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Abstract
The main goal of this work is to consider the detrended fluctuation analysis (DFA), proposed

by Peng et al. (1994). This is a well known method for analyzing the long-range dependence
in non-stationary time series. Here we describe the DFA method and we prove its consistency
and its exact distribution, based on the usual i.i.d. assumption, as an estimator for the fractional
parameter d. In the literature it is well established that the nucleotide sequences present long-
range dependence property. In this work, we analyze the long dependence property in view of
the autoregressive moving average fractionally integrated ARFIMA(p, d, q) processes through the
analysis of four nucleotide sequences. For estimating the fractional parameter d we consider the
semiparametric regression method based on the periodogram function, in both classical and robust
versions; the semiparametric R/S(n) method, proposed by Hurst (1951) and the maximum likelihood
method (see Fox and Taqqu (1986), by considering the approximation suggested by Whittle (1953).

AMS Classification: Primary 91B70; Secondary 00A05.
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bustness.

1 Introduction

Persistence or long-range dependence has been observed in time series in different areas
of the science such as meteorology, astronomy, hydrology, and economics, as reported in Beran
(1994). One of the models that exhibits the long-range dependence is the autoregressive fraction-
ally integrated moving average, denoted by ARFIMA(p, d, q) process, where d is the fractional
parameter and p and q are, respectively, the degrees of the autoregressive and moving average
polynomials. There are several estimation procedures for the ARFIMA parameters, mainly in
the semiparametric and parametric classes.

The nucleotide sequences can be represented by a time series (see Peng et al., 1994). To obtain
a time series from a nucleotide sequence it is necessary to consider some type of transformation
(see Buldyrev et al., 1995).
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The statistical properties of DNA genomes are of interest because they reflect biological
features (see Percus, 2002). For instance, the period-three (P-3) property manifests itself as a
repeating unit of three nucleotides appearing in coding regions but absent elsewhere (see Bergen
and Antoniou, 2005). Consequently, this property can be used to help identifying coding regions.

Several papers (see Peng et al., 1994; Chatzidimitriou-Dreismann and Larhammar, 1993;
Buldyrev et al. 1995; Stanley et al., 1999; Yu et al., 2000; Audit et al., 2002; and Lopes and
Nunes, 2006, among others) study the existence of long-range or power-law correlations in DNA
sequences. Peng et al. (1994), Li and Kaneko (1992) and Voss (1992) point the existence of long-
range to fractal (scale-invariant) structure in DNA sequences. It is known that DNA nucleotides
form a mosaic of long homogeneous segments or “isochores” (see Bernardi et al., 1985; Bernardi,
2004 and Oliver et al., 2004). For some authors the existence of long range power-law correlations
seems to be related to such “isochore” segments (see Karlin and Brendel, 1993). Carpena et al.
(2007) argue that the DNA correlations are much more complex than power-laws with a single
scaling exponent. In fact, these authors propose to analyze different scales for the exponents
of such power laws. They show that the sequence corresponding to human chromosome IV, by
considering the SW mapping rule, exhibits nonfractal behavior suggesting the presence of two
major peaks in the power-law exponent. So, their conclusion is that no single scaling exists in the
human genome. Oliver et al. (2004) explore the phylogenetic distribution of large-scale genome
patchiness by considering the deviations of the power-law behavior in long-range correlations.

In the literature the“Detrended Fluctuation Analysis”(DFA), proposed by Peng et al. (1994),
has successfully been applied to different fields of interest, such as DNA sequences (see Buldyrev
et al., 1995 and Peng et al., 1992), economical time series (see Liu et al., 1997) heart rate
variability analysis (see Yeh et al., 2006) and long-time weather records (see Koscielny-Bunde et
al., 1998). The DFA method is a well established method for detecting long-range dependence
in non-stationary time series. This method is based on random walk theory, it is similar to
the R/S(n) method (“Rescaled Range Analysis”) (see Hurst, 1951) and also similar to another
method based on wavelet transform (see Koscielny-Bunde et al., 1998). The object of this
technique is to evaluate the statistical fluctuation F (l) in order to obtain a set of measures, where
l represents the window length. By varying the length l, the fluctuation can be characterized by
the scaling exponent, that is the slope of the line obtained by regressing ln(F (l)) on ln(l).

