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Abstract

We consider the fractional ARIMA process with seasonality s, denoted by SARFIMA
(p, d, q) × (P, D,Q)s, which describes time series with long memory periodical behavior at
finite number of spectrum frequencies. We present the proof of several properties of these
processes, such as the spectral density function expression and its behavior near the seasonal
frequencies, the stationarity, the intermediate and long memory characteristics, the autoco-
variance function and its asymptotic expression. We also investigate the ergodicity and we
present necessary and sufficient conditions for the causality and the invertibility properties
of SARFIMA processes.
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1 Introduction

Recently, the study of time series turned the attention to the ones having long memory char-
acteristics. The ARFIMA(p, d, q) process, first introduced by Granger and Joyeux (1980), and
Hosking (1981 and 1984), present this property when the differencing parameter d is in the in-
terval (0, 0.5). This feature is reflected by the hyperbolic decay of its autocorrelation function or
by the unboundedness of its spectral density function, while in the ARMA model, dependency
between observations decays at a geometric rate.

We consider processes with long memory and periodicity characteristics, the so-called SAR-
FIMA(p, d, q)× (P,D, Q)s processes.

The papers by Porter-Hudak (1990), Ray (1993), Ooms (1995), Carlin and Dempster (1989),
and Montanari et al. (2000) deal with seasonality analysis for observable data in different fields
of applications. The work by Hassler (1994) presents a complete generalization of fractional dif-
ferencing processes with the presence of periodicity considering rigid, and flexible models. It also
illustrates the risk of fractional misspecification. The paper by Peiris and Singh (1996) deals
with prediction, and minimum mean squared error predictors of one step ahead for seasonal
fractionally integrated models. The paper by Reisen and Lopes (1999) presents forecasting
results for the ARFIMA(2, d, 2) model, including the variance of the mean squared error us-
ing the smoothed periodogram regression method for estimating the parameter d. The later
paper also presents an analysis for a real observed data comparing the performance of both
ARIMA, and ARFIMA models. Ray (1993) forecasts the IBM product revenues using a com-
plete SARFIMA(p, d, q)× (P,D, Q)s process. Palma (2007) uses the Kalman filter approach in
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the estimation of the parameters d and D for SARFIMA(0, d, 0) × (0, D, 0)s process. A com-
panion paper, Bisognin and Lopes (2008), to be published elsewhere, gives an extensive Monte
Carlo simulation study for different estimation methods for these processes. This paper also
deals with forecasting on seasonal long memory processes and an application to the theory.

The main goal of this paper is to present several theoretical properties of the SARFI-
MA(p, d, q) × (P, D, Q)s processes, such as the expression of the spectral density function and
its behavior near the seasonal frequencies, the stationarity, the intermediate and long memory
characteristics, the autocovariance function and its asymptotic expression. We also investigate
the ergodicity and we present necessary and sufficient conditions for the causality and the in-
vertibility of SARFIMA processes.

The paper is organized as follows: the next section gives some definitions, and the proof of
several properties for the SARFIMA(p, d, q)× (P, D, Q)s processes. In Section 3, we investigate
necessary and sufficient conditions for the causality and the invertibility of SARFIMA processes.
The mean square and probability one convergences are given for both infinite moving average
and infinite autoregressive representations. Section 4 gives the ergodicity property for these
processes and Section 5 presents our final conclusions.

2 SARFIMA(p, d, q) × (P, D, Q)s Processes

In many practical situations time series exhibit a periodic pattern. These time series are very
common in meteorology, economics, hydrology, and astronomy. Sometimes, even in these fields,
the period of the seasonality can depend on time, that is, the autocorrelation structure of the
data varies from season to season. Here, in our analysis, we consider the seasonality period
constant over seasons.

We shall consider the seasonal autoregressive fractionally integrated moving average process,
denoted hereafter by SARFIMA(p, d, q)×(P, D, Q)s, which is an extension of the ARFIMA(p, d, q)
process, proposed by Granger and Joyeux (1980) and Hosking (1981).

The following sub-section presents some definitions and properties of these processes.

2.1 Some Definitions and Properties

Definition 2.1. Let {Xt}t∈Z be a stationary stochastic process with spectral density function
fX (·). Suppose there exists a real number b ∈ (0, 1), a constant Cf > 0 and one frequency
G ∈ [0, π] (or a finite number of frequencies) such that

fX (w) ∼ Cf |w −G|−b, whenw → G.

Then, {Xt}t∈Z is a long memory process.

Remark 2.1. In Definition 2.1, when b ∈ (−1, 0), we say that the process {Xt}t∈Z has the
intermediate dependence property. We refer Doukhan et al. (2003) for more details.

Definition 2.2. Let {Xt}t∈Z be a stochastic process given by the expression

φ(B)Φ(Bs)∇d∇D
s (Xt − µ) = θ(B)Θ(Bs)εt, for t ∈ Z, (2.1)

where µ is the mean of the process, {εt}t∈Z is a white noise process with zero mean and variance
σ2

ε := E(ε2
t ), s ∈ N is the seasonal period, B is the backward-shift operator, that is, Bsk(Xt) =
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Xt−sk, ∇D
s := (1 − Bs)D is the seasonal difference operator, φ(·), θ(·), Φ(·), and Θ(·) are the

polynomials of degrees p, q, P , and Q, respectively, defined by

φ(B) =
p∑

i=0

(−φi)Bi, θ(B) =
q∑

j=0

(−θj)Bj ,

Φ(B) =
P∑

k=0

(−Φk)Bk, Θ(B) =
Q∑

l=0

(−Θl)Bl, (2.2)

where φi, 1 ≤ i ≤ p, θj , 1 ≤ j ≤ q, Φk, 1 ≤ k ≤ P , and Θl, 1 ≤ l ≤ Q are constants and
φ0 = Φ0 = −1 = θ0 = Θ0. Then, {Xt}t∈Z is a seasonal fractionally integrated ARMA process
with period s, denoted by SARFIMA(p, d, q)× (P, D,Q)s, where d and D are, respectively, the
differencing and the seasonal differencing parameters.

Remark 2.2. (1) The seasonal difference operator ∇D
s ≡ (1 − Bs)D, with seasonality s ∈ N,

for all D >−1, is defined by means of the binomial expansion ∇D
s :=

∑
k≥0

(
D
k

)
(−Bs)k,

where (
D

k

)
= Γ(1 + D)/[Γ(1 + k)Γ(1 + D − k)].

The difference operator ∇d is obtained when D = d and s = 1.

(2) A particular case of the process given by (2.1) is when P = p = 0 = q = Q and d = 0.
This process is called the pure seasonal fractionally integrated model with period s, denoted
by SARFIMA(0, D, 0)s and it is given by

∇D
s (Xt − µ) ≡ (1− Bs)D(Xt − µ) = εt, t ∈ Z. (2.3)

We refer the reader to Bisognin and Lopes (2007) for the estimation and forecasting anal-
ysis of these processes. We also refer the reader to Brietzke et al. (2005) for a closed
formula for the Durbin-Levinson’s algorithm relating the partial autocorrelation and the
autocorrelation functions of these processes.

(3) When P = 0 = Q, D = 0 and s = 1 the SARFIMA(p, d, q)× (P, D,Q)s process is just the
ARFIMA(p, d, q) process (see Beran, 1994). In this case we already know the behavior of
the parameter estimators (see Reisen and Lopes, 1999 and Lopes, 2008).

