Ocorrências de ilhas CpG em sequências de DNA

Cleonis Viater Figueira¹ Sílvia Regina Costa Lopes²

1 Introdução

Após sua descoberta, em 1869, pelo bioquímico alemão Johann Friedrich Miescher, o DNA tem sido alvo de estudos em diferentes abordagens e níveis de complexidade. Neste trabalho comparam-se sequências de cromossomos de três diferentes organismos com a ênfase em identificar a ocorrência ou não de ilhas *CpG*. Informações quantitativas e qualitativas sobre estas ilhas são de primordial importância para o estudo de diferentes mutações e tipos de doenças.

2 Material e métodos

Para as análises consideramos as sequências de DNA em nucleotídeos (pirimidinas: citosina (C) e timina (T), purinas: adenina (A) e guanina (G)), em formato FASTA, de três organismos do banco de dados do Projeto Ensembl obtidas do site ftp://ftp.ensembl.org. As análises foram realizadas através do uso do programa estatístico R e seus pacotes.

Foram escolhidos o cromossomo 12 do S.cerevisiae (fermento de pão), o cromossomo 22 do H.sapiens e o cromossomo 3L da D.melanogaster (mosca da fruta). A escolha da mosca da fruta e do fermento de pão foi determinada pela propriedade de que tais genomas não apresentam metilação ou apresentam forte supressão de metilação em dinucleotídeos CpG (na literatura, o ordenamento do nucleotídeo CG é comumente representado por CpG) e que esta característica é observada em grande parte dos organismos tanto procariontes como eucariontes (ver Gratchev, 2006).

A metilação é uma alteração química/enzimática que afeta, em procariontes, apenas a citosina e é específica para uma sequência CpG, nesta ordem. Ou seja, a citosina encontra-se na posição 5 e a guanina na posição 3 na sequência de nucleotídeos. Segundo Model et al. (2009), as regiões de metilação do DNA podem ser usadas para um vasto leque de possibilidades em diagnóstico de doenças.

A região de incidência de CpGs é chamada de ilha CpG (ICpG). A definição mais difundida para uma ICpG é aquela apresentada por Gardiner-Garden e Frommer (1987). A existência de uma ilha CpG ocorre em uma região com pelo menos 200pb, com proporção de C+G maior do que 50% e razão de CpG observado e CpG esperado (O/E) acima de 0.6. Outras variações

¹PPGMAT - UFRGS. e-mail: *cleonis@utfpr.edu.br*

²PPGMAT - UFRGS. e-mail: *silvia.lopes@ufrgs.br*

para a definição de ICpG e discussões sobre estas variações podem ser encontradas em Wu et al. (2010).

A razão O/E é obtida dividindo a proporção de dinucleotídeos CpG na região pelo que seria esperado caso os nucleotídeos fossem assumidos como resultados independentes de uma distribuição multinomial (ver Wu et al., 2010). Matematicamente, o índice de ocorrência de ilhas CpG pode ser dado por

$$O/E = \frac{f_D/N}{f_C/N \times f_G/N},\tag{1}$$

onde *N* é o número de pares de bases (pb), f_i é a frequência da base $i \in \{C, G\}$ e f_D é a frequência do dinucleotídeo *CpG* no segmento de DNA considerado.

3 Resultados e discussões

A Figura 1 apresenta a composição em nucleotídeos e dinucleotídeos de cada cromossomo em estudo. Em todos os casos pode-se perceber que há menor incidência de nucleotídeos C e G, sendo que, no caso da mosca da fruta, esta característica não é tão acentuada. Entretanto, para o caso em que se observam os dinucleotídeos, há evidência de menor incidência de CpG nos cromossomos do homem e do fermento de pão.

Figura 1: Composição dos Cromossomos: cromossomo 12 do S.cerevisiae (no topo), cromossomo 22 do H.sapiens (no centro) e cromossomo 3L da D.melanogaster (embaixo).

A Figura 2, em um espaço de 10000pb de nucleotídeos, mostra a incidência de CpGs, representadas por linhas verticais. Tem-se uma relativa homogeneidade das barras verticais nos cromossomos do S.cerevisiae e da D.melanogaster, o que não ocorre no intervalo de 10000pb do cromossomo do H.sapiens.

Assim, já do indicativo da baixa concentração relativa de dinucletídeos CpG nos cromossomos (ver Figura 1) procura-se verificar como estes dinucleotídeos estão dispersos nos cromossomos em análise e se chegam a se organizar de forma a caracterizar uma região de ICpG.

Figura 2: Sítios de CpG em intervalo de 10000pb: (a) cromossomo 12 do S.cerevisiae, (b) cromossomo 22 do H.sapiens e (c) cromossomo 3L da D.melanogaster.