The main goal of this paper is to analyze the statistical properties of the DFA method. We
are interested in analyzing the long-range dependence parameter in four nucleotide sequences.
This will be done by considering several estimation methods for the fractional parameter d, in
the semiparametric and parametric classes.

The paper is organized as follows. In Section 2, we present the autoregressive fractionally
integrated moving average process (ARFIMA). In Section 3 we review some estimation methods
for the fractional parameter d, in the semiparametric and parametric classes. Section 4 describes
the DFA method and presents its statistics properties where we prove its consistency and its
exact distribution as an estimator of the fractional parameter d. In Section 5 we present the
analysis of four nucleotide sequences. Section 6 gives the conclusions.

2 ARFIMA(p, d, q) Process

In this section we define the ARFIMA process, which exhibits the long memory property.

Definition 2.1. Let {εt}t∈Z be a white noise process with zero mean and variance σ2
ε > 0, B
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be the backward-shift operator, that is, Bk(Xt) = Xt−k and Φ(·) and Θ(·) polynomials of orders
p and q, respectively, given by

Φ(B) = 1− φ1B − · · · − φpBp

and
Θ(B) = 1− θ1B − · · · − θqBq,

where φi, 1 ≤ i ≤ p, and θj , 1 ≤ j ≤ q, are real constants. If {Xt}t∈Z is a linear process given
by

Φ(B)(1− B)d(Xt − µ) = Θ(B)εt, t ∈ Z, (2.1)

where µ is the mean of the process, then {Xt}t∈Z is called a general fractionally differenced
ARFIMA(p, d, q) process, where d ∈ (−0.5, 0.5) is the degree or parameter of differencing.

Remark 2.1. a) The process
Ut = (1− B)dXt, t ∈ Z,

given by

Φ(B)Ut = Θ(B)εt, t ∈ Z,

is an autoregressive moving average process ARMA(p, q).

b) If d ∈ (−0.5, 0.5) then the process {Xt}t∈Z is stationary and invertible and its spectral density
function is given by

fX(w) = fU (w)
[

2 sin(
w

2
)
]−2d

, for 0 < w ≤ π, (2.2)

where fU (·) is the spectral density function of the ARMA(p, q) process. One observes that
fX(w) ' w−2d, when w → 0.

c) The term (1− B)d, in the expression (2.1), is the binomial expansion

(1− B)d =
∞∑

k=0

(
d
k

)
(−B)k = 1− dB − d

2!
(1− d)B2 · · · , for d ∈ R. (2.3)

Persistence or long memory property has been observed in time series from different fields
such as meteorology, astronomy, hydrology and economy. One can characterize the persistence
by two equivalent forms:

• in the time domain, the autocorrelation function ρX(·) decays hyperbolically to zero, that
is, ρX(k) ' k2d−1, when k →∞.

• in the frequency domain, the spectral density function fX(·) is unbounded when the fre-
quency is near zero, that is, fX(w) ' w−2d, when w → 0.
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Remark 2.2. The ARFIMA(p, d, q) process exhibits the property of long memory when d ∈
(0.0, 0.5), of intermediate memory when d ∈ (−0.5, 0.0) and of short memory when d = 0.

Important properties for ARFIMA(p, d, q) processes can be found in Hosking (1981), Beran
(1994) and Doukhan et al. (2003).

3 Estimation Methods

To estimate the fractional parameter d we consider semiparametric and parametric estimation
classes. We consider the following estimation methods: the semi-parametric regression method
based on the periodogram function, both classical and robust versions; the semiparametric
R/S(n) method, proposed by Hurst (1951) and the maximum likelihood method (see Fox and
Taqqu, 1986), by considering the approximation suggested by Whittle (1953).

3.1 Semiparametric Class

In the semiparametric class, the parameters are estimated in two steps: only d is estimated in
the first step and the others are estimated in the second step.

For the estimation of the fractional differencing parameter d, we now summarize some meth-
ods in this class:

• The semiparametric regression method based on the periodogram function, proposed by
Geweke and Porter-Hudak (1983), both classical and robust versions.

• The semiparametric regression method based on GPH with trimming l and bandwidth
g(n), proposed by Robinson (1995), both classical and robust versions.

• The semiparametric method based on Hurst (1951) estimator. This estimator is largely
known as the R/S statistics.