(4) When p = 0 = q, D = 0 = d the SARFIMA(p, d, q) × (P, D,Q)s process is reduced to the
SARMA(p, q)s process.

(5) The negative value for the coefficients of all four polynomials in expression (2.2) is used
in the companion paper Bisognin and Lopes (2008). For this reason we maintain it here.

It is convenient to introduce the notation Z> = {k ∈ Z|k > 0}, Z6 = {k ∈ Z|k 6 0} and
A = {1, · · · , s− 1} ⊂ N.

In the following theorem we present the expression of the spectral density function and
its behavior near the seasonal frequencies, the stationarity, the intermediate and long memory
properties and the autocovariance function for the SARFIMA(0, d, 0)× (0, D, 0)s processes.

Theorem 2.1. Let {Xt}t∈Z be the SARFIMA(0, d, 0)×(0, D, 0)s process given by the expression
(2.1), with zero mean, s ∈ N as the seasonal period and P = p = 0 = q = Q. Then, the following
is true.
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(i) When |d +D| < 0.5 and |D| < 0.5, the process {Xt}t∈Z has spectral density function given
by

fX (w) =
σ2

ε

2π

[
2 sin

(w

2

)]−2d [
2 sin

(sw

2

)]−2D
, 0 < w 6 π. (2.4)

Its behavior near the seasonal frequencies is given by the expressions (2.8) and (2.10).

(ii) When d + D < 0.5 and D < 0.5, {Xt}t∈Z is a stationary process.

(iii) When 0 < d + D < 0.5 and 0 < D < 0.5, the process {Xt}t∈Z has long memory property.

(iv) When −0.5 < d+D < 0 and −0.5 < D < 0, the process {Xt}t∈Z has intermediate memory
property.

(v) The process {Xt}t∈Z has autocovariance function of order h, h ∈ Z>, given by

γX (h) =





σ2
ε

∑

ν∈Z>

γZ (sν)γY (h− sν), if h = s`, ` ∈ Z>;

0, if h = s` + ζ, ζ ∈ A,

(2.5)

where A = {1, · · · , s − 1}. The process {Zt}t∈Z is a SARFIMA(0, D, 0)s (see equation
(2.3)) with autocovariance function of order υ, υ ∈ Z>, given by

γZ (sυ + ξ) =





(−1)υΓ(1− 2D)
Γ(υ −D + 1)Γ(1− υ −D)

= γX (υ), if ξ = 0,

0, if ξ ∈ A,

(2.6)

and the process {Yt}t∈Z is an ARFIMA(0, d, 0) (see item (3) in Remark 2.2, when p = 0 =
q) with autocovariance function of order h, h ∈ Z>, given by

γY (h) =
(−1)hΓ(1− 2d)

Γ(h− d + 1)Γ(1− h− d)
. (2.7)

Proof. Let {Xt}t∈Z be a SARFIMA(0, d, 0)× (0, D, 0)s process, given by the expression (2.1)
when P = p = 0 = q = Q, with seasonality s ∈ N.

(i) From the spectral density function definition, for any stationary process, one has

fX (w) =
σ2

ε

2π

∣∣1− e−iw
∣∣−2d ∣∣1− e−isw

∣∣−2D
, for 0 < w 6 π.

Since lim
w→0

sin(sw)
sw

= 1, one has sin(sw) ∼ sw, when w → 0. Then,

fX (w) ∼ C1|w − w0|−2(d+D), when w → 0, (2.8)

where w0 = 0 and C1 = σ2
ε

2πs−2D.
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For all j = 1, · · · , bs/2c, where bxc means the integer part of x, when λ → 0, one has

fX (λ + wj) =
σ2

ε

2π

∣∣∣∣2 sin
(

λ

2
+

wj

2

)∣∣∣∣
−2d ∣∣∣∣2 sin

(
sλ

2
+

swj

2

)∣∣∣∣
−2D

∼ σ2
ε

2π

∣∣∣2 sin
(wj

2

)∣∣∣
−2d

s−2D|λ|−2D

= C2|λ|−2D, (2.9)

where wj = 2πj
s , for all j = 1, · · · , bs/2c, and C2 = σ2

ε
2πs−2D

∣∣2 sin
(wj

2

)∣∣−2d.

In expression (2.9), if λ = w − wj , for 1 6 j 6 bs/2c, one has

fX (w) ∼ C2|w − wj |−2D, when w → wj . (2.10)

(ii) Let fX (·), given by the expression (2.4), be the spectral density function of the {Xt}t∈Z
process. From item (i) of this theorem, fX (w) = fX (−w) and fX (w) > 0. Therefore, the
process {Xt}t∈Z is stationary if

∫ π

−π
fX (w)dw = 2

∫ π

0
fX (w)dw < ∞. (2.11)

The singularity values for the spectral density function occur in the seasonal frequencies
wj = 2πj

s , for all j = 0, 1, · · · , bs/2c.
From item (i), one has

C1

∫ π

0
|w|−2(d+D)dw < ∞ andC2

∫ π

0
|w − wj |−2Ddw < ∞,

when d + D < 0.5 and D < 0.5, respectively. Thus, when d + D < 0.5 and D < 0.5,∫ π
−π fX (w)dw = 2

∫ π
0 fX (w)dw < ∞. Therefore, from Herglotz’ theorem (see Brockwell

and Davis, 1991), the process {Xt}t∈Z is stationary when d + D < 0.5 and D < 0.5.

(iii) From the asymptotic expression of the spectral density function of a SARFIMA(0, d, 0)×
(0, D, 0)s process, from item (i) of this theorem, and Definition 2.1, the process {Xt}t∈Z
has long memory property when 0 < d + D < 0.5 and 0 < D < 0.5.

(iv) From Remark 2.1, the process {Xt}t∈Z has intermediate memory property when −0.5 <
d + D < 0 and −0.5 < D < 0.

(v) Let {Xt}t∈Z be a causal and stationary SARFIMA(0, d, 0) × (0, D, 0)s process, given by
the expression (2.1) when P = p = 0 = q = Q, with seasonality s ∈ N. One wants to find
the autocovariance function of the process {Xt}t∈Z. Let {Zt}t∈Z be a SARFIMA(0, D, 0)s

process (see item (2) in Remark 2.2), given by

(1− Bs)DZt = ε∗t , for t ∈ Z,

where {ε∗t }t∈Z is a white noise process with zero mean and variance σ2
ε∗ = E((ε∗t )2) < ∞.
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The process {Zt}t∈Z has an infinite moving average representation given by

Zt = (1− Bs)−Dε∗t =
∑

j∈Z>

ψjBsj(ε∗t ) =
∑

j∈Z>

ψjε
∗
t−sj , (2.12)

where ψj is given by the expression (2.17) below, for all j ∈ Z>. From Proposition 3.1
(see ‘Causality and Invertibility Properties’ Section) and Proposition 3.1.2 in Brockwell
and Davis (1991), one has

γZ (h) = Cov(Zt+h, Zt) =
∑

j∈Z>

∑

τ∈Z>

ψjψτγε∗(h− sj + sτ), (2.13)

where γε∗(·) is the autocovariance function of the process {ε∗t }t∈Z.

When h− sj + sτ = 0, one has j = h
s + τ . Therefore, equation (2.13) can be rewritten as

γZ (h) = σ2
ε∗

∑

τ∈Z>

ψh
s
+τψτ . (2.14)

Taking h = s`, for ` ∈ Z>, one has

γZ (s`) = σ2
ε∗

∑

τ∈Z>

ψ`+τψτ .

