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Abstract
The goal of this work is to study the properties of the likelihood ratio tests comparing

base substitution models. These are the most widely used hypothesis tests. With mild
regularity conditions, we show that the asymptotic distribution of the likelihood ratio statistic
test, under the alternative hypothesis, is a non-central Chi-square χ2

k(D) distribution. The
asymptotic normal distribution of the likelihood ratio test is proved when the sequence length
S goes to infinity. We also propose a consistent estimator for the non-centrality parameter
D. Through asymptotic theory and based on this consistent estimator for D, we propose a
low computational cost estimator for the power of the likelihood ratio test. The methodology
is applied to 17 different gene sequences of the ECP-EDN family in primates.

Keywords. Phylogenetic Inference; Monte Carlo Simulation; Evolutionary Model; Maxi-
mum Likelihood Function; Hypothesis Test; Power of the Test; Asymptotic Distribution.

1 Introduction

In the last few years the availability of sequenced DNA has increased dramatically. These
gene sequences not only contain precious information about regular biological function
and disease determination, but also bear witness to the evolutionary history of the group
of organisms to which they belong. Evolutionary studies using phylogenetics (study of
the evolutionary relationship between organisms) have been employed for a variety of pur-
poses, including better definition of systematic classification, uncovering gene histories of
duplication events (see Bielawski and Yang, 2003), dating the most recent common ances-
tor of clades (see Ho and Phillips, 2009) and inferring the presence of selective pressure
on certain portions of the DNA (see Suzuki and Gojobori, 1999).

Genes and genomes are made with DNA, a polymer of four distinct monomers called
adenine (A), guanine (G), cytosine (C), and thymine (T). DNA sequences are therefore
naturally represented as words in the {A,C,G,T} alphabet, where the letters of the al-
phabet are called “nucleotides” or “bases”. To estimate the number of substitutions in a
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DNA sequence, one needs a probabilistic model to describe changes between nucleotides.
Continuous-time Markov chains are commonly used for this purpose. The nucleotide sites
in the sequence are normally assumed to be evolving independently of each other. Substi-
tutions at any particular site are described by a Markov chain, with the four nucleotides
as being the states of the chain. The probability with which the chain jumps into other
nucleotide states depends on the current state, but not on how the current state is reached.
Besides this basic assumption, one often place further constraints on substitution rates be-
tween nucleotides, leading to different models of nucleotide substitution (see Yang, 2007).
In this work we consider the nucleotide substitution models proposed by Jukes and Cantor
(1969), Kimura (1980), Felsenstein and Churchill (1996) and Hasegawa et al. (1985)

The applications here mentioned, and many other important biological questions re-
garding evolutionary history and phylogenies, may be tackled by statistical analysis of
DNA sequences using the likelihood function. In order to make a proper analysis, a base
substitution model is needed. Since several of these models exist, statistical methods that
choose in an appropriate way among them are important in this field (see Durbin et al.,
2004; Felsenstein, 2004 and Yang, 2007).

The goal of this work is to study the likelihood ratio (LR) test properties for com-
parisons of base substitution models. Among all classes of statistical tests, the likelihood
ratio test is the most widely used. Here we consider the hypothesis test of the form
H0 : θr = θr0 versus H1 : θr 6= θr0 , where θ = (θr, θs) ∈ Θ is the parameter vector of
the substitution model under this hypotheses test.

There are two main reasons for using these tests to make sure the appropriate model
is chosen. First of all, several procedures that use the likelihood function are model
sensitive (see Goldman, 1993). Thus, the use of an inappropriate model might affect the
analysis. On the other hand, some of the available base substitution models have many
parameters, making the whole analysis computationally intensive. Thus, one wants to
select a complex model only if it presents a significant increase in performance, compared
to simpler versions. Another reason for investing time in model selection is that these
models often represent specific biological features of the DNA evolving process. Thus,
deciding which is the best model can bring insights to the actual evolution of a particular
gene. For either reason, biologists frequently use LR tests for model selection, and they
have been implemented in a number of bio-informatics softwares, such as PALM (see
Yang, 2007) and MODELTEST (see Posada and Crandall, 1998). These tests are usually
concerned with the probability of selecting a complex model by simple chance, when in
fact the simple model is correct (type I error), but they seldom consider the probability
that the null hypothesis is not rejected due to the lack of statistical power, and not to
biological reasons. To address this matter, we study here the power of these LR tests for
base substitution model selection.

Through asymptotic theory, we propose a low computational cost estimator for the
power of the likelihood ratio test. This easy implementation and quick response estimator
is based both on the asymptotic non-central χ2

k(D) distribution of the LR statistic test,
under H1, and on a consistent estimator for the non-centrality parameter D. We also study
the distribution of the test’s statistic through Monte Carlo simulations. As an application
of the methodology, we consider 17 different sequences of the ECP-EDN primate gene
family.