Let {Xt}t∈Z be an ARFIMA(p, d, q), given by (2.1). Taking the logarithm of the spectral
density function fX(·) given by (2.2), we have

ln(fX(w)) = ln(fU (w))− d ln
(

4 sin2

(
w

2

))
,

or writing

ln(fX(w)) = ln(fU (0))− d ln
(

4 sin2

(
w

2

))
+ ln

(
fU (w)
fU (0)

)
. (3.1)

Substituting w by wj = 2πj
n and adding ln(In(wj)) to both sides of (3.1), we obtain

ln(In(wj)) = ln(fU (0))− d ln
(

4 sin2

(
wj

2

))
+ ln

(
fU (wj)
fU (0)

)
+ ln

(
In(wj)
fX(wj)

)
, (3.2)

where In(·) is the periodogram function given by

In(w) =
1
2π

(
γ̂X(0) + 2

n−1∑

k=1

γ̂X(k) cos(wk)
)

, w ∈ (0, π], (3.3)

where γ̂X(·) is the sample autocovariance function of the process {Xt}t∈Z.
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When considering only the frequencies close to zero, the term ln
(

fU (wj)
fU (0)

)
may be discarded

(see Geweke and Porter-Hudak, 1983). Then, we may rewrite (3.2) in the context of a simple
linear regression model

yj = a + bxj + εj , j = 1, · · · , g(n), (3.4)

where g(n) = nβ, for 0 < β < 1, b = −d, a = ln(fU (0)), yj = ln(In(wj)), xj = ln
(
4 sin2(wj

2 )
)

and εj = ln
(

In(wj)
fX(wj)

)
, for j ∈ {1, · · · , g(n)}.

A semiparametric regression estimator (see Lopes and Mendes, 2006 and Crato and Ray,
2002) may be obtain by minimizing some loss function of the residuals

rj = yj − a− bxj , for j = 1, · · · , g(n). (3.5)

We consider three different loss functions. They give rise to the classical Ordinary Least Squared
method (OLS), the Least Trimmed Squared (LTS), proposed by Rousseeuw (1984) and the MM
method, proposed by Yohai (1987).

Definition 3.1. The OLS Estimators are the values (â, b̂) which minimize the loss function

L1(g(n)) =
g(n)∑

j=1

(rj)2, (3.6)

where rj is given by expression (3.5), for j ∈ {1, · · · , g(n)}.

Definition 3.2. The Robust Estimators LTS (see Rousseeuw, 1984) are the values (â, b̂) that
minimize the loss function

L2(g(n)) =
g∗(n)∑

j=1

(r2)j:g(n), (3.7)

where (r2)j:g(n) are the squared and ordered residuals, that is, (r2)1:g(n) ≤ · · · ≤ (r2)g∗(n):g(n),
and g∗(n) is the number of points used in the optimization procedure.

Definition 3.3. The Robust Estimators MM (see Yohai, 1987) are the values (â, b̂) that mini-
mize the loss function

L3(g(n)) =
g(n)∑

j=1

ρ2

(
rj

s

)2

, (3.8)

subject to the constraint

1
g(n)

g(n)∑

j=1

ρ1

(
rj

s

)
≤ C, (3.9)

where ρ1(·) and ρ2(·) are symmetric, bounded, nondecreasing functions on [0,∞) with ρj(0) = 0
and lim

u→∞ ρj(u) = 1, j = 1, 2, s is a scale parameter and C is a tuning constant.
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3.1.1 GPH, GPH-LTS and GPH-MM Estimators

The first estimation method based on the periodogram function was proposed by Geweke and
Porter-Hudak (1983). To obtain an estimate for d, these authors propose to apply the Ordinary
Least Squares method (see Lopes and Mendes, 2006) in (3.5) based on (3.3), which we denote
it by GPH. The estimator of d is given by

GPH = −

g(n)∑

j=1

(xj − x)(yj − y)

g(n)∑

j=1

(xj − x)2

, (3.10)

where

yj = ln(In(wj)), xj = ln
(

2 sin
(

wj

2

))2

and x =
1

g(n)

g(n)∑

j=1

xj .

The variance of the GPH estimator (see Geweke and Porter-Hudak, 1983) is given by

V ar(GPH) =
π2

6
g(n)∑

j=1

(xj − x)2
.

To obtain the robust version of the GPH estimator we just apply the Least Trimmed Squared
(LTS) and MM methodologies (see Lopes and Mendes, 2006), respectively, to the regression
model (3.5). This gives rise to the GPH-LTS and the GPH-MM estimators.