Dessa forma, procurou-se identificar os sítios de ocorrência das CpGs. Para tal, precisa-se, inicialmente que haja no intervalo de 200pb a taxa de pelo menos 50% de nucleotídeos C ou G, representada por C+G, que está apresentada na Figura 3.

Figura 3: Proporção de C+G: (a) cromossomo 12 do S.cerevisiae, (b) cromossomo 22 do H.sapiens e (c) cromossomo 3L da D.melanogaster.

Com base nas mesmas sequências de 10000pb para cada cromossomo em estudo, investigouse a incidência de ilhas *CpG*. Utilizou-se a fórmula dada pela equação (1), com *N*=200pb. A cada 200pb, obteve-se a frequência de *C*, *G* e *CpG*, e desta forma foi calculado o índice *O/E*. Estas informações estão listadas na Tabela 1 (cada linha $n \in \{1, ..., 50\}$ representa uma subsequência 200pb, $f_i(j)$ é a frequência do nucleotídeo/dinucleotídeo $i \in \{C, G, CpG\}$) para o cromossomo $j \in \{(a)S.cerevisiae, (b)H.sapiens, (c)D.melanogaster\}$.

A Tabela 1 apresenta a análise para verificar a existência ou não de ICpG para subintervalos de 200pb dos três cromossomos em estudo. Algumas informações destacadas, em negrito, trazem locais onde ocorreram, de forma simultânea, a proporção de C+G acima de 50% e o índice de O/E acima de 0.6. Duas regiões de existência ocorreram de forma esparsa para o cromossomo 12 do S. cerevisiae, para n=7 e n=42. Para o cromossomo 22 do H. sapiens, ocorreram três regiões de ICpG, quando n = 8, n = 10 e n = 11. No caso do cromossomo 3L da D.melanogaster não houve nenhum indicativo de ocorrência de ICpG no intervalo considerado.

n	$f_C(a)$	$f_G(\mathbf{a})$	$f_D(a)$	O/E(a)	$C + G(\mathbf{a})$	$f_{C}(\mathbf{b})$	$f_G(b)$	$f_D(b)$	O/E(b)	C + G(b)	$f_C(c)$	$f_G(\mathbf{c})$	$f_D(c)$	O/E(c)	C + G(c)
	81	13	3	0.570	0.400	52	59	8	0.522	0.555	32	46	10	1 359	0 390
2	57	21	5	0.835	0.350	49	52	6	0.471	0.505	46	36	9	1.087	0.410
3	55	17	5	1.070	0.355	50	63	9	0.571	0.565	36	43	8	1.034	0.395
4	54	40	9	0.833	0.440	43	33	2	0.282	0.380	40	42	10	1.190	0.410
5	66	36	13	1.094	0.435	55	29	6	0.752	0.420	44	39	7	0.816	0.415
6	52	32	4	0.481	0.400	46	23	2	0.378	0.345	38	40	10	1.316	0.390
7	62	29	7	0.779	0.595	92	39	10	0.557	0.655	44	36	9	1.136	0.400
8	44	36	7	0.884	0.500	60	57	12	0.702	0.585	36	42	8	1.058	0.390
9	34	58	3	0.304	0.410	70	61	10	0.468	0.655	44	38	9	1.077	0.410
10	29	67	6	0.618	0.385	76	68	18	0.697	0.720	36	39	8	1.140	0.375
11	35	70	6	0.490	0.300	82	69	19	0.672	0.755	42	42	8	0.907	0.420
12	56	42	6	0.510	0.380	79	86	20	0.589	0.825	38	41	8	1.027	0.395
13	59	34	7	0.698	0.365	37	62	4	0.349	0.495	40	39	11	1.410	0.395
14	57	28	6	0.752	0.425	37	39	1	0.139	0.380	45	37	7	0.841	0.410
15	46	40	5	0.543	0.305	60	43	0	0.000	0.515	40	37	9	1.216	0.385
16	61	43	12	0.915	0.400	55	46	1	0.079	0.505	44	38	7	0.837	0.410
17	50	34	6	0.706	0.500	48	35	0	0.000	0.415	32	46	10	1.359	0.390
18	54	46	10	0.805	0.390	30	45	0	0.000	0.375	46	35	9	1.118	0.405
19	51	46	12	1.023	0.415	42	43	7	0.775	0.425	35	43	7	0.930	0.390
20	47	48	18	1.596	0.370	51	54	6	0.436	0.525	40	43	11	1.279	0.415
21	46	38	9	1.030	0.370	63	46	2	0.138	0.545	45	38	1	0.819	0.415
22	46	45	9	0.870	0.315	49	42	3	0.292	0.455	38	41	10	1.284	0.395
23	3/	40	8	1.081	0.245	41	39	1	0.125	0.400	43	35	8	1.063	0.390
24	45	36	10	1.235	0.405	69	48	2	0.121	0.585	3/	43	9	1.131	0.400
25	35	31	3	0.587	0.455	58	40	3	0.259	0.490	44	38	9	1.077	0.410
20	41	39	8	1.001	0.435	51	45	4	0.349	0.480	35	38		1.055	0.365
27	49	38	15	1.396	0.400	48	43	1	0.097	0.455	43	42	9	0.997	0.425
20	32	16	0	1.020	0.393	49	32	2	0.192	0.465	30	20	0	1.027	0.393
29	6	21	4	0.649	0.430	40	52	1	0.000	0.475	40	27	7	0.841	0.393
31	50	14	5	1 4 2 9	0.400	45	47	1	0.105	0.445	30	38	o 0	1 215	0.410
32	57	37	10	0.948	0.340	53	38	2	0.095	0.400	15	38	8	0.936	0.335
33	60	42	12	0.952	0.300	43	68	1	0.068	0.555	31	45	10	1 4 3 4	0.380
34	62	27	7	0.932	0.405	55	50	3	0.218	0.525	47	36	9	1.064	0.415
35	56	31	6	0.691	0.380	70	52	10	0.549	0.610	35	43	7	0.930	0.390
36	44	40	5	0.568	0.365	49	53	1	0.077	0.510	39	43	11	1.312	0.410
37	42	50	5	0.476	0.400	56	48	3	0.223	0.520	45	37	6	0.721	0.410
38	31	72	7	0.627	0.425	41	38	3	0.385	0.395	39	42	11	1.343	0.405
39	40	59	5	0.424	0.335	31	37	0	0.000	0.340	43	34	8	1.094	0.385
40	59	39	5	0.435	0.395	41	29	1	0.168	0.350	36	44	9	1.136	0.400
41	53	29	6	0.781	0.410	33	40	1	0.152	0.365	45	38	9	1.053	0.415
42	61	34	8	0.771	0.505	25	39	1	0.205	0.320	34	38	7	1.084	0.360
43	49	44	8	0.742	0.440	32	32	2	0.391	0.320	43	42	10	1.107	0.425
44	52	41	8	0.750	0.400	49	51	3	0.240	0.500	39	41	8	1.001	0.400
45	57	33	8	0.851	0.435	32	45	1	0.139	0.385	40	39	11	1.410	0.395
46	50	51	8	0.627	0.460	40	41	2	0.244	0.405	45	37	7	0.841	0.410
47	53	46	14	1.148	0.390	38	58	5	0.454	0.480	38	38	9	1.247	0.380
48	48	40	15	1.563	0.405	27	36	0	0.000	0.315	46	38	8	0.915	0.420
49	43	41	7	0.794	0.355	47	57	3	0.224	0.520	31	44	10	1.466	0.375
50	42	45	11	1.164	0.320	32	40	2	0.313	0.360	46	37	9	1.058	0.415

