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Abstract

In this work we present an extensive simulation study on Mallows distance in the
context of Gaussian and non-Gaussian VARFIMA processes. Our main goal is to
analyze the dependence among the components of VARFIMA processes through the
Mallows distance point of view. We also investigate a possible relationship between
the Mallows distance and the fractional differencing parameter d, the type and level
of dependence in the innovation process as well as its marginal behavior. For the
Mallows distance, we consider an estimator based on the empirical marginal distri-
bution function, which is shown to converge to the theoretical Mallows distance.

Keywords: Mallows Distance; VARFIMA Processes; Copulas; Empirical Estima-
tion; Long Range Dependence, Kendall’s τ Coefficient.

Mathematical Subject Classification (2010). Primary 62H20, 60G10, 62M10,
62E10; Secondary 54E99.

1 Introduction

The Mallows distance was introduced by Mallows (1972) as a tool to prove the asymp-
totic normality for sums of independent random variables. After this work, several other
applications for the Mallows distance were found, especially in proving convergence of
random variables and certain CLT-type results. In Bickel and Freedman (1981) the Mal-
lows distance is used as a tool to provide asymptotic results for the bootstrap technique.
An account of the theory and history of the Mallows distance can also be found there and
references therein.

By its turn, the class of VARFIMA processes was introduced by Sowell (1989). It can
be seen as a natural multidimensional extension of the classical ARFIMA processes, on
which each component follows an ARFIMA process (see, for instance, Lopes, 2008 and
Lopes, Sena Junior and Reisen, 2006), but the components in the innovation process can
be correlated to each other. VARFIMA processes have been applied in a variety of fields
such as hydrology, econometrics, statistics among others. Applications include modeling
of stock prices’ volatility, modeling and forecasting high frequency data, among others.
See, for instance, Chiriac and Voev (2010), Diongue (2010) and references therein.

Our goal in this work is to investigate through extensive Monte Carlo simulations
the Mallows distance behavior among the components of VARFIMA processes in several
different settings. More specifically, we are interested in a possible relationship between
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the Mallows distance and the fractional differencing parameter d, the type and level of
dependence induced in the innovation process as well as its marginal behavior.

The study is based on Monte Carlo simulations of VARFIMA(0,d, 0) processes with
Gaussian innovations as well as parametric copula-type innovations. Different dependence
parameters and different types of marginal behavior are also considered. The degree of
dependence is measured, in the case of Gaussian innovations, by the correlation coefficient,
and, in the copula innovations case, by its parameter. In the simulations we also consider
the Kendall’s τ dependence coefficient, which is used as a benchmark to compare with
the results obtained by using the Mallows distance.

The Mallows distance estimator considered in the simulations is presented in Section 3
and is based on the empirical quantile function of the process’ marginals. The estimator is
shown to converge to the theoretical Mallows distance. Time series are generated by using
the infinite moving average representation of the individual components in the process,
truncated at a certain cut-off point. In the simulations, several different features are stud-
ied in the Mallows distance point of view. These features are usually introduced directly
into the innovation process. Some copula tools are also explored in order to separate the
joint dependence in the process from its marginals. The advantage of splitting the pro-
cess’ joint behavior from its marginal structure is the possibility to compare time series
with the exactly same joint behavior but completely different marginal configurations.

The paper is organized as follows. In the next section we present some preliminary
concepts and results necessary for this work. In Section 3 we introduce the empirical
version of the Mallows distance we shall use to perform the simulation studies. We also
prove its convergence to the theoretical Mallows distance. In Section 4 we present the
simulation results on the Mallows distance among the components of VARFIMA processes
in several different settings. In Section 5 we present the simulation results, in the same
configuration as in Section 4, by using the Kendall’s τ coefficient as dependence measure,
instead of the Mallows distance. We also compare the results with the ones obtained in
Section 4. Conclusions and final remarks are reserved to Section 6.

2 Preliminaries Concepts and Results

In this section we present some basic definitions and results necessary for this work. For
α > 0, let Fα denote the space of all distribution functions satisfying

∫
R
|x|αdF <∞.

Definition 2.1. (Mallows α-distance). Let α > 0 and let F and G be two distribution
functions in Fα. The Mallows α-distance of F and G is given by

Dα(F,G) := inf
A(F,G)

{
E
(
|X − Y |α

) 1
α

}
, (2.1)

where A(F,G) :=
{

(X, Y ) : X ∼ F, Y ∼ G
}

, that is, A(F,G) is the set of all pairs (X, Y )
of random variables with marginals given by F and G, respectively.