In equation (2.14), if h = s` + ζ, ζ ∈ A, where A = {1, · · · , s− 1}, γZ (h) = 0. Therefore,
the autocovariance function of the process {Zt}t∈Z is given by

γZ (h) =





σ2
ε∗

∑

τ∈Z>

ψ`+τψτ , if h = s`, ` ∈ Z>;

0, if h = s` + ζ, ζ ∈ A.

(2.15)

For d,D ∈ (−0.5, 0.5), let {Xt}t∈Z be given as (1−Bs)−DYt, for all t ∈ Z, with innovation
process {Yt}t∈Z, given by Yt = (1−B)−dε′t (that is, {Yt}t∈Z is an ARFIMA(0, d, 0) process
with innovation process {ε′t}t∈Z, which is a white noise process with zero mean and variance
σ2

ε′). Thus,

Xt = (1− Bs)−DYt =
∑

j∈Z>

ψjYt−sj , (2.16)

where

ψj :=





Γ(j + D)
Γ(j + 1)Γ(D)

, for j ∈ Z>,

0, for j 6∈ Z>.

(2.17)
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For D < 0.5, one has
∑

j∈Z> |ψj | < ∞ and
∑

j∈Z> |ψj |2 < ∞ (see Lemma 3.1 in Section
3). When d < 0.5, the process {Yt}t∈Z is stationary, that is, supt E|Yt|2 < ∞. Therefore,
the series in expression (2.16) converges in mean square sense (see Brietzke et al., 2005).

Then, the autocovariance function of the process {Xt}t∈Z is given by

γX (h) = Cov(Xt+h, Xt) = Cov


 ∑

j∈Z>

ψjYt+h−sj ,
∑

τ∈Z>

ψτYt−sτ




=
∑

j∈Z>

∑

τ∈Z>

ψjψτCov(Yt+h−sj , Yt−sτ )

= σ2
ε′

∑

j∈Z>

∑

τ∈Z>

ψjψτγY (h− s(j − τ)), (2.18)

where γY (·) is the autocovariance function of the process {Yt}t∈Z (see equation (2.7)).
Taking ν = j − τ , in equation (2.18), we get

γX (h) = σ2
ε′

∑

ν>−τ

∑

τ∈Z>

ψν+τψτγY (h− sν). (2.19)

By definition of the ψj ’s coefficients (see expression (2.17)), the equation (2.19) becomes

γX (h) = σ2
ε′

∑

ν∈Z>

∑

τ∈Z>

ψν+τψτγY (h− sν). (2.20)

Applying equation (2.15) into (2.20), one has the expression (2.5), which is the autoco-
variance function of the SARFIMA(0, d, 0)× (0, D, 0)s process, where σ2

ε = σ2
ε′/σ2

ε∗ is the
variance of the white noise process {εt}t∈Z, {Zt}t∈Z is a SARFIMA(0, D, 0)s process and
{Yt}t∈Z is an ARFIMA(0, d, 0) process, with γZ (·) and γY (·) given, respectively, by expres-
sions (2.6) and (2.7).

Theorem 2.2 below presents some properties of SARFIMA(p, d, q)× (P, D, Q)s processes.

Theorem 2.2. Let {Xt}t∈Z be a SARFIMA(p, d, q)× (P,D, Q)s process given by the expression
(2.1), with zero mean and seasonal period s ∈ N. Suppose φ(z)Φ(zs) = 0 and θ(z)Θ(zs) = 0
have no common zeroes. Then, the following is true.

(i) If |d + D| < 0.5 and |D| < 0.5, the process {Xt}t∈Z has spectral density function given by

fX (w) =
σ2

ε

2π

|θ(e−iw)|2|Θ(e−isw)|2
|φ(e−iw)|2|Φ(e−isw)|2

∣∣∣2 sin
(w

2

)∣∣∣
−2d ∣∣∣2 sin

(sw

2

)∣∣∣
−2D

, (2.21)

for 0 < w 6 π.

Its behavior near to seasonal frequencies is given by expressions (2.25) and (2.29).
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(a) (b) (c)

(d) (e) (f)

Figure 2.1: Spectral Density Function of a SARFIMA(0, d, 0)× (0, D, 0)s Process: (a) d = 0.1,
D = 0.35 and s = 4; (b) d = 0.2, D = 0.2 and s = 4; (c) d = 0.35, D = 0.1 and s = 4; (d)
d = 0.1, D = 0.35 and s = 6; (e) d = 0.2, D = 0.2 and s = 6; (f) d = 0.35, D = 0.1 and s = 6.

(ii) The process {Xt}t∈Z is stationary if d + D < 0.5, D < 0.5 and φ(z)Φ(zs) 6= 0, for |z| 6 1.

(iii) The stationary process {Xt}t∈Z has long memory property if 0 < d+D < 0.5, 0 < D < 0.5
and φ(z)Φ(zs) 6= 0, for |z| 6 1.

(iv) The stationary process {Xt}t∈Z has intermediate memory property if −0.5 < d + D < 0,
−0.5 < D < 0 and φ(z)Φ(zs) 6= 0, for |z| 6 1.

(v) For |d + D| < 0.5, |D| < 0.5, the autocovariance function of order h, h ∈ Z>, for the
process {Xt}t∈Z, is given by

γX (h) =





σ2
ε

∑

ν∈Z>

γZ (sν)γY (h− sν), if h = s`, ` ∈ Z>,

0, if h = s` + ζ, ζ ∈ A,

(2.22)

where {Zt}t∈Z is a SARFIMA(P, D,Q)s process, where {Yt}t∈Z is an ARFIMA(p, d, q)
process, A = {1, · · · , s− 1}, γZ (·) and γY (·) are, respectively, the autocovariance function
of the {Zt}t∈Z and {Yt}t∈Z processes, given by the expressions (2.37) and (2.38).

Proof. Let {Xt}t∈Z be a SARFIMA(p, d, q)× (P, D, Q)s process, given by the expression (2.1),
with seasonality s ∈ N.
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(i) The expression of the spectral density function of the process {Xt}t∈Z follows immediately
by its definition and by item (i) of Theorem 2.1,

fX (w) = fY (w)
|θ(e−iw)|2|Θ(e−isw)|2
|φ(e−iw)|2|Φ(e−isw)|2 , for all 0 < w 6 π, (2.23)

where fY (·) is the spectral density function of a SARFIMA(0, d, 0) × (0, D, 0)s process,
given by expression (2.4). Suppose that {Xt}t∈Z is causal and invertible process. We know
that lim

w→0
cos(sw) = 1, that is, cos(sw) ∼ 1, when w → 0. For the expression (2.23), when

w → 0, one has

fX (w) ∼ σ2
ε

2π
s−2D|w−w0|−2(d+D)

[∏q
m=1

(
1−ρm,1

)2 ∏Q
l=1

(
1−ρ

l,3

)2

∏p
`=1

(
1−ρ

`,2

)2 ∏P
r=1

(
1−ρr,4

)2

]
(2.24)

= C3|w − w0|−2(d+D), when w → 0, (2.25)

where w0 = 0 and the inverse of ρk,ι, for each k ∈ {m, l, `, r} and ι ∈ {1, · · · , 4}, are the
roots of the polynomials θ(·), φ(·), Θ(·) and Φ(·), with