The paper is organized as follows. In Section 2, we present the basic definitions for
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the models of DNA base substitution. In Section 3 we present the assumptions under
which the likelihood ratio tests are built. The regularity conditions and the statistic of
the test are also presented there. Section 4 states the main results of this work related
to the power and the asymptotic normal distribution of the LR test, under H1, when the
sequence length goes to infinity. The proof of all results are given in the Appendix. Section
5 presents the estimation of the non-centrality parameter D and, as a consequence, we also
present an estimator for the power of the LR test that requires a low computational effort.
In Section 6 a Monte Carlo simulation study is conducted together with the analysis of 17
primate DNA sequences. Section 7 concludes the paper.

2 Models of DNA Base Substitution

Continuous time Markov chains are commonly used to assign probabilities to mutational
events. The commonly used models assume that the nucleotide sites of the DNA sequence
evolve independently, according to the same process (see Durbin et al, 2004 and all refer-
ences therein). Base substitutions at any given site are described by a Markov chain with
the four nucleotides (Adenine A, Guanine G, Cytosine C and Thymine T) as its states.
The process is assumed to have reached stationarity.

For the sake of simplicity, we shall denote in the sequel the four distinct nucleotides
by the numbers 1 to 4. The rate matrix of substitution models Q is given by

Q =




h1 α2π2 α4π3 α6π4

α1π1 h2 α8π3 α10π4

α3π1 α7π2 h3 α12π4

α5π1 α9π2 α11π3 h4


 , (2.1)

where the value hl is such that the sum of elements in row l is 0, for all l ∈ {1, · · · , 4}.
Note that the stationary vector for this process is

p0 = (π1, π2, π3, π4), (2.2)

where πi represents the proportion of base i in the sequences, with i ∈ E = {1, 2, 3, 4}.
Four different models for this process are considered in this paper: the model JC69

(Jukes and Cantor, 1969) assumes that all bases have the same frequencies in the se-
quences and that all mutations have equal probabilities; the model K80 (Kimura, 1980)
also assumes the homogeneous distribution for the base frequencies, but assesses different
probabilities for transitions and transversions; the model F81 (Felsenstein and Churchill,
1996) allows different probabilities for the bases and assumes that mutations are propor-
tional to base frequencies; and the model HKY85 (Hasegawa et al., 1985) allows different
probabilities for the bases, but distinguishes between transitions and transversions. The
constraints imposed by these models on the rates of matrix (2.1) are presented in Table
2.1.

The likelihood function L ≡ L(M|X) is defined as the probability of a certain model M,
given the observed data X and a known topology F . It can be obtained as the probability
that the model M assigns to the data X, regarding that the phylogenetic structure related
to the sequences is observed. For each site, given the phylogeny, this probability is obtained
by adding the probability of mutational events, over all possible base combinations at the
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Table 2.1: Constraints on Model Parameters.

Model p0 Mutation Rates
JC69 (1

4 , 1
4 , 1

4 , 1
4) α1 = α2 = α3 = α4 = α5 = α6 =

α7 = α8 = α9 = α10 = α11 = α12

K80 (1
4 , 1

4 , 1
4 , 1

4) α1 = α2 = α11 = α12;
α3 = α4 = α5 = α6 = α7 = α8 = α9 = α10

F81 (π1, π2, π3, π4) α1 = α2 = α3 = α4 = α5 = α6 =
α7 = α8 = α9 = α10 = α11 = α12

HKY85 (π1, π2, π3, π4) α1 = α2 = α11 = α12;
α3 = α4 = α5 = α6 = α7 = α8 = α9 = α10

internal nodes of the tree. Since independent sites are assumed, the likelihood function of
the entire sequence is obtained as the product of that probability for each site. Felsenstein
(1981) proposes the use of a pruning algorithm to make these computations feasible.
Although neighboring nucleotides in a DNA sequence are not always independent, the
models do assume independence of evolution at different sites.

3 Likelihood Ratio Tests

The likelihood ratio (LR) test is one of the most used method for choosing between sub-
stitution models. All models presented here have the following common assumptions:

A1. The sequences are related by a phylogeny;

A2. Mutations in all sites are independent and identically distributed;

A3. Mutation probabilities are given by a Markov chain with rate matrix in the form of
expression (2.1).