3.1.2 R, R-LTS e R-MM Estimators

The regression estimator, proposed by Robinson (1995), is obtained by applying the Ordinary
Least Squared method in (3.5) based on (3.3), but considering only the frequencies ωj , for
j ∈ {l, l + 1, · · · , g(n)}, where l > 1 is a trimming value that tends to infinity more slowly than
g(n).

The asymptotic variance of the estimator R (see Robinson, 1995) is given by

V ar(R) ∼ π2

24 g(n)
.

To obtain the robust version of the R estimator, denoted respectively, by R-LTS and R-MM,
we just apply the Least Trimmed Squared (LTS) and MM methodologies (see Lopes and Mendes,
2006) to the regression model (3.5).

3.1.3 R/S(n) and R/S(q) Estimators

Here we introduced the R/S(n) statistic proposed by Hurst (1951) and a modified version of it,
denoted by R/S(q) and proposed by Lo (1991).
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Definition 3.4. Let {Xt}n
t=1 be a time series. The rescaled range statistic R/S(n), introduced

by Hurst (1951), is defined by

R/S(n) =
1
sn

[
max

1≤k≤n

k∑

j=1

(Xj −X)− min
1≤k≤n

k∑

j=1

(Xj −X)
]
,

where X = 1
n

n∑

j=1

Xj and s2
n = 1

n

n∑

j=1

(Xj −X)2 is the sample variance.

For the fractional Gaussian noise process or the ARFIMA process (see Teverovsky et al.,
1999),

E
[
R/S(n)

]
∼ CHnH, as n →∞,

where H is the parameter suggested by Harold Edwin Hurst (1880-1978), to estimate long-range
dependence, and CH is a positive constant independent of n.

To determine H from the R/S(n)statistic, one proceeds as follows

• For each j ∈ {1, · · · , s}, one divides the time series {Xt}n
t=1 into

[
n
kj

]
blocks, each one of

size kj , where kj = `kj−1.

• For each block, one computes the R/S(kj) statistic.

• One adjusts a regression line, by regressing ln(R/S(kj)) on ln(kj), j = 1, · · · , s, to obtain
H the Hurst parameter, that is, the slope of the adjusted line.

Remark 3.1. The Hurst parameter H is related to the fractional parameter d by the equation
(see Taqqu et al., 1995)

d = H − 1
2
. (3.11)

Definition 3.5. The HAC variance estimator with bandwidth q, is defined as

σ̂2
n(q) =

1
n

n∑

j=1

(Xj −X)2 +
2
n

q∑

j=1

ωj(q)
( n∑

l=j+1

(Xl −X)(Xl−j −X)
)

, (3.12)

where X = 1
n

n∑

j=1

Xj and the weights ωj(q) are given by

ωj(q) = 1− j

q + 1
, for all q < n.

Remark 3.2. There is no selection rule for choosing the order q. However, q should be related
to the sample size n satisfying

1
q

+
q

n
→ 0, as n →∞.

A standard choice is q = n0.5 (see Giraitis et al. 2003).
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Definition 3.6. The R/S(n) modified statistic, proposed by Lo (1991) and denoted by R/S(q),
is defined as

R/S(q) =
1

σ̂n(q)

[
max

1≤k≤n

k∑

j=1

(Xj −X)− min
1≤k≤n

k∑

j=1

(Xj −X)
]
,

where X = 1
n

n∑

j=1

Xj and σ̂n(q) is defined in (3.12).

3.2 Parametric Class

In the parametric class, all parameters (the autoregressive and moving average coefficients and
the fractional differencing) can be simultaneously estimated.

In this subsection we present one of the most popular method in the parametric class. We
summarize the maximum likelihood method (see Fox and Taqqu, 1986), by considering the
approximation suggested by Whittle (1953).

The estimator for d, by using the maximum likelihood method, denoted by W , is the value
of

η = (σ2
X , d, φ1, φ2, · · · , φp, θ1, θ2, · · · , θq) (3.13)

that minimizes the function

Q(η) =
[n−1

2
]∑

j=1

(
I(wj)

fX(wj , η)

)
, (3.14)

where η is the vector of unknown parameters given in (3.13), fX(·, η) is the spectral density
function of the {Xt}t∈Z, [x] is the integer part of x, wj = 2πj

n is the Fourier frequencies, for
j ∈ {1, · · · , [n−1

2 ]}, and I(·) is the periodogram function given by (3.3).
The asymptotic variance of the estimator W (see Fox and Taqqu, 1986) is given by

V ar(W) ∼ 6
π2 n

.