C3 =
σ2

ε

2π
s−2D

∣∣∣∣∣
θ(e−iw0)Θ(e−iw0)
φ(e−iw0)Φ(e−iw0)

∣∣∣∣∣
2

=
σ2

ε

2π
s−2D

[
θ(1)Θ(1)
φ(1)Φ(1)

]2

. (2.26)

The expression (2.24) holds from the approximation in expression (2.8) and because the
polynomials, in particular θ(·), can be rewritten as

θ(z) =
q∏

m=1

(1− ρm,1z), (2.27)

where |ρm,1 | < 1 and 1/ρm,1 is the polynomial’s root, for m = 1, · · · , q. By the same
manner, for each j = 1, · · · , bs/2c, one has

fX (λ + wj) = fY (λ + wj)

[
|θ(e−i(λ+wj))|2|Θ(e−is(λ+wj))|2
|φ(e−i(λ+wj))|2|Φ(e−is(λ+wj))|2

]

∼ σ2
ε

2π
s−2D

∣∣∣2 sin
(wj

2

)∣∣∣
−2d

|λ|−2D

∣∣∣∣∣
θ(e−iwj )Θ(w−isw0)
φ(e−iwj )Φ(w−isw0)

∣∣∣∣∣
2

(2.28)

= C4 |λ|−2D , (2.29)

when λ → 0, where wj = 2πj
s and

C4 =
σ2

ε

2π
s−2D

∣∣∣2 sin
(wj

2

)∣∣∣
−2d

∣∣∣∣∣
θ(e−iwj )Θ(e−isw0)
φ(e−iwj )Φ(e−isw0)

∣∣∣∣∣
2

. (2.30)

The expression (2.28) holds from the approximation in expression (2.10). By taking λ =
w − wj , in the equation (2.29), one has

fX (w) ∼ C4|w − wj |−2D, when w → wj , (2.31)

for all j = 1, · · · , bs/2c, where C4 is given by the expression (2.30).
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(ii) The process {Xt}t∈Z can be written as Xt = ψ(B)εt, where

ψ(z) =
θ(z)Θ(zs)
φ(z)Φ(zs)

(1− z)−d(1− zs)−D.

If d+D < 0.5 and D < 0.5, item (ii) of Theorem 2.1 assures that the power series expansion
of (1 − z)−d(1 − zs)−D converges for |z| 6 1. We have that (φ(z)Φ(zs))−1 converges for
|z| 6 1 when the roots of φ(z)Φ(zs) = 0 are outside the unit circle. Therefore, the power
series ψ(z) converges for all |z| 6 1 and so the process {Xt}t∈Z is stationary.

(iii) Let {Xt}t∈Z be a SARFIMA(p, d, q)× (P,D, Q)s process, where all roots of φ(z)Φ(zs) = 0,
are outside of the unit circle, and its spectral density function is given by expression
(2.21). By Definition 2.1 and by the asymptotic expression of the spectral density function
given in item (i) of this theorem, the process {Xt}t∈Z has long memory property when
0 < d + D < 0.5, 0 < D < 0.5 and all roots of φ(z)Φ(zs) = 0 are outside of the unit circle.

(iv) By item (i) and Remark 2.1, the process {Xt}t∈Z has intermediate memory property when
−0.5 < d + D < 0 and −0.5 < D < 0.

(v) Let {Xt}t∈Z be a causal and invertible SARFIMA(p, d, q)× (P, D,Q)s process given by the
equation (2.2). To give an expression for the autocovariance function γX (·), let {U

∼
t}t∈Z

be a causal and stationary SARMA(P,Q)s process as

Φ(Bs)U
∼

t = Θ(Bs)ε¦
t, for t ∈ Z,

where {ε¦
t}t∈Z is a white noise process with zero mean and variance σ2

ε¦ . Then,

U
∼

t =
∑

j∈Z>

ψjBsj(ε¦
t) =

∑

j∈Z>

ψjε
¦
t−sj ,

where the coefficients ψj ’s are specified by the relationship

ψ(z) =
∑

j∈Z>

ψjz
sj =

Θ(zs)
Φ(zs)

, for|z| 6 1. (2.32)

By definition, the autocovariance function of {U
∼

t}t∈Z process, denoted by γ
U
∼ (·), is given

by

γ
U
∼ (h) = Cov(U

∼
t+h, U

∼
t) =

∑

j∈Z>

∑

υ∈Z>

ψjψυγ
ε¦ (h− sj + sυ),

for all h ∈ Z>. When h− sj + sυ = 0, one has j = h
s + υ. Then, γ

ε¦ (h) = σ2
ε¦ . Hence,

γ
U
∼ (h) = σ2

ε¦
∑

υ∈Z>

ψh
s
+υψυ.

Let h = sν, for ν ∈ Z>. Then, one has
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γ
U
∼ (sν) = σ2

ε¦
∑

υ∈Z>

ψν+υψυ. (2.33)

If h = sν + ζ in equation (2.33), where ζ ∈ A, then γ
U
∼ (sν + ζ) = 0. Therefore, the

autocovariance function of the process {U∼t}t∈Z is given by

γ
U
∼ (h) =





σ2
ε¦

∑

υ∈Z>

ψν+υψυ, if h = sν, ν ∈ Z>;

0, ifh = sν + ζ, ζ ∈ A.

(2.34)

Let {Zt}t∈Z be the process given by the expression

Zt =
Θ(Bs)
Φ(Bs)

V
∼
t, for all t ∈ Z,

with innovation process {V∼t}t∈Z given by V
∼
t = (1 − Bs)−Dε∗t (that is, {V∼t}t∈Z is a SAR-

FIMA (0, D, 0)s process with innovation process {ε∗t }t∈Z, a white noise process with zero
mean and variance σ2

ε∗ = Var(ε∗t )). Therefore,

Zt =
Θ(Bs)
Φ(Bs)

V
∼
t = Ψ(Bs)V

∼
t

=
∑

j∈Z>

ψjBsj(V
∼
t) =

∑

j∈Z>

ψjV
∼
t−sj ,

where the coefficients ψj ’s are given by the relationship (2.32).

Since {Zt}t∈Z is a causal and stationary process, from Proposition 3.1 of Section 3, the
autocovariance function of order h, h ∈ Z>, is given by

γZ (h) = σ2
ε∗

∑

j∈Z>

∑

υ∈Z>

ψjψυγ
V
∼ (h− s(j − υ)). (2.35)

Taking m = j − υ in the expression (2.35), one has

γZ (h) = σ2
ε∗

∑

m∈Z>

∑

υ∈Z>

ψm+υψυγ
V
∼ (h− sm). (2.36)

Replacing equation (2.34) into (2.36), one has the autocovariance function of a SAR-
FIMA(P, D,Q)s process given by

γZ (h) =





σ2
ε∗

∑

m∈Z>

γ
U
∼ (sm)γ

V
∼ (h− sm), if h = sm, m ∈ Z>;

0, ifh = sm + ζ, ζ ∈ A,

(2.37)
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where σ2
ε∗ = σ2

ε∗/σ2
ε¦ , {U

∼
t}t∈Z is a seasonal SARMA(P,Q)s process, {V

∼
t}t∈Z is a SARFI-

MA(0, D, 0)s process and {ε∗t }t∈Z is a white noise process with zero mean and variance
σ2

ε∗ = 1.