The distinction between models is made by the different constraints on matrix Q.
Thus, let

H0 : Q = QM0

H1 : Q = QM1 , (3.1)

where M0 and M1 represent base substitution models from Table 2.1.
The statistic of the likelihood ratio test for comparing H0 versus H1 is given by

−2∆(X) = −2
(
log

(
L̂(M0|X)

)
− log

(
L̂(M1|X)

))
, (3.2)

where L̂(Mj|X) is the maximum of the likelihood function under Hj , for j ∈ {0, 1}.
The asymptotic behavior of −2∆(X) can be used in order to assess the test signifi-

cance level. Let FX(·) be the distribution function of the random matrix X and θ be its
parameter vector. Suppose the following regularity conditions

∥∥∥∥E
(

∂

∂θu
log(L)

∂

∂θw
log(L)

)∥∥∥∥ < ∞ (3.3)
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and

E
(

∂

∂θu
log(L)

∂

∂θw
log(L)

)
+ E

(
∂2

∂θu∂θw
log(L)

)
=

∂2

∂θu∂θw

∫
L = 0, (3.4)

hold, for all θu, θw ∈ θ.
Consider the hypotheses test

H0 : θr = θr0 versus H1 : θr 6= θr0 . (3.5)

Then, under H0, the statistic −2∆(X) of the likelihood ratio test converges in distri-
bution to a Chi-square χ2

k distribution, with k degrees of freedom, as the sequence length
S goes to infinity. Notice that the degrees of freedom k are determined by the difference
of the free parameters between the two models which are being tested (see Wilks, 1962).

For the models in Table 2.1, the regularity conditions (3.3) and (3.4) are satisfied, as
long as the tree topology is known (see Cybis, 2009).

There are many studies in the literature that assess the asymptotic distribution of the
test statistic in expression (3.2), under H0. See, for instance, Goldman (1993) and Whelan
and Goldman (1999). These authors have shown, by simulation, that the χ2

k distribution
is achieved for small values of S, such as S = 50 or 100.

4 Test Power

The reason for using a likelihood ratio test to choose between any two substitution models
is the selection of a more complex model only if it represents a significant improvement in
performance. Thus, the null hypothesis is rejected only if the probability that the model
M0 generates data X is very small. On the other hand, when a simpler model is not
rejected, the probability that the alternative model M1 is better for the data, but the test
was unable to detect that, is rarely considered.

The power of the test, defined as the probability that the test rejects H0, given that
H1 is true, is an important feature for model selection. Thereafter, it should be always
considered, whenever an informed decision on the best substitution model is desired.

An asymptotic result by Wald (1943) is available to determine the power of the test.
Let θr be the parameter vector of the substitution model under the hypotheses test in
(3.5). Then, assuming that the regularity conditions (3.3) and (3.4) hold, the asymptotic
distribution of −2∆(X), under H1, is a non-central χ2

k(D) distribution, with k degrees of
freedom and non-centrality parameter D. The non-centrality parameter D depends on S
and is given by

DS = (θr − θr0)IS(θr − θr0)
′, (4.1)

where IS is the Fisher information matrix defined as

IS ≡
(
E

[
∂2 log(L(θ|X1, · · · ,XS))

∂θu∂θw

])

θu,θw∈θr

= (Iu,w)u,w. (4.2)

Notice that, for the models in Table 2.1, this result also holds, since it relies on the
same regularity conditions needed to establish the convergence under H0.

Thus, the power of the LR test can be obtained as
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P̂ower = P
(
χ2

k(D̂S) > χ2
k,α

)
, (4.3)

where χ2
k,α represents the α%-quantile of the central χ2

k distribution.
The above result states that for large sequence length the distribution of −2∆(X),

under H1, approaches a non-central Chi-square distribution. However, if we use even
longer sequences, then we have the result given by the following theorem.

Theorem 4.1. Let the likelihood ratio test, given in expression (3.5), be the test for com-
paring two substitution models. Let the statistic −2∆(X) of the LR test be given by the
expression (3.2). Then, the asymptotic distribution of −2∆(X), under H1, is given by

−2∆(X)− (k + DS)√
2k + 4DS

d−→ Z, when S →∞, (4.4)

where the degrees of freedom k are determined by the difference of the free parameters
between the models under H1 and H0, respectively, DS is defined by (4.1) and Z ∼ N(0, 1).

Proof: See the Appendix. ¤

While the asymptotic distribution of the test statistic under the null hypothesis de-
pends only on the number of free parameters of the models, under the alternative hypoth-
esis it depends on a number of different factors. Consequently, the power of the LR tests
cannot be determined beforehand as it is done for the critical value.

Remark 4.1. One of the main factors that affect the power of the test is the sequence
length S. It can be easily shown that the power of the LR test approaches 1 as S increases.
Under i.i.d. site assumption, it is easy to show that IS = SI1 (see Cybis, 2009), where

I1 ≡
(
−E

[
∂2 log(L(θ|X1))

∂θu∂θw

])

θu,θw∈θr

.

Therefore, the expression (4.1) can be rewritten as

DS = (θr − θr0)IS(θr − θr0)
′ = S(θr − θr0)I1(θr − θr0)

′. (4.5)

From the expression (4.5) above, when S →∞, the non-centrality parameter DS also goes
to infinity. And P(χ2

k(DS) > χ2
k,α) → 1, when DS →∞.