Tabela 1: Resultado do índice O/E: (a) cromossomo 12 do S.serevisiae, (b) cromossomo 22 do H.sapiens e (c) cromossomo 3L da D.melanogaster em um intervalo total de 10000pb e subintervalos N=200pb.

4 Conclusões

Com base no exposto, e observando as Figuras 2 e 3 e a Tabela 1, existe evidência de ICpGs no intervalo entre n = 8 e n = 11, para o caso do cromossomo humano considerado, pois há porcentagem de C+G acima de 50% e a razão O/E(b) ocorre acima de 0.6. Há também indicativo da supressão desta característica para o cromossomo 3L da D.melanogaster, no intervalo de 10000pb em análise, pois não há nenhum intervalo n que satisfaz as exigências para a existência de uma ICpG. Para o cromossomo 12 da S.serevisiae os valores dos índices que indicam a existência de ilhas CpGs ocorrem de forma esparsa não caracterizando uma região de ICpG.

Referências

- GARDINER-GARDEN, M.; FROMMER, M. CpG islands in vertebrate genomes. Journal of Molecular Biology. v. 196, p. 261-282, 1987.
- [2] GRATCHEV, A. Review on DNA Methylation. 2006. Disponível em: http://www.methods.info/Methods/DNA_methylation/Methylation_review.html. Acesso em: 04 de fevereiro de 2013.
- [3] MODEL, F.; LEWIN, J.; LOFTON-DAY, C.; WEISS, G. Analysis of DNA methylations in cancer. *in*: Wiuf, C. and Andersen, C.L. (orgs.), Statistics and Informatics in Molecular Cancer Research. Oxford: Oxford University Press. 2009. 217 p.
- [4] R Core Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3 – 900051 – 07 – 0, URL http://www.R-project.org/.
- [5] WU, H.; CAFFO, B.; JAFFEE, H.A.; IRIZARRY, R.A.; FEINBERG, A.P. Redefining CpGs islands using hidden Markov models. Biostatistics. Oxford Journals. v. 11, n. 3, p. 499-514, 2010.