Let {Yt}t∈Z be an ARFIMA(p, d, q) process (see item (3) of Remark 2.2). From Theorem
13.2.2 item (d) of Brockwell and Davis (1991), the autocovariance function of the process
{Yt}t∈Z is given by

γY (h) = σ2
ε¦

∑

j∈Z>

γ
U
≈ (j)γ

V
≈ (h− j), (2.38)

where {U
≈

t}t∈Z is an ARMA(p, q) process with innovations as {ε>t }t∈Z, {V
≈

t}t∈Z is an ARFI-
MA(0, d, 0) process with innovations given by {ε̌t}t∈Z and {ε¦

t}t∈Z is a white noise process
with zero mean and variance σ2

ε¦ = σ2
ε>/σ2

ε̌ .

One can obtain the autocovariance function of a SARFIMA(p, d, q) × (P,D, Q)s process
by repeating the same method as for finding the autocovariance function of a SARFIMA
(P,D, Q)s process which is given by the expression (2.22), where {Zt}t∈Z is a SARFIMA
(P,D, Q)s process with innovation process {ε∗t }t∈Z, {Yt}t∈Z is an ARFIMA(p, d, q) process
with innovation process as {ε¦

t}t∈Z and {εt}t∈Z is a white noise process with zero mean
and variance σ2

ε = σ2
ε∗/σ2

ε¦ .

3 Causality and Invertibility Properties

This section shows necessary and sufficient conditions for a SARFIMA(p, d, q)× (P,D, Q)s pro-
cess to be causal and invertible. First, the following theorem presents these conditions for the
causality property.

Theorem 3.1. Let {Xt}t∈Z be a SARFIMA(p, d, q) × (P, D,Q)s process (see Definition 2.2).
Suppose d < 0.5, D < 0.5 and that the equations φ(z)Φ(zs) = 0 and θ(z)Θ(zs) = 0 have no
common zeroes. Then, {Xt}t∈Z is causal if and only if φ(z)Φ(zs) 6= 0, for all z ∈ Z, such that
|z| 6 1. The coefficients {ψj}j∈Z> of the infinite moving average representation are given by

ψ(z) =
∑

j∈Z>

ψjz
j =

θ(z)Θ(zs)
φ(z)Φ(zs)

(1− z)−d(1− zs)−D, |z| 6 1. (3.1)

Proof. Let {Xt}t∈Z be a SARFIMA(p, d, q)× (P, D, Q)s process, with zero mean, given by the
expression (2.1). First one needs to prove that if φ(z)Φ(zs) 6= 0, for all z ∈ Z, such that |z| 6 1,
then the process is causal.

From Theorem 13.2.2 in Brockwell and Davis (1991), the ARFIMA(p, d, q) process is causal
when d < 0.5 if and only if φ(z) 6= 0, for all |z| 6 1. Therefore, one can rewrite the equation
(2.1), with B = z, as

Φ(zs)(1− zs)DXt = Θ(zs)
θ(z)(1− z)−d

φ(z)
εt ⇐⇒ Φ(zs)(1− zs)DXt = Θ(zs)Yt, (3.2)

for all t ∈ Z, so that {Yt}t∈Z can be regarded as an ARFIMA(p, d, q) process. From Theorem
2.1 of Brietzke et al. (2005), the SARFIMA(0, D, 0)s process is causal when D < 0.5. Thus, the
equation (3.2) can be rewritten as

12



Φ(zs)Xt = Θ(zs)(1− zs)−DYt ⇐⇒ Φ(zs)Xt = Θ(zs)Zt, for all t ∈ Z, (3.3)

where {Zt}t∈Z is a SARFIMA(0, D, 0)s process.
To prove that the process in expression (3.3) is causal, first let us assume that Φ(zs) 6= 0,

for all |z| 6 1. Therefore, 1/Φ(zs) is an analytic function and it has a power series expansion.
Hence, there exists ε > 0 such that

1
Φ(zs)

=
∑

j∈Z>

ξjz
j = ξ(z), for all |z| < 1 + ε.

Since the series converges for |z| < 1 + ε, it also converges for |z| < 1 + ε
2 . Therefore,

limj→∞ ξj

(
1 + ε

2

)
= 0, that is, the sequence

{
ξj

(
1 + ε

2

)}
j∈Z>

is bounded and it converges.
Moreover, there exists a finite constant K > 0 such that,

∣∣∣∣ξj

(
1 +

ε

2

)j
∣∣∣∣ < K, that is, |ξj | < K

(
1 +

ε

2

)−j
, for all j ∈ Z>.

In particular, one has
∑

j∈Z>

|ξj | < K
∑

j∈Z>

(
1 +

ε

2

)−j
< ∞ and ξ(z)Φ(zs) ≡ 1, for |z| 6 1.

From Proposition 3.1.2 in Brockwell and Davis (1991), one can apply the operator ξ(·) to
both sides of the expression (3.3) to obtain Xt = ξ(B)Θ(Bs)Zt. Thus one has the desired
representation,

Xt =
∑

j∈Z>

ψjZt−j , for all t ∈ Z,

where the sequence {ψj}j∈Z> is specified by the relationship (3.1), when p = 0 = q and d = 0 =
D. Therefore, the process {Xt}t∈Z is causal.

Now, we will show that if {Xt}t∈Z is causal then, φ(z)Φ(zs) 6= 0, for all z ∈ Z, such that
|z| 6 1. It is enough to show that if the process given by the expression (3.3) is causal then,
Φ(zs) 6= 0, for all z ∈ Z, such that |z| 6 1. Let us assume that the process is causal, i.e.,
Xt =

∑
j∈Z> ψjZt−j , for some sequence {ψj}j∈Z> such that

∑
j∈Z> |ψj | < ∞. Then,

Θ(Bs)Zt = Φ(Bs)Xt = Φ(Bs)
∑

j∈Z>

ψjZt−j = Φ(Bs)ψ(B)Zt. (3.4)

Let η(z) be Φ(zs)ψ(z) =
∑

j∈Z> ηjz
j , for all |z| 6 1. The expression (3.4) can be rewritten

as
Q∑

l=0

ΘlZt−sl =
∑

j∈Z>

ηjZt−j . (3.5)

By taking the inner product in both sides of the equality (3.5) with Zt−sν , one has
Q∑

l=0

ΘlE(Zt−slZt−sν) =
∑

j∈Z>

ηjE(Zt−jZt−sν),
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where Zt is normally distributed with zero mean and variance equal to τ2, for any t ∈ Z. Thus,

τ2
Q∑

ν=0

Θν = τ2
sQ∑

j=0
j=s`

ηj , (3.6)

with ηj = 0, for all j > sQ and j 6= s`, ` ∈ Z>. Considering υ = j/s, in the right-hand side of
equation (3.6), one has

Q∑

l=0

Θl =
Q∑

υ=0

ηυ.

Therefore,

Θ(zs) = η(z) = Φ(zs)ψ(z), for|z| 6 1. (3.7)

Since Θ(·) and Φ(·) have no common zeroes,
∑

j∈Z> |ψj | < ∞ and Θ(zs) 6= 0, for |z| 6 1.
From expression (3.7) one concludes that Φ(zs) cannot be zero, for any |z| 6 1.

Lemma 3.1. Let {Xt}t∈Z be a causal SARFIMA(p, d, q) × (P, D, Q)s process (see Definition
2.2). Then,

∑
j∈Z> ψ2

j < ∞, where {ψj}j∈Z> are given by the expression (3.1).