The power of the LR test is also affected by the values of the parameters being tested.
All other factors remaining constant, it is quite straightforward to observe that the greater
the difference among the actual values of the parameters and the ones under H0, the
greater the power of the LR test. These both results are expected. The sequence length
S represents here the sample size, and usually longer sequences result in an increase of
the ability to distinguish between any two models. And the difference among the true
parameter values and the ones specified under H0 is what we are trying to decide about.
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5 Estimation of the Power of the Test

We observe that the non-centrality parameter DS , given in (4.1), depends on the Fisher
information matrix, which does not have a closed expression for these models (because of
the different trees being used). So, generally, there is no closed form expression for the
parameter DS . Nevertheless, the power of the LR test can be estimated. In this section
we shall present a computational and a theoretical approach for its estimation.

5.1 Monte Carlo Simulations

Monte Carlo simulations have been used to assess different characteristics of the distri-
bution of −2∆(X), under H0. See, for instance, Goldman (1993), Whelan and Goldman
(1999) and Yang et al. (1994). Here we use a similar approach to study the test power.
For this purpose, we simulate sequences according to the known phylogenetic tree, obtain
the test statistic and accumulate the results, under both models of H0 and H1. A positive
aspect of Monte Carlo simulations is that, unlike theoretical asymptotic distributions, it
doesn’t depend on large sample size to be accurate. It can be used to assess the exact
distribution of the LR test statistic for any sequence length. Due to the many replications
needed to obtain reliable information of the distributions being studied, Monte Carlo sim-
ulations have high computational cost. And this cost only increases with the complexity
of the models. In many situations these simulations are not practical to assess the power
of the test in every day applications. In view of this, in the next section, we discuss an
easier procedure to obtain the power.

5.2 Estimation of the Non-centrality Parameter

The power estimation of the LR test by Monte Carlo simulations involves considerable
computational effort. Thus, it is a suitable method for studying the test properties, but
not practical enough to be considered whenever the LR test is applied to biological data.
With the aid of the asymptotic theory, we propose an estimator for the power of the LR
test that does not require more computational effort than already needed for obtaining
the test statistic.

Under the alternative hypothesis H1, the asymptotic distribution of −2∆(X) is a
non-central χ2

k(DS) distribution. The degrees of freedom k are easily determined by the
difference of free parameters between the two models under H1 and H0, respectively.
However, the non-centrality parameter DS , defined in expression (4.1), depends on the
actual values of the parameters under testing, and on the Fisher information matrix given
by (4.2). In real cases, since these quantities are unknown, they must be estimated. To
estimate the Fisher information matrix, we use the observed Fisher information matrix
ÎS = (Îu,w)u,w, whose entries are given by

Îu,w = − ∂2 log(L)
∂θu∂θw

∣∣∣∣
θ=θ̂

(5.1)

for all θu, θw ∈ θr, where L is the likelihood function and θ̂ is the maximum likelihood
estimator for θ.
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Most computational packages that consider the likelihood function for the analysis
of DNA sequences already use the observed Fisher information matrix for estimating
the variance of the maximum likelihood estimates. Thus, power estimation through this
statistic would not represent an increase in computational effort.

In the following lemma we propose an estimator for the non-centrality parameter DS

and for the LR test power.

Lemma 5.1. Let the statistic −2∆(X) of the LR test be given by expression (3.2). Consider
its asymptotic distribution, under H1, given by Theorem 4.1. Then, the non-centrality
parameter DS, given in (4.1), can be estimated by

D̂S = (θ̂r − θr0 )̂IS(θ̂r − θr0)
′, (5.2)

where θ̂r is the maximum likelihood estimator for θr and ÎS is the observed Fisher infor-
mation matrix, given in expression (5.1).

Moreover, the test power can be estimated by

P̂oder = P
(
χ2

k(D̂S) > χ2
k,α

)
, (5.3)

where the degrees of freedom k are determined by the difference of the free parameters
between the models under H1 and H0, respectively, χ2

k(D̂S) is a non-central Chi-square
distribution, with k degrees of freedom and non-centrality parameter D̂S and χ2

k,α repre-
sents the α%-quantile of the central χ2

k distribution.

Proof: The proof follows immediately from the definitions of the non-centrality parameter
DS and of the LR test power. ¤

The following theorem establishes the consistency of the estimator D̂S , proposed in
Lemma 5.1. Note that an estimator θ̂ is consistent for the parameter θ if and only if
θ̂

p−→ θ (that is, limn→∞ P(|θ̂ − θ| < ε) = 1, for all ε > 0).

Theorem 5.1. Let the likelihood ratio test, given in expression (3.1), be the test for com-
paring two substitution models. Let D̂S be the estimator for the non-centrality parameter
DS be given by Lemma 5.1. Then, D̂S is a consistent estimator for the parameter D.

