≤ h ≤ −1;

K
p∑
i=0

αiφi+h+1, if h > −1,

where K := Cov
(
g(Z0), ln(Z2

0 )
)

does not depend on t ∈ Z. Also, from the independence of the random
variables ln(Z2

t ), for all t ∈ Z, we have

Cov
(
φ(B) ln(Z2

t+h), φ(B) ln(Z2
t )
)

= Var
(

ln(Z2
0 )
) ∞∑
i=|h|

φiφi−|h|, for all h ∈ Z,

which does not depend on t ∈ Z.
Therefore, all four terms in expression (A.7) do not depend on t ∈ Z and expression (21) holds. Now, to

validate expression (21) we only need to show that Var(εt) <∞, for all t ∈ Z. Notice that, since E(εt) = 0,
it follows that E(ε2

t ) = Var(εt) = γε(0). Upon replacing h = 0 in (A.7) one obtains

γε(0) = Var
(
g(Z0)

) p∑
i=0

α2
i + 2K

p∑
i=0

αiφi+1 + Var
(

ln(Z2
0 )
) ∞∑
i=0

φ2
i .

By hypothesis, E([ln(Z2
0 )]2) < ∞ and d ∈ (−0.5, 0.5). It follows that Var(ln(Z2

0 )) < ∞ and
∑∞
i=0 φ

2
i < ∞.

We also know that Var(g(Z0)) <∞. In order to show that K <∞, notice that K := Cov(g(Z0), ln(Z2
0 )) =

E(g(Z0) ln(Z2
0 )) and, since E(Z2

0 ) = 1 and Var(ln(Z2
0 )) <∞, from Hölder’s inequality, we have E(|Z0|) <∞

and E(ln(Z2
0 )) <∞. Then from (2) it follows that

E
(
g(Z0) ln(Z2

0 )
)

= θE
(
Z0 ln(Z2

0 )
)

+ γE
(
|Z0| ln(Z2

0 )
)
− c,

where c := γ E(|Z0|)E(ln(Z2
0 )) < ∞. By using the fact that 2ab ≤ a2 + b2, for all a, b ∈ R, one concludes

that∣∣E(Zt ln(Z2
t ))
∣∣ ≤ 1

2

[
E(Z2

t ) + E([ln(Z2
t )]2)

]
<∞ and

∣∣E(|Zt| ln(Z2
t ))
∣∣ ≤ 1

2

[
E(Z2

t ) + E([ln(Z2
t )]2)

]
<∞.

Hence E(g(Z0) ln(Z2
0 )) < ∞ and, consequently, Cov(g(Z0), ln(Z2

0 )) < ∞ and γε(0) < ∞. Therefore, the
result follows.

Proof of Lemma 1:
From definition, σt is a Ft−1-measurable function. Moreover, for all t ∈ Z, E(Xt) = E(E(Xt|Ft−1)) and

E(Xt|Ft−1) = E(σtZt|Ft−1) = σtE(Zt|Ft−1) = 0. Therefore, the process {Xt}t∈Z is a martingale difference
with respect to {Ft}t∈Z.

Proof of Lemma 2:
From Lemma 1, a FIEGARCH(p, d, q) process is a martingale difference. It follows that X̂n+h =

E(Xn+h|Fn) = 0, for all h > 0. From definition, E(X2
n+1|Fn) = σ2

n+1. Therefore, the 1-step ahead
forecast of X2

n+1, given Fn, is σ2
n+1. Moreover, if E(X4

t ) < ∞, for all t ∈ Z, then this is the best forecast
value in mean square error sense.

Proof of Proposition 4:
Observe that {ln(σ2

t )}t∈Z is a causal ARFIMA(q, d, p) process and, if α(z) 6= 0 in the closed disk {z :
|z| ≤ 1}, it is also invertible. Thus, the result follows by mimicking the proof of theorem 5.5.1 in [23].
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Proof of Proposition 5:
By expression (25), ľn(X2

n+h) := l̂n(σ2
n+h), for all h > 0. Thus, from expression (1) and from Proposition

4, we have

E
([

ln(X2
n+h)− ľn(X2

n+h)
]2)

= E
([

ln(X2
n+h)− ln(σ̂2

n+h)
]2)

= E
([

ln(σ2
n+h) + ln(Z2

n+h)− ln(σ̂2
n+h)

]2)
= E

([ h−2∑
k=0

λd,k g(Zn+h−1−k) + ln(Z2
n+h)

]2)
. (A.8)

By expanding the right hand side of expression (A.8) and using the fact that {Zt}t∈Z is a sequence of i.i.d.
random variables, the proposition follows immediately.
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[18] I. Berkes, L. Horváth, The Rate of Consistency of the Quasi-Maximum Likelihood Estimator, Statistics and Probability

Letters, 61 (2003) 133-143.
[19] P. Hall, Q. Yao, Inference in ARCH and GARCH Models with Heavy-tailed Errors, Econometrica, 71 (2003) 285-317.
[20] D. Straumann, T. Mikosch, Quasi-Maximum-Likelihood Estimation in Conditionally Heteroskedastic Time Series: A

Stochastic Recurrence Equations Approach, The Annals of Statistics, 34(5) (2006) 2449-2495.
[21] E. Zivot, J. Wang, Modeling Financial Time Series with S-PLUS, 2nd edition, Springer-Verlag, New York, 2005.
[22] S. Laurent, J.P Peters, G@RCH 4.0, Estimating and Forecasting ARCH models, Timberlake Consultants, 2005.
[23] P.J. Brockwell, R.A. Davis, Time Series: Theory and Methods, Second Edition, Springer-Verlag, New York, 1991.
[24] P. Bloomfield, On Series Representations for Linear Predictors, The Annals of Probability, 13(1) (1985) 226-233.
[25] P. Bondon, W. Palma, A Class of Antipersistent Processes, Journal of Time Series Analysis, 28 (2007) 261-273.
[26] A. Perez, P. Zaffaroni, Finite-sample Properties of Maximum Likelihood and Whittle Estimators in EGARCH and

FIEGARCH Models, Quantitative and Qualitative Analysis in Social Sciences, 2(1) (2008) 78-97
[27] C.M. Hurvich, E. Moulines, P. Soulier, Estimating Long Memory in Volatility, Econometrica 73(4) (2005) 1283-1328.
[28] R. Durrett, Probability: Theory and Examples, Wadsworth & Brooks/Cole, Pacific Grove, 1991.
[29] V.A. Reisen, S.R.C. Lopes, Some Simulations and Applications of Forecasting Long Memory Time Series Models, Journal

of Statistical Planning and Inference, 80(2) (1999) 269-287.
[30] J. Grazzini, Analysis of the Emergent Properties: Stationarity and Ergodicity, Journal of Artificial Societies and Social

Simulation 15(2) (2012) 7.

37



[31] I. Domowitz, M.A El-Gamal, A Consistent Nonparametric Test of Ergodicity for Time Series with Applications, Journal
of Econometrics 102 (2001) 365-398.

[32] E. Giacomini, Neural Networks in Quantitative Finance. Master’s Thesis, University of Berlin, (2003).
[33] A.K. Dhamija, V.K Bhalla, Financial Time Series Forecasting: Comparison of Neural Networks and ARCH Models,

International Research Journal of Finance and Economics, 49 (2010) 185-202.

38