Proof. From the causality property, there exists a sequence {ψj}j∈Z> such that
∑

j∈Z> |ψj | <
∞ and

Xt =
∑

j∈Z>

ψjεt−j , for all t ∈ Z,

where {εt}t∈Z is a white noise process and {ψj}j∈Z> are the coefficients given by the expression
(3.1). Since

∑
j∈Z> |ψj | < ∞, then

∑
j∈Z> |ψj |2 < ∞. Therefore,

∑
j∈Z> ψ2

j < ∞.

The following proposition gives the mean square and the almost sure convergences for the
coefficients of the infinite moving average representation for a SARFIMA(p, d, q) × (P, D,Q)s

process. We used this result to obtain the autocovariance function for this process.

Proposition 3.1. Let {Xt}t∈Z be a causal and stationary SARFIMA(p, d, q)× (P, D,Q)s pro-
cess, given by the expression (2.1). Then, the series

ψ(B)εt =
∑

j∈Z>

ψjBj(εt) =
∑

j∈Z>

ψjεt−j , (3.8)

converges absolutely with probability one and in the mean square sense to the same limit.

Proof. Let {Xt}t∈Z be a causal and stationary SARFIMA(p, d, q) × (P,D, Q)s process. One
wants to show the mean square convergence of the series ψ(B)εt, for any t ∈ Z, where the
coefficients {ψj}j∈Z> are given by the expression (3.1). Let m, n be non negative integers, such
that m < n and define Sm :=

∑m
j=0 ψjεt−j . Then,
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‖Sn − Sm ‖2 = E

∣∣∣∣∣∣

n∑

ν=0

ψνεt−ν −
m∑

j=0

ψjεt−j

∣∣∣∣∣∣

2

= E




n∑

j=m+1

ψjεt−j




2

= E




n∑

j=m+1

ψ2
j ε

2
t−j +

n∑

ν,j=m+1

ν 6=j

ψνψjεt−νεt−j


 = σ2

ε

n∑

j=m+1

ψ2
j ,

since {εt}t∈Z is a white noise process.
It is sufficient to show that

∑
ν∈Z> ψ2

ν < ∞. Since {Xt}t∈Z is a causal and stationary process,
from Lemma 3.1, one has

∑
ν∈Z> ψ2

ν < ∞. Therefore, for all ε > 0, there exists N(ε) > 0
sufficiently large, such that

∑n
j=m+1 ψ2

j < ε, for all n > m > N(ε). By Cauchy criterion, the
series (3.8) converges in mean square sense.

From Cauchy-Schwarz inequality, E(|εt|2) = E(εt)2 = σ2
ε < ∞, for all t ∈ Z. Thus, E(|εt|) <

∞, for all t ∈ Z, that is, sup
t
E(|εt|) < ∞. From the Monotone Convergence Theorem, one has

E


 ∑

j∈Z>

|ψj ||εt−j |

 = E


 lim

n→∞

n∑

j=0

|ψj ||εt−j |

 = lim

n→∞E




n∑

j=0

|ψj ||εt−j |



= lim
n→∞

n∑

j=0

|ψj |E(|εt−j |) 6 lim
n→∞

n∑

j=0

|ψj | sup
t
E(|εt|) = C < ∞,

since
∑

j∈Z> |ψj | < ∞ and supt E(|εt|) < ∞. Therefore,
∑

j∈Z> |ψj ||εt−j | and
∑

j∈Z> ψjεt−j are
both finite with probability one.

Let S denote the mean square limit. Hence, given ε > 0, there exists N ∈ N sufficiently
large, such that, for all n > N ,

‖ S −
n∑

j=0

ψjεt−j ‖2= E




∣∣∣∣∣∣
S −

n∑

j=0

ψjεt−j

∣∣∣∣∣∣

2
 < ε, that is,

lim
n→∞E




∣∣∣∣∣∣
S −

n∑

j=0

ψjεt−j

∣∣∣∣∣∣

2
 = 0.

Therefore, from Fatou’s lemma,

‖ S − ψ(B)εt ‖2 = E
(|S − ψ(B)εt|2

)
= E


lim inf

n→∞

∣∣∣∣∣∣
S −

n∑

j=0

ψjεt−j

∣∣∣∣∣∣

2


6 lim inf
n→∞ E




∣∣∣∣∣∣
S −

n∑

j=0

ψjεt−j

∣∣∣∣∣∣

2
 = 0,

showing that the limit S is equal to ψ(B)εt with probability one.
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Theorem 3.2. Let {Xt}t∈Z be a SARFIMA(p, d, q) × (P, D,Q)s process (see Definition 2.2).
Suppose d > −0.5, D > −0.5 and the equations φ(z)Φ(zs) = 0 and θ(z)Θ(zs) = 0 have no
common zeroes. Then, {Xt}t∈Z is invertible if and only if θ(z)Θ(zs) 6= 0, for all z ∈ Z, such
that |z| 6 1. The coefficients {πj}j∈Z> of the infinite autoregressive representation are given by

π(z) =
∑

j∈Z>

πjz
j =

φ(z)Φ(zs)
θ(z)Θ(zs)

(1− z)d(1− zs)D, |z| 6 1. (3.9)

Proof. We omit it. It can be obtained by following the same arguments as in Theorem 3.1.

Lemma 3.2. Let {Xt}t∈Z be an invertible SARFIMA(p, d, q)×(P, D, Q)s process (see Definition
2.2). Then,

∑
j∈Z> π2

j < ∞, where {πj}j∈Z> are the coefficients given by the expression (3.9).

Proof. From the invertibility property, there exists a sequence {πj}j∈Z> such that
∑

j∈Z> |πj | <
∞ and

εt =
∑

j∈Z>

πjXt−j , for all t ∈ Z,

where {εt}t∈Z is a white noise process and {πj}j∈Z> are the coefficients given by expression
(3.9). Since

∑
j∈Z> |πj | < ∞, then

∑
j∈Z> |πj |2 < ∞. Therefore,

∑
j∈Z> π2

j < ∞.

Proposition 3.2. Let {Xt}t∈Z be a stationary and invertible SARFIMA(p, d, q) × (P, D,Q)s

process (see Definition 2.2). Then, the series

π(B)Xt =
∑

j∈Z>

πjBj(Xt) =
∑

j∈Z>

πjXt−j , (3.10)

converges absolutely with probability one and in the mean square sense to the same limit.

Proof. We omit it. It can be obtained by following similarly to the proof in Proposition 3.1.

Remark 3.1. We define the function

SX (w) = fX (w)g(w), for 0 < w 6 π, (3.11)

where fX (·) is the spectral density function of a SARFIMA(0, d, 0)× (0, D, 0)s process, given by
the expression (2.4), and g : [−π, π] → (0, π] is a real slowly varying function at the seasonal
frequencies wj = 2πj

s , j = 0, 1, · · · , bs/2c, in the Zygmund sense (see Zygmund, 1959) and it has
bounded variation on (0, π] \⋃bs/2c

j=1 [wj − ε, wj + ε], for any ε > 0.
When g(w) ≡ 1, for all w ∈ (−π, π], SX (·) is the spectral density function of a SARFIMA

(0, d, 0)× (0, D, 0)s process.