Proof: See the Appendix. ¤

6 Simulations and Analysis of DNA Sequences

In this section we present a Monte Carlo simulation study to analyze the result of Theorem
4.1 and an application based on 17 different gene sequences of the ECP-EDN primate
family.



Power of LR Test for DNA Models 9

6.1 Monte Carlo Simulations

Here we present a Monte Carlo simulation study to see how different sequence lengths
S, different number N of species and different parameters for the models can affect the
results in Theorem 4.1. For this purpose, we consider three different trees: Tree 1 has
N = 4; Tree 2 has N = 13 and Tree 3 has N = 19 different species (see Figure 6.1). We
also consider four LR tests for comparing 4 different base substitution models based on
these trees: JC69 × K80, JC69 × F81, K80 × HKY85 and F81 × HKY85.

These three phylogenetic trees, originally estimated from real DNA sequences, are
used as examples in the PAML package (see Yang, 2007). For each phylogenetic tree,
descendent sequences were generated with length S ∈ {100; 500; 1, 000; 2, 000}, according
to the four models involved in hypotheses test. For the transition and transversion ratio
rate K = α1/α3 of the base substitution models, from Table 2.1, we consider K ∈ {3, 5}
for the model K80 and K = 3 for the model HKY85. For models F81 and HKY85 we
consider p0 = (0.2, 0.3, 0.3, 0.2) while, for models JC69 and K80, the values of p0 are the
ones given in Table 2.1. For all simulations we consider Re = 1, 000 replications. The
choice of the parameter values was based on real sequence analysis so that they would
make biological sense.

Figure 6.1: Simulation Trees.

Figure 6.2 shows the estimated distribution for the test statistic −2∆(·), under H1,
for the JC69 × K80 test, based on Tree 1, for different sequence lengths S. One observes
that for sequence length S = 500, the shape of the distribution is already very close to the
normal distribution.

To assess the distribution of the statistic −2∆(·), given by the expression (3.2), we
consider the Shapiro-Wilks goodness of fit test (see Wilks, 1962) for each pair of four
models based on each tree in Figure 6.1. The results are reported in Table 6.1. From
Table 6.1 we observe that the statistic −2∆(X) has normal distribution whenever the
sequence length S ∈ {6, 000; 10, 000}, for all four tests considered here. For this Monte
Carlo experiment, when S = 100, the Shapiro-Wilks test rejects the hypothesis that the
distribution of the statistic −2∆(X) is normally distributed, for any of the four models.
When S = 2, 000, only for models JC69 × K80, considering any tree and for F81 ×
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Figure 6.2: Estimated Distribution of −2∆(·), under H1, for JC69 × K80 Test, Based on
Tree 1, for Different Sequence Lengths S.

HKY85, when using Tree 2, the Shapiro-Wilks test accepts the normal distribution for the
statistic, under the null hypothesis of normality. Therefore, from Table 6.1, we observe
that Theorem 4.1 holds for sequence length of at least 6, 000 for the considered tests and
trees.

No direct correlation between the number of sequences N and the power of the test
were noted in the simulations. Tree 2, with intermediate number of sequences N = 13,
presented the highest test power for all conducted simulations. But further investigations
(see Cybis et al., 2010) show strong correlation between test power and total tree length.

Table 6.1: Shapiro-Wilks Test For Testing Normality.

Test Tree S = 100 S = 2, 000 S = 6, 000 S = 10, 000
Statistic p-value Statistic p-value Statistic p-value Statistic p-value

1 0.9592 4.427e-16* 0.9977 0.1733 0.9981 0.3066 0.9987 0.6856
JC69 × K80 2 0.9863 4.727e-08* 0.9986 0.6550 0.9967 0.0379 0.9984 0.4755

3 0.9662 1.749e-14* 0.9974 0.1073 0.9984 0.5029 0.9979 0.2833
1 0.9640 5.353e-15* 0.9958 0.0084* 0.9973 0.0899 0.9991 0.9009

F81 × HKY85 2 0.9830 2.167e-09* 0.9990 0.8517 0.9973 0.0894 0.9980 0.2933
3 0.9714 3.936e-13* 0.9958 0.0085* 0.9968 0.0469 0.9983 0.4459
1 0.9584 2.997e-16* 0.9942 0.0007* 0.9961 0.0142 0.9977 0.2091

JC69 × F81 2 0.9629 2.932e-15* 0.9949 0.0020* 0.9988 0.7381 0.9984 0.5241
3 0.9316 <2.20e-16* 0.9915 1.51e-05* 0.9980 0.2951 0.9983 0.4426
1 0.9552 <2.20e-16* 0.9932 0.0002* 0.9959 0.0103 0.9979 0.2769

K80× HKY85 2 0.9672 3.130e-14* 0.9952 0.0031* 0.9982 0.3764 0.9962 0.0191
3 0.9367 <2.20e-16* 0.9956 0.0060* 0.9983 0.4994 0.9993 0.9965

Note: All tests are conducted with 99% confidence level and symbol “ ∗ ” means rejection.