More details on this estimator can be found in Fox and Taqqu (1986) and Beran (1994).

4 DFA Method and Some Properties

Given a time series {Xt}n
t=1, the Detrended Fluctuation Analysis (DFA), proposed by Peng et

al. (1994), consists on five steps. In the first one, for each t ∈ {1, 2, · · · , n}, we calculate

Yt =
t∑

j=1

Xj . (4.1)

Observe that the stochastic process {Yt}t∈Z is not stationary. In the second step we divide the
time series {Yt}n

t=1 into
[

n
l

]
nonoverlapping blocks, each containing l observations. In the third

step, for each block, one fits a least-square line to the data (that represents the local trend in the
block). In the fourth step, we detrend the time series {Yt}n

t=1, that is, in each block we calculate

Zt = Yt − Y l
t , (4.2)
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where Y l
t denotes the adjusted fit on each block.

To illustrate the DFA method we show, in Figure 4.1, a 1, 000-nucleotide subsequence of the
Enterobacteria phage lambda (genbank name: LAMCG, with 48, 502 base pair). The“Detrended
Fluctuation Analysis” (DFA) is applied to blocks of size l = 100.

Figure 4.1: The application of DFA method for the first 1, 000 nucleotides of the LAMCG
sequence, with blocks of l = 100 observations.

Finally, in the fifth step, for each l ∈ {4, 5, · · · , g(n)}, we calculate the root mean square
fluctuation (see Definition 4.1).

Definition 4.1. The root mean square fluctuation is defined by

F(l) =

√√√√ 1
ñ

ñ∑

t=1

Z2
t , (4.3)

where Zt is given by (4.2) and ñ is the maximum multiple of l, smaller or equal to n, that is,
ñ = [M · l] ≤ n, with M = [n/l].

Remark 4.1. In the literature an optimal choice of g(n) is
[

n
10

]
(see Hu et al., 2001). In Section

5, we consider g(n) =
[

n
10

]
.

Observe that F(l), given by (4.3), will increase with block size l. A linear relationship on a
log− log plot indicates the presence of power law scaling

F(l) ∼ ϕlα. (4.4)

Under such condition, the fluctuations can be characterized by a scaling exponent α, which is
the slope of the line when one regresses ln(F (l)) on ln(l), where

• 0 < α < 0.5 indicates intermediate memory;
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• α = 0.5 indicates short memory;

• 0.5 < α < 1 indicates long memory.

By taking the logarithm of the root mean square fluctuation value, given by (4.4), we obtain

ln(F(l)) ∼ ln(ϕ) + α ln(l). (4.5)

Then, we may rewrite (4.5) in the context of a simple linear regression model given by (3.4),
where now

yj = ln(F(l)), a = ln(ϕ), b = α, xj = ln(l) and l = j + 3, (4.6)

with l ∈ {4, 5, · · · , g(n)} and m = [g(n)− 3]. Then, we obtain an estimate of α given by

α̂ =

m∑

j=1

(xj − x)yj

m∑

j=1

(xj − x)2
=

x(1− y)

1
m

m∑

j=1

(xj − x)2
, (4.7)

where yj = ln(F(j + 3)), xj = ln(j + 3), x =
1
m

m∑

j=1

xj and m = [g(n)− 3].

4.1 Some Properties of the DFA Method

Theorem 4.1. If the set {εj}m
j=1 in the regression model given by the expression (3.4), with

m = g(n) − 3, are independent and identically distributed random variables, with distribution
function N (0, σ2), then α̂, given by the expression (4.7), is an U.M.V.U. estimator.

Proof. For a proof see Linhares (2007), page 34.

Remark 4.2. If the set {εj}m
j=1 in the regression model given by the expression (3.4), are

independent and identically distributed random variables, with distribution function N (0, σ2),
then

a) the exponent α̂, given by expression (4.7), is an U.M.V.U. estimator (from Theorem 4.1).
Therefore α̂ is a consistent estimator;

b) the expected value of α̂ is given by
E(α̂) = α;

c) the variance of α̂ is given by

Var(α̂) =

m∑

j=1

(xj − x)2Var(yj)

( m∑

j=1

(xj − x)2
)2

=
σ2

m∑

j=1

(xj − x)2
.
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Theorem 4.2 below gives an approximation for the mathematical expectation of the mean
square fluctuation value.