Theorem 3.3. Let {Xt}t∈Z be a real SARFIMA(0, d, 0)×(0, D, 0)s process with spectral density
function given by the expression (3.11). Then, the asymptotic expression for the autocovariance
function of {Xt}t∈Z, of order h, h ∈ Z>, when h →∞, is given by

γX(h)=





δ∑

j=0

αj |h|2βj−1g

(
1
h

+wj

)
[sin(πβj−wjh)+o(1)], if h = s`, ` ∈ Z>,

0, if h=s`+ζ, ζ ∈A,

(3.12)
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where

δ =





⌊
s
2

⌋− 1, if s is even,

⌊
s
2

⌋
, if s is odd,

βj =





d + D, if j = 0,

D, if j 6= 0,
(3.13)

αj =





σ2
ε

π Γ(1− 2βj)s−2D
∣∣2 sin

(wj

2

)∣∣−2d
, if j 6= 0,

σ2
ε

π Γ(1− 2βj)s−2D, if j = 0,

(3.14)

with wj = 2πj
s , for j = 0, 1, · · · , bs/2c and g(·) given in Remark 3.1.

Proof. Let {Xt}t∈Z be a real SARFIMA(0, d, 0) × (0, D, 0)s process, whose spectral density
function is denoted by SX(·) and it is given by (3.11). Let g(·) denote the spectral density
function of the innovation process. Therefore, by definition of the autocovariance function of a
SARFIMA(0, d, 0)×(0, D, 0)s process, γX (h) = 0, for h = s`+ζ, with ζ ∈ A. The autocovariance
function of order h = s`, ` ∈ Z> and s even, is given by

γX (h) =
∫ π

−π
SX (λ) cos(λh)dλ = 2

∫ π

0
SX (λ) cos(λh)dλ

= 2
bs/2c−1∑

j=0

∫ wj+1

wj

SX (λ) cos(λh)dλ = 2
bs/2c−1∑

j=0

∫ w1

w0

SX (w + wj) cos((w + wj)h)dw (3.15)

= 2
bs/2c−1∑

j=0

[
cos(wjh)

∫ w1

w0

SX (w + wj) cos(wh)dw + sin(wjh)
∫ w1

w0

SX (w + wj) sin(wh)dw

]
,

where wj = 2πj
s , for j = 0, 1, · · · , bs/2c. The expression (3.15) follows immediately by consider-

ing λ = w + wj .
From expression (2.4), from the asymptotic behavior of the spectral density function of a

SARFIMA(0, d, 0) × (0, D, 0)s process (see item (i) of Theorem 2.1), and from Lemma 2 in
Giraitis and Leipus (1995) with l(·) ≡ g(·), one has
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γX (h) =
σ2

ε

π
s−2D

[
cos(w0h)|h|2(d+D)−1g

(
1
h

+ w0

)
Γ(1− 2(d + D))× [sin(π(d + D))+o(1)]

− sin(w0h)|h|2(d+D)−1g

(
1
h

+ w0

)
× Γ(1− 2(d + D))[cos(π(d + D)) + o(1)]

]

+
σ2

ε

π
s−2D

bs/2c−1∑

j=1

∣∣∣2 sin
(wj

2

)∣∣∣
−2d

×
[

cos(wjh)|h|2D−1g

(
1
h

+ wj

)
Γ(1− 2D)

×[sin(πD) + o(1)]− sin(wjh)|h|2D−1g

(
1
h

+ wj

)
Γ(1− 2D)[cos(πD) + o(1)]

]

=
σ2

ε

π
s−2D|h|2(d+D)−1g

(
1
h

+w0

)
Γ(1−2(d+D))[sin(π(d+D)−w0h)+o(1)]

+
σ2

ε

π
s−2D

bs/2c−1∑

j=1

∣∣∣2 sin
(wj

2

)∣∣∣
−2d

|h|2D−1g

(
1
h

+ wj

)
Γ(1− 2D)

×[sin(πD − wjh) + o(1)], (3.16)

when h →∞.
The autocovariance function of order h = s`, ` ∈ Z> and s odd, is given by

γX (h) = 2
∫ π

0
SX (λ) cos(λh)dλ=2

bs/2c−1∑

j=0

∫ wj+1

wj

SX (λ) cos(λh)dλ + 2
∫ π

wbs/2c−1

SX (λ) cos(λh)dλ

= 2
bs/2c−1∑

j=0

∫ w1

w0

SX (w+wj) cos((w+wj)h)dw+2
∫ w1

2

w0

SX (w+w[s/2]) cos((w+wbs/2c)h)dw(3.17)

= 2
bs/2c−1∑

j=0

[
cos(wjh)

∫ w1

w0

SX (w+wj) cos(wh)dw−sin(wjh)
∫ w1

w0

SX (w+wj) cos(wh)dw

]

+2 cos(wbs/2ch)
∫ w1

2

w0

SX (w+wbs/2c)cos(wh)dw−2 sin(wbs/2ch)
∫ w1

2

w0

SX (w+wbs/2c)sin(wh)dw,

(3.18)

with wj = 2πj
s , for j = 0, 1, · · · , bs/2c. The expression (3.17) follows immediately by considering

λ = w + wj .
From expression (2.4), from the asymptotic behavior of the spectral density function of a

SARFIMA(0, d, 0) × (0, D, 0)s process (see item (i) of Theorem 2.1), and from Lemma 2 in
Giraitis and Leipus (1995) with l(·) ≡ g(·), one has
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γX (h) =
σ2

ε

π
s−2D

[
cos(w0h)|h|2(d+D)−1g

(
1
h

+ w0

)
Γ(1− 2(d + D))[sin(π(d + D)) + o(1)]

− sin(w0h)|h|2(d+D)−1g

(
1
h

+ w0

)
Γ(1− 2(d + D))[cos(π(d + D)) + o(1)]

]

+
σ2

ε

π
s−2D

bs/2c−1∑

j=1

∣∣∣2 sin
(wj

2

)∣∣∣
−2d [

cos(wjh)|h|2D−1g

(
1
h

+ wj

)
Γ(1− 2D)

×[sin(πD) + o(1)]− sin(wjh)|h|2D−1g

(
1
h

+ wj

)
Γ(1− 2D)[cos(πD) + o(1)]

]

+
σ2

ε

π
s−2D

∣∣∣2 sin
(wbs/2c

2

)∣∣∣
−2d [

cos(wbs/2ch)|h|2D−1g

(
1
h

+ wbs/2c

)
Γ(1− 2D)

×[sin(πD) + o(1)]− sin(wbs/2ch)|h|2D−1g

(
1
h

+ wbs/2c

)
Γ(1− 2D)[cos(πD) + o(1)]

]

=
σ2

ε

π
s−2D|h|2(d+D)−1g

(
1
h

+ w0

)
Γ(1− 2(d + D))[sin(π(d + D)− w0h) + o(1)]

+
σ2

ε

π
s−2D

bs/2c∑

j=1

∣∣∣2 sin
(wj

2

)∣∣∣
−2d
|h|2D−1g

(
1
h

+wj

)
Γ(1− 2D)[sin(πD − wjh)+o(1)](3.19)

when h →∞.
Comparing equations (3.16) and (3.19), one has the asymptotic expression of the autocovari-

ance function of {Xt}t∈Z of order h, for h ∈ Z>, when h →∞, given by expressions (3.12)-(3.14).

The following proposition presents the asymptotic expression for the autocovariance function
of a SARFIMA(p, d, q)× (P, D,Q)s process.