6.2 Analysis of DNA Sequences

We consider for the application 17 different sequences of the ECP-EDN primate gene
family with S = 483. The ECP-EDN gene family is composed of two ribonucleases (ECP
and EDN) that are responsible for the inespecific immune response in these animals. These
sequences are also considered by Bielawski and Yang (2003). For the application analysis
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we consider the same phylogenic topology as obtained by Bielawski and Yang (2003).
Figure 6.3 presents this phylogeny, where the circle near to the tree root represents a gene
duplication event.

Hylobates EDN

Orang EDN
Gorilla EDN

Chimp EDN
Human EDN

Macaq EDN

Cercopith EDN

Macaq2 EDN

Papio EDN

Orang ECP

Macaq ECP

Macaq2 ECP
Goril ECP

Chimp ECP
Human ECP

OwlMonkey EDN
Tamarin EDN

Figure 6.3: Phylogenetic Tree for the Primate Gene Family ECP-EDN, with S = 483.

As in the Monte Carlo simulations (see Section 6.1), here we also consider four models:
JC69, K80, F81 and HKY85. The maximum likelihood estimates for the parameters of the
last three models are presented in Table 6.2. The software PAML, used in this analysis,
sets all α parameters of the JC69 model to 1. In Table 6.2 we present the estimates of
the model parameters, with their asymptotic standard error (denoted by ase), given by
the PAML software. To give also the bias, standard error (se) and mean square error
(mse) values of these estimates, we consider the Jackknife methodology (see Efron, 1982)
to produce 483 different samples (one for each site of the sequence) for each model. One
observe, from Table 6.2, that for each estimate, the standard error obtained from the
Jackknife procedure is very similar to the asymptotic standard error. The mean square
error values are small for all nucleotide probabilities. We also consider four model tests:
JC69 × K80, JC69 × F81, K80 × HKY85 and F81 × HKY85. The results for these four
tests are presented in Table 6.3.

The distributions of the test statistic −2∆(·), both under H0 and under H1, were
obtained by Monte Carlo simulation. Figure 6.4 presents the histograms of the −2∆(·)
distribution, both under H0 and H1, for all four tests. The vertical dotted line for the
histograms, under H0, represents the observed test statistic value evaluated for the data
X. Under H1, the vertical dotted line represents the critical value of 99% confidence level
obtained from the Monte Carlo simulation.

The test power is also obtained using the proposed estimator D̂S , from Lemma 5.1 for
all four tests. We observe that the values of the test power obtained from this method
are very close to the ones obtained from the Monte Carlo simulations (see the asymptotic
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Table 6.2: Maximum Likelihood Estimates for each Model in the ECP-EDN Primate Gene
Family.

Model Estimates ase bias(J) se(J) mse(J)

K80 K̂ = 2.09392 0.26919 -0.03051 0.29125 0.08576
p̂1 = 0.28002 0.01678 -0.00181 0.01686 0.00029

F81 p̂3 = 0.25721 0.01627 0.00529 0.01667 0.00031
p̂4 = 0.25478 0.01619 -0.00359 0.01785 0.00033
K̂ = 2.12470 0.27429 0.03376 0.29796 0.08992

HKY85 p̂1 = 0.28615 0.01709 0.00065 0.01710 0.00029
p̂3 = 0.25401 0.01619 0.00559 0.01677 0.00031
p̂4 = 0.25257 0.01611 -0.00107 0.01778 0.00032

Note: The estimate p̂2 is obtained by differencing the estimates p̂i, for i ∈ {1, 3, 4}, from 1.
The symbol “(J)” means the statistic is obtained from the Jackknife procedure.

distribution and Monte Carlo simulation in Table 6.3). The results of Table 6.3, which
are corroborated by a similar and more detailed analysis in Cybis et al. (2010), indicate
the good performance of estimator D̂S . If we add this to its low computational cost, we
have that test power estimation through D̂S is a good candidate for implementation in
bio-informatic softwares which consider LR tests.

We observe that for JC69× K80 and F81 × HKY85 tests, where we are testing different
rates for transitions and transversions, the null hypothesis is always rejected. Therefore,
we conclude that different transitions and transversion rates played an important role for
the evolution of this gene family. The power value for both tests are very close to 1.