Theorem 4.2. [Taqqu et al. (1995)] Let {Xt}t∈R+ be a fractional Gaussian noise process and
let {Xt}n

t=1 be a time series from this process. Then,

E
( l∑

t=1

(Yt − Y l
t )2

)
∼ CH l2H+1, as l →∞, (4.8)

where Yt =
t∑

j=1

Xj and

CH =
(

2
2H + 1

+
1

H + 2
− 2

H + 1

)
. (4.9)

Theorem 4.3. Let {Xt}t∈R+ be a fractional Gaussian noise process and let {Xt}n
t=1 be a time

series from this process. Then,

E(F2(l)) ∼ CH l2H, as l →∞, (4.10)

where F2(l) is the root mean square fluctuation value given by (4.3) and CH is given by (4.9).

Proof. One observes that

E(F2(l)) =
1
ñ
E

( ñ∑

t=1

Z2
t

)
=

1
ñ
E

( ñ∑

t=1

(Yt − Y l
t )2

)

=
1
ñ
E

( l∑

t=1

(Yt − Y l
t )2 +

2l∑

t=l+1

(Yt − Y l
t )2 + · · ·+

+
ñ∑

t=[(n/l)−1]l+1

(Yt − Y l
t )2

)

=
1
ñ

[
E

( l∑

t=1

(Yt − Y l
t )2

)
+ E

( 2l∑

t=l+1

(Yt − Y l
t )2

)
+ · · ·+

+ E
( ñ∑

t=[(n/l)−1]l+1

(Yt − Y l
t )2

)]
. (4.11)

Therefore, from Theorem 4.2 and the expression (4.11) we obtain

E(F2(l)) ∼ 1
ñ

(
CH l2H+1 + · · ·+ CH l2H+1

)
=

1
ñ

ñ

l
CH l2H+1 = CH l2H,

where F2(l) is the root mean square fluctuation value given by the expression (4.3) and CH is
given by the expression (4.9).
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Remark 4.3. By the expression (4.4) we obtain

E(F 2(l)) ∼ ϕ2l2α. (4.12)

Comparing the expressions (4.12) and (4.10), we find α = H. Thus, by using the equation (3.11)
we obtain the following relationship

α = H = d +
1
2
. (4.13)

Theorem 4.4. Suppose that the random variables Z1, Z2, · · · , Zñ, given by expression (4.2),
are independent and identically distributed random variables with common distribution function
N (0, σ2

l ). Then, F2(l), defined by the expression (4.3), has the exact distribution function Γ
(

ñ
2 ,

ñ
2σ2

l

)
.

Proof. Since the random variables Z1, Z2, · · · , Zñ, given by the expression (4.2), are independent
and identically distributed random variables with distribution function N (0, σ2

l ), then for each
j ∈ {1, 2, · · · , ñ}, the random variable Zj

σl
has a standard Normal distribution. Therefore, the

random variable
ñ∑

j=1

Z2
j

σ2
l

has distribution function χ2(ñ) = Γ( ñ
2 , 1

2), where ñ = [M · l] ≤ n.

Denote X ≡
ñ∑

j=1

Z2
j

σ2
l

and Y ≡
(

σ2
l

ñ

)
X. Then, by using the expression (4.3), we obtain

F2(l) =
1
ñ

ñ∑

j=1

Z2
j =

σ2
l

ñ

ñ∑

j=1

Z2
j

σ2
l

=
(

σ2
l

ñ

)
X = Y. (4.14)

We know that the characteristic function uniquely determines the distribution function of a
random variable. The characteristic function of the random variable Y is given by