Proposition 3.3. Let {Xt}t∈Z be a real SARFIMA(p, d, q) × (P, D,Q)s process, causal and
invertible, given by the expression (2.1), with p, P , q, Q and s finite and non negative integers.
Then, the asymptotic expression of the autocovariance function of {Xt}t∈Z of order h, h ∈ Z>,
when h →∞, is given by

γX(h)=





δ∑

j=0

αj |h|2βj−1g(wj)[sin(πβj−wjh)+o(1)], if h = s`, ` ∈ Z>,

0, if h = s` + ζ, ζ ∈ A,

(3.20)

where αj, βj and δ are given, respectively, by equations (3.14) and (3.13), wj = 2πj
s , for j =

0, 1, · · · , bs/2c and

g(w) :=
∣∣∣∣
θ(e−iw)Θ(e−isw)
φ(e−iw)Φ(e−isw)

∣∣∣∣
2

. (3.21)
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Proof. Let {Xt}t∈Z be a SARFIMA(p, d, q)× (P, D, Q)s process, with zero mean, given by the
expression (2.1). The real function g(·), defined by the expression (3.21), has bounded derivative.
One needs to proof that g(·) is a slowly varying function, for all 0 < w 6 π, such that g(w) 6= 0.
By Binghan et al. (1987), a sufficient condition for a function f(·) be slowly varying at w = 0,
in Zygmund’s sense, is the existence of its derivative such that

lim
w→0

wf ′(w)
f(w)

= 0.

Since the process is causal and invertible (see Theorems 3.1 and 3.2, respectively), one has
g(w) 6= 0, for all 0 < w 6 π.

Therefore,

ln(g(w)) = ln |θ(e−iw)|2 + ln |Θ(e−isw)|2 − ln |φ(e−iw)|2 − ln |Φ(e−isw)|2. (3.22)

By definition, g′(w) = g(w)[ln(g(w))]′. (3.23)

From equation (2.27), one has ln |θ(e−iw)|2 equal to

ln

∣∣∣∣∣
q∏

m=1

(
1− ρm,1e

−iw
)
∣∣∣∣∣
2

=
q∑

m=1

ln
(
1−2ρm,1 cos(w)+ρ2

m,1

)
. (3.24)

Therefore,

[ln |θ(e−iw)|2]′ =
q∑

m=1

2ρm,1 sin(w)(
1−2ρm,1 cos(w)+ρ2

m,1

) , for |ρm,1| < 1·

Similarly, one can rewrite the others polynomials and, by equation (3.21), the expression
(3.23) can be given by

g′(w) =
∣∣∣∣
θ(e−iw)Θ(e−isw)
φ(e−iw)Φ(e−isw)

∣∣∣∣
2

×
[

q∑

m=1

2ρm,1 sin(w)(
1−2ρm,1 cos(w)+ρ2

m,1

) +
Q∑

l=1

2sρ
l,3

sin(sw)(
1−2ρ

l,3
cos(sw)+ρ2

l,3

)

−
p∑

`=1

2ρ
`,2

sin(w)(
1−2ρ

`,2
cos(w)+ρ2

`,2

) −
P∑

r=1

2sρr,4 sin(sw)(
1−2ρr,4 cos(sw)+ρ2

r,4

)
]
· (3.25)

From equation (3.23), to verify if g(·) is a slowly varying function for all w ∈ (0, π], such that
g(w) 6= 0, one needs to prove that limw→0 w[ln(g(w))]′ = 0. First, one observes that

lim
w→0

u∑

r=1

2ρr,ι sin(w)(
1−2ρr,ι cos(w)+ρ2

r,ι

) = 0 = lim
w→π

u∑

r=1

2ρr,ι sin(w)(
1−2ρr,ι cos(w)+ρ2

r,ι

) , (3.26)

where u is fixed and
(
1−ρr,ι

)2 6= 0, for |ρr,ι | < 1 and ι ∈ {1, · · · , 4}. The left-hand side of the
equality in expression (3.26) implies that the four terms inside the brackets in expression (3.25)
go to zero. This shows that g(w) is a slowly varying function at w = 0. Now, one needs to verify
if g(w) is a slowly varying function at w ∈ (0, π]. For this, one needs to show that

lim
w→π

w [ln(g(w))]′ = lim
w→π

wg′(w)
g(w)

= 0. (3.27)
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Note also, in a similar way, that the right-hand side of the equality in expression (3.26)
implies g(·) is a slowly varying function at w ∈ (0, π], such that g(w) 6= 0.

One needs to verify if g(·) is of bounded variation at (0, π]. Let 0 < x0 < x1 < · · · < xk 6 π
be a partition of the interval (0, π]. Then,

k∑

j=1

|g(xj)− g(xj−1)| 6
k∑

j=1

(|g(xj)|+ |g(xj−1)|) < ∞, (3.28)

since g(w) is bounded, for all w ∈ (0, π]. Thus, g(·) is of bounded variation at the interval (0, π].
As limh→∞ g

(
1
h + w

)
= g(w), from Theorem 3.3, one has the asymptotic expression of the

autocovariance function for a SARFIMA(p, d, q)× (P,D, Q)s process given by expression (3.20),
where g(·) is given by (3.21).

4 Ergodicity Property

In this section we analyze the ergodicity of a SARFIMA(p, d, q)× (P, D,Q)s process.

Theorem 4.1. Let {Xt}t∈Z be a fractionally integrated ARMA process, as in item (3) of Remark
2.2, with mean µ = 0, where {εt}t∈Z is a white noise process. If {Xt}t∈Z is a stationary and
causal process then, it is ergodic.

Proof. Let {Xt}t∈Z be a fractionally integrated ARMA process with µ = 0. From causality
one has

Xt =
∑

j∈Z>

ψjεj−t, for all t ∈ Z,

where {ψj}j∈Z> are the infinite moving average representation coefficients of the process.
From Durrett (1996) (see Theorem 1.3 in Chapter 6), one needs to prove that

∑
j∈Z> ψ2

j < ∞.
Since {Xt}t∈Z is a causal and stationary process, one has

γX (0) = E(X2
t ) = σ2

ε

∑

j∈Z>

ψ2
j < ∞,

that is,
∑

j∈Z> ψ2
j < ∞. Therefore, the process {Xt}t∈Z is ergodic.

Corollary 4.1 presents the ergodicity for a SARFIMA(p, d, q) ×(P, D, Q)s process.

Corollary 4.1. Let {Xt}t∈Z be a causal and stationary SARFIMA(p, d, q)× (P, D,Q)s process
(see Definition 2.2). Then, {Xt}t∈Z is an ergodic process.

Remark 4.1. Since the series
∑

j∈Z> ψj < ∞ and the coefficients ψj ’s are positive real numbers
then,

∑
j∈Z> ψ2

j < ∞. Therefore, a SARFIMA(p, d, q) × (P, D,Q)s process is stationary and
ergodic.

Remark 4.2. The ergodicity of a SARFIMA(p, d, q)×(P, D, Q)s process is very important for the
purpose of Monte Carlos’s simulation. For an extensive Monte Carlo’s simulation study, where
several estimation procedures are presented for all parameters of a SARFIMA(p, d, q)×(P, D,Q)s

process, see Bisognin and Lopes (2008). This companion paper, to be published elsewhere, also
presents forecasting and an interesting application for this process.
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5 Conclusions

In this paper we give several theoretical properties of SARFIMA(p, d, q)× (P, D,Q)s processes.
We show the spectral density function and its behavior near the seasonal frequencies, the sta-
tionarity, the intermediate and long memory properties and the autocovariance function and its
asymptotic expression. We also analyze the ergodicity, causality and invertibility conditions for
these processes.
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