However, for tests that compare models with or without the base frequency homogene-
ity assumption, such as JC69 × F81 and K80 × HKY85, the null hypothesis is accepted for
both tests. Hence, we observe that the base frequencies for this genic family are sufficiently
close to the uniform distribution. Therefore, it seems that the use of three additional pa-
rameters representing the base frequencies in further likelihood function analysis is not
justified. And, for parsimony reasons one should prefer a simpler model. However, from
Table 6.3 we observe that the power for both tests are very close to 50%. Therefore,
there exists a considerable probability that the alternative hypothesis is better and the
test doesn’t have sufficient power to reject the null hypothesis. So, this result must be
used with caution.

When comparing the four models JC69, K80, F81 and HKY85, based on these tests,
we suggest the use of the K80 model for better describing the evolution process of these
sequences, since this model allows for different transition and transversion rates in a ho-
mogeneous base frequency set up.

In the literature, the most largely used model is HKY85, followed by simpler models
(see Bielawski and Yang, 2003). The reason behind this is that it is one of the simplest
models that allow for both transition and transversion bias and inhomogeneous base fre-
quencies, two important biological features. Note that, more complex models, with more
parameters, represent a considerable increase in computational effort.

It is also noteworthy that the i.i.d. sites hypothesis, used in this work, is very restricting
and may be biologically inaccurate. The impact of different assumptions for the inter sites
distribution in these tests, particularly in the framework of the test power, is analyzed in
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further work (see Cybis et al. 2010) to be published elsewhere.

Table 6.3: Test Results for the Primate Family.

Test −2∆(X) Asymptotic Distribution Monte Carlo Simulation Decision
k p-value Power p-value Critical Value 99% Power

JC69 × K80 32.0992 1 1.4650× 10−8 0.9343 < 0.0010 6.7860 1 reject
F81 × HKY85 33.1716 1 8.4374× 10−9 0.9412 < 0.0010 6.2904 0.9990 reject
JC69 × F81 8.2774 3 4.0613× 10−2 0.4707 0.0440 11.6883 0.4680 accept

K80 × HKY85 9.3498 3 2.4984× 10−2 0.5340 0.0270 11.6545 0.5360 accept

7 Conclusions

In this paper we consider the likelihood ratio tests for comparing base substitution models.
With mild regularity conditions, we present some of its properties such as the fact that
the asymptotic distribution of the likelihood ratio test statistic is a non-central χ2

k(DS)
distribution, under the alternative hypothesis H1. The degrees of freedom k are deter-
mined by the difference of the free parameters between both models, under H1 and H0,
respectively.

We also prove the asymptotic normal distribution of the likelihood ratio test statistic
when the sequence length S goes to infinity. We present a Monte Carlo simulation study
to see how different sequence lengths S, different number N of species and different pa-
rameters for the models could affect this result. We reject the normality hypothesis of the
statistic −2∆(·) distribution, when S = 100, for any of the four models considered here
and for most tests when S = 200. We do not reject the normality hypothesis when the
sequence length S is at least 6, 000, for the considered tests and trees.

We propose a consistent estimator for the non-centrality parameter DS which is easy
to implement and has very quick response for these base substitution models. Through
asymptotic theory and based on this consistent estimator for DS , we propose a low com-
putational cost estimator for the power of the likelihood ratio test.

We apply the methodology presented here to 17 different gene sequences of the ECP-
EDN family in primates with S = 483. These sequences are also considered by Bielawski
and Yang (2003). To evaluate the performance of the proposed test power estimator, we
compare its estimates with Monte Carlo simulations for this set of data. It seems that
the different base substitution models that are being tested and the sample characteristics
have a great influence on both estimates. Nevertheless, the power of these tests estimated
by both methods present very similar values. We observe that for JC69 × K80 and F81
× HKY85 tests, where we are testing different rates for transitions and transversions, the
null hypothesis is always rejected. Therefore, we conclude that different transition and
transversion rates played an important role for the evolution of these genes in the primate
family. The power value for both tests are very close to 1.
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Appendix

Proof of Theorem 4.1: Cybis (2009) showed that the regularity conditions given in
expressions (3.3) and (3.4) are satisfied for all base substitution models considered here,
as long as the phylogeny is known.

For any base substitution model and assuming independent sites, the likelihood func-
tion, based on a sample X, is given by

L(F, τ̄ |X) = L(F, τ̄ |X1, · · · , X2N−1) =
S∏

u=1

P(X1
u, · · · , X2N−1

u |F, τ̄), (A.1)

where F is the known tree topology, τ̄ = {τ1, τ2, · · · , τ2N−2} represents branch lengths and
P(X1

u, · · · , XN
u |F, τ̄) is the probability of generating N bases from F which is given by

P(X1
u, · · · , XN

u |F, τ̄) =
∑

iN+1,··· ,i2N−1

πi2N−1

2N−2∏

k=N+1

P(ik|ih(k), τk)
N∏

l=1

P(X l
u|ih(l), τl). (A.2)

In expression (A.2), πi2N−1 is the frequency of the base that is in node 2N − 1 (phylogeny
root). Hence, πi2N−1 represents the probability of finding the base i2N−1 in the u site of
the sequence in the phylogeny root. The expression P(ik|ih(k), τk) represents the proba-
bility that the base in position u of the k node is generated from the base that is in the
same position of its ancestral sequence h(k) in τk time. This probability is denoted by
P(X l

u|ih(l), τl) whenever the off-spring sequence belongs to the sample X. In fact, in this
case, one knows the X l

u base. All these probability will depend on the base substitution
model adopted.