ϕY (t) = E
(
eitY

)
= E

(
eit

σ2
l

ñ
X

)
= ϕX

(
tσ2

l

ñ

)
=

[
1

1− 2i
( tσ2

l
ñ

)
] ñ

2

=

[
1

ñ−2itσ2
l

ñ

] ñ
2

=




ñ
2σ2

l

ñ
2σ2

l
− it




ñ
2

, for all t <
ñ

2σ2
l

, (4.15)

since the random variable X has distribution Γ( ñ
2 , 1

2).
One observes that the characteristic function in the expression (4.15), is one of a random

variable with distribution function Γ
(

ñ
2 , ñ

2σ2
l

)
. From the uniqueness of the characteristic function,

it follows that Y has distribution function Γ
(

ñ
2 , ñ

2σ2
l

)
, that is, F 2(l), given by expression (4.3),

has distribution function Γ
(

ñ
2 , ñ

2σ2
l

)
.
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Corollary 4.1. Suppose that the random variables Z1, Z2, · · · , Zñ, given by expression (4.2),
are independent and identically distributed random variables with distribution function N (0, σ2

l ).
Then F 2(l), given by expression (4.3), has expected value and variance, respectively, given by

E(F2(l)) = σ2
l and Var(F2(l)) =

2σ4
l

ñ
, (4.16)

wherever 0 < σl
4 < ∞.

Proof. For a proof see Linhares (2007), page 37.

5 Nucleotide Sequences Analyses

A DNA sequence is a long polymer of simple units called nucleotides. Each nucleotide has a
nitrogenous base, a deoxyribose and a phosphate group. The denomination of the nucleotide
depends on the nitrogenized basis that composes it. A DNA sequence has four nitrogenous
basis: adenine (A), thymine (T), cytosine (C) and guanine (G). Adenine and guanine basis, are
classified as purines and cytosine and thymine basis are classified as pyrimidines.

A nucleotide sequence {ni}n
i=1 of length n is composed of the basis A (adenine), C (cytosine),

T (thymine) and G (guanine), that is, ni ∈ {A,C,T,G}. In order to apply numerical methods to
a nucleotide sequence it is necessary to transform it into a numerical sequence.

Given a nucleotide sequence {ni}n
i=1 ≡ {n1, n2, · · · , nn} of length n, we use the following

function, that transforms the nucleotide sequence {ni}n
i=1 into a numerical sequence {f(ni)}n

i=1,
where f(ni) ∈ R (see Buldyrev et al, 1995).

SW Rule. We define the transformation f : {n1, n2, · · · , nn} → R, considering the following
rule

f(ni) =





1, se ni ∈ {C,G}
0, se ni ∈ {A,T}. (5.1)

Below, we give the time series definition, representing any nucleotide sequence.

Definition 5.1. Given a nucleotide sequence {ni}n
i=1, the time series {Xt}n

t=1, obtained from
this sequence, is given by

Xt = f(nt), (5.2)

where f(·) is given by the expression (5.1).

In this section we analyze four nucleotide sequences, available from the European Bioin-
formatics Institute (EBI, http://www.ebi.ac.uk/), where the goal is to detect long dependence
property on them. In order to check the performance of the different methods presented in
Section 3, we consider three sequences corresponding to the Homo sapiens chromosome 21
(AL163202, AL163203 and AL163204, each one with 340,000 bp) and the complete sequence of
the Leishmania braziliensis chromosome 1 (AM494938 with 235,333 bp).

We consider the following estimators for the fractional differencing parameter d: GPH, GPH-
LTS, GPH-MM, R, R-LTS, R-MM, R/S(n),W, R/S(q) and DFA.
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For estimating the fractional parameter d by the R/S(n) and the DFA methods, we consider
the following relationship among H, d and α given by the expression (4.13).

For each sequence and, for all estimators proposed in this work, we test the hypothesis
H0 : d = 0 versus H1 : d 6= 0, that is, we test if the nucleotide sequences have or do not have
short memory characteristics.

For each sequence, we represent graphically, the 95% confidence intervals for the fractional
parameter d, using the estimators proposed in Section 3.

Remark 5.1. a) For the hypothesis test H0 : d = 0 versus H1 : d 6= 0, the test statistics for any
estimator d̂ is given by

Z =
d̂− dH0√

Var(d̂)
=

d̂√
Var(d̂)

,

where Z has the standard normal distribution and σ2
d̂
≡ V ar(d̂) is the variance of the estimator

d̂ proposed by any estimation method given in Section 3.

b) For Table 5.1, we consider the following notation:
∗ : Rejects H0 at 5% significance level;

c) The lower and upper confidence interval values for the parameter d, based on any of the
estimation methods proposed here, are given by

lower value = d̂− zα
2
· σ

d̂

upper value = d̂ + zα
2
· σ

d̂
,

where zα
2

= 1.96 and σ
d̂

=
√

V ar(d̂).