In expression (A.1) there are 4N possible base combinations for one position of all
sequences (Xu

1 , · · · , X1
N ). Let pi be the probability of combination i and si be the number

of times the combination i appears in the sample. Then,

log (L(F, τ̄ |X)) =
N4∑

i=1

si log(pi). (A.3)
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The function in expression (A.3) can be rewrite as a function of the statistics s̄i = si
S ,

for all i ∈ {1, · · · , N4}, such that s̄i represents the site proportion in the sequence that
has the combination i. Therefore,

log (L(F, τ̄ |X)) = S
N4∑

i=1

s̄i log(pi). (A.4)

To calculate the non-centrality parameter DS , given in expression (4.1), one needs
the Fisher information matrix IS = (Iu,w)u,w, whose entries are given in expression (4.2).
From the definition of the parameter DS and from equation (A.4) one gets

DS = (θr − θr0)IS(θr − θr0)
′

= (θr − θr0)


−SE


 ∂2

∂θu∂θw

N4∑

i=1

s̄i log(pi)







θu,θw∈θr

(θr − θr0)
′

= S


(θr − θr0)


−E


 ∂2

∂θu∂θw

N4∑

i=1

s̄i log(pi)







θu,θw∈θr

(θr − θr0)
′


 . (A.5)

One observes that the probability pi of the combination i is a function that depends
on the phylogeny, the times τ̄ and the base substitution model parameters. However, this
probability does not depend on S. Hence, the expression inside the parenthesis in equality
(A.5) does not depend on S. Therefore, limS→∞DS = ∞.

From Johnson and Kotz (1970), if X is a random variable such that X ∼ χ2
k(D) with

constant degrees of freedom k, then

X − (k + DS)√
2k + 4DS

d−→ Z, when S →∞, (A.6)

where Z ∼ N(0, 1) is the standard normal distribution with zero mean and variance equal
to 1. The result in (4.4) follows immediately from (A.6). ¤

Proof of Theorem 5.1: One wants to show that D̂S
p−→ DS . We observe that assuming

the regularity assumptions (3.3) and (3.4), any maximum likelihood estimator is consistent
(see Shao, 2003). From Cybis (2009), under i.i.d. sites assumption, all base substitution
models considered here satisfy these regularity conditions. Then, θ̂

p−→ θ. Also, from the
i.i.d. site assumption, it is easy to see that

IS =

(
−E

[
∂2 log(L(θ|X1, · · · ,XS))

∂θu∂θw

])

θu,θw∈θr

=


−E


∂2 log

(∏S
i=1 L(θ|Xi)

)

∂θu∂θw







θu,θw∈θr

=

(
−

S∑
i=1

E
[

∂2 log(L(θ|Xi))

∂θu∂θw

])

θu,θw∈θr

= SI1. (A.7)

Similarly,

ÎS =

(
− ∂2 log(L(θ|X1, · · · ,XS))

∂θu∂θw

∣∣∣∣
θ=

ˆθ

)

θu,θw∈θr

=

(
−

S∑
i=1

∂2 log(L(θ|Xi))

∂θu∂θw

∣∣∣∣
θ=

ˆθ

)

θu,θw∈θr

.
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From the weak law of large numbers (see Shao, 2003), one has

ÎS

S
=

1

S

(
−

S∑
i=1

∂2 log(L(θ|Xi))

∂θu∂θw

∣∣∣∣
θ=

ˆθ

)

θu,θw∈θr

p−→
(
−E

[
∂2 log(L(θ|Xi))

∂θu∂θw

∣∣∣∣
θ=

ˆθ

])

θu,θw∈θr

. (A.8)

Notice that the expected value in expression (A.8) is a continuous function of θ̂. Since
θ̂

p−→ θ, one can apply the Slutzky’s theorem (see Shao, 2003). Hence, for each i ∈
{1, · · · , S}, the right expression in (A.8) converges in probability to I1. Therefore, the
empirical Fisher information matrix is a consistent estimator for the Fisher information
matrix, that is, ÎS

p−→ SI1 = IS . Since one has ÎS
p−→ IS and θ̂

p−→ θ, by Slutzky’s
theorem one has

D̂S = (θ̂r − θr0)ÎS(θ̂r − θr0)
p−→ (θr − θr0)IS(θr − θr0) = DS ,

that is, D̂S is a consistent estimator for DS . ¤