Table 5.1: Estimators for the Parameter d, with their Respective Confidence Levels for Four
Nucleotide Sequences.

Estimator AL163202 AL163203 AL163204 AM494938

GPH 0.1624∗ 0.1661∗ 0.1746∗ 0.1071∗

GPH-LTS 0.1384∗ 0.1356∗ 0.1472∗ 0.0912∗

GPH-MM 0.1740∗ 0.1525∗ 0.1673∗ 0.0961∗

R 0.1622∗ 0.1658∗ 0.1744∗ 0.1062∗

R-LTS 0.1374∗ 0.1359∗ 0.1471∗ 0.1303∗

R-MM 0.1587∗ 0.1461∗ 0.1748∗ 0.0957∗

W 0.0320∗ 0.0479∗ 0.0527∗ 0.0335∗

R/S(n) 0.1973∗ 0.2372∗ 0.2526∗ 0.1058∗

R/S(q) 0.2037∗ 0.2443∗ 0.2603∗ 0.1025∗

DFA 0.2647∗ 0.3383∗ 0.3523∗ 0.3605∗

Note: ∗ means rejection of H0 at 5% significance level.

From Table 5.1 one observes that the existence of a long-range dependence for the four
sequences is statistically significant at 5% level for all estimation methods considered here.
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The Figures 5.1 to 5.4 represent the 95% confidence intervals for the fractional parameter d,
respectively, for each sequence in Table 5.1.

Figure 5.1: The 95% Confidence Intervals for the Fractional Parameter d of the Sequence
AL163202, Based on the Considered Estimators.

Figure 5.2: The 95% Confidence Intervals for the Fractional Parameter d of the Sequence
AL163203, Based on the Considered Estimators.
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Figure 5.3: The 95% Confidence Intervals for the Fractional Parameter d of the Sequence
AL163204, Based on the Considered Estimators.

Figure 5.4: The 95% Confidence Intervals for the Fractional Parameter d of the Sequence
AM494938, Based on the Considered Estimators.

6 Conclusions

We considered here ARFIMA(p, d, q) processes that exhibit the long memory property when
d ∈ (0.0, 0.5), the short memory property when d = 0.0 and the intermediate memory one when
d ∈ (−0.5, 0.0).

We studied several estimation methods in both semiparametric and parametric classes to
estimate the fractional parameter d.
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We considered the R/S(n) method (“Rescaled Range”), proposed by Hurst (1951) and the
“Detrended Fluctuation Analysis” (DFA), proposed by Peng et al. (1994) to estimate the frac-
tional parameter d, by using the following relationship

α = H = d +
1
2
,

where α is the scale coefficient obtained by the DFA method and H is the Hurst parameter. All
three parameters in this relationship measure the long memory property.

We described the “Detrended Fluctuation Analysis”and analyzed its properties. This has the
objective of evaluating the statistical fluctuation F (l), in order to obtain a set of measures, where
l represents the window length. By varying the length l, the fluctuation can be characterized
by the scaling exponent, that is the slope of the line obtained by regressing ln(F (l)) on ln(l).
We also showed that under some conditions, the slope exponent obtained by the DFA method
is a uniformly minimum variance unbiased and consistent estimator for α. To apply the DFA
method, one needs to divide the time series {Xt}n

t=1 into blocks of size l. In each block one
computes the partial sums {Yt}l

t=1, and then fits a least squared line Y l
t = a + bt. We showed

that, if the random variables Y1 − Y l
1 , Y2 − Y l

2 , · · · , Yñ − Y l
ñ, are independent and identically

distributed with common distribution function N (0, σ2
l ), then F2(l) has the exact distribution

function Γ
(

ñ
2 , ñ

2σ2
l

)
, where ñ is is the maximum multiple of l, smaller or equal to the length

of the sample size. We observed that σl
2 is the theoretical variance of the random variables

Yj −Y l
j , j = 1, · · · , ñ. We proved that F 2(l) is unbiased for the variance σ2

l and, if 0 < σ4
l < ∞,

the statistic F 2(l) is a consistent estimator for σ2
l and it has minimum variance as ñ tends to

infinity.
According to the results of the estimation methods discussed in Section 3, all four nucleotide

sequences studied here display long-range dependence. For each sequence, this conclusion is
statistically significant at the 5% level for all estimators proposed.
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