It can be shown that, for α ≥ 1, Dα(·, ·) is a metric in Fα, while for α < 1, Dα
α (·, ·)

is a metric in Fα (see Bickel and Freedman, 1981). If α ≥ 1, (2.1) can be shown to
be equivalent to a much simpler expression as follows: let U ∼ U(0, 1) be a uniformly
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distributed random variable, let F,G ∈ Fα and set X∗ := F−1(U) and Y ∗ := G−1(U).
Then, it can be shown that

Dα
α (F,G) = E

(
|X∗ − Y ∗|α

)
. (2.2)

Alternative expressions for (2.2) are the following:

Dα
α (F,G) =

∫ 1

0

∣∣F−1(u)−G−1(u)
∣∣αdu =

∫∫
R2

|x− y|αdµ, (2.3)

where µ is the probability measure inR2 with joint distribution function given byH(x, y) =
min{F (x), G(y)}, that is, µ is defined in the semi-ring of rectangles R = [x1, x2]×[y1, y2] ⊆
R2 by

µ(R) = min{F (x1), G(y1)}+ min{F (x2), G(y2)} −
− min{F (x1), G(y2)} −min{F (x2), G(y1)}.

The representations in (2.3) are useful for estimation purposes.

Now let X and Y be two continuous random variables defined in a common probability
space (Ω,A,P). Let (X1, Y1) and (X2, Y2) be two independent copies of (X, Y ). Given
ω ∈ Ω, the pairs

(
X1(ω), Y1(ω)

)
and

(
X2(ω), Y2(ω)

)
are called concordant if

(
X1(ω) −

X2(ω)
)(
Y1(ω) − Y2(ω)

)
> 0 and discordant if

(
X1(ω) − X2(ω)

)(
Y1(ω) − Y2(ω)

)
< 0

(equality happens with probability 0). The Kendall’s τ coefficient between X and Y ,
denoted by τX,Y (or simply by τ if no confusion is possible), is defined as the probability
of concordance minus the probability of discordance, that is,

τ = τX,Y := P
(
(X1 −X2)(Y1 − Y2) > 0

)
− P

(
(X1 −X2)(Y1 − Y2) < 0

)
.

Next we define the so-called VARFIMA(p,d, q) processes.

Definition 2.2. Let {X t}t∈Z be an m-dimensional process with mean µ. The process
{X t}t∈Z is called a VARFIMA(p,d, q) process if it is a stationary solution of the difference
equations

Φ(B) diag
{

(1− B)d
}

(X t − µ) = Θ(B)εt, (2.4)

where B is the backward shift operator, {εt}t∈Z is an m-dimensional stationary process
(the innovation process), Φ(B) and Θ(B) are m×m matrices in B, given by the equations

Φ(B) =

p∑
`=0

φ`B` and Θ(B) =

q∑
`=0

θ`B`,

with φ1, · · · ,φp,θ1, · · · ,θq real m×m matrices and φ0 = θ0 = Im×m, the m×m identity
matrix.

Notice that Definition 2.2 is more general than the classical definition of VARFIMA
processes, introduced by Sowell (1989), in which εt is assumed to be Gaussian. In this
work we analyze only the simpler case p = 0 = q, for which equation (2.4) simplifies to

diag
{

(1− B)d
}

(X t − µ) = εt, for all t ∈ Z.
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It can be shown that, if εt has finite variance for all t ∈ Z, a necessary and sufficient
condition for the existence of stationary solutions for (2.4) is that d ∈ (−∞, 0.5)m. On
the other hand, to guarantee that the stationary solution is also causal and invertible,
it can be shown that we must have d ∈ (−0.5, 0.5)m and this will be the range we shall
assume for the fractional parameter d.

VARFIMA processes can be seen as a natural extension of the classical ARFIMA
processes. For the ARFIMA case, the so-called long range dependence occurs whenever
the fractional differencing parameter d ∈ (0, 0.5) while if d is in the (−0.5, 0) zone, some
authors refer to it as the intermediate dependence (see, for instance Lopes, 2008 and
Lopes, Sena Junior and Reisen, 2006). In the case of VARFIMA process, we shall say

that the k-th coordinate process {X(k)
t }t∈Z present long range dependence (intermediate

dependence) whenever dk ∈ (0, 0.5) (dk ∈ (−0.5, 0)), for k ∈ {1, · · · ,m}.
Several applications and extensions for VARFIMA processes (and general fraction-

ally differentiated multivariate models) have been studied in recent years, see for in-
stance, Chiriac and Voev (2010), Diongue (2010) and references therein. For estimation
in VARFIMA processes, see Lobato (1999), Shimotsu (2007), Tsay (2010) and references
therein. More details can also be found in Sowell (1989) and Luceño (1996).

A few results on copulas will also be necessary. The literature on the subject has
grown very rapidly in the last decade especially in finance, statistics and econometrics
where copulas have been widely used as tools for analyzing and modeling financial time
series. An m-dimensional copula is a distribution function whose marginals are uniformly
distributed on [0, 1] and whose support is the [0, 1]m hypercube. The main theorem in
the theory is the celebrated Sklar’s theorem, which elucidates the usefulness of copulas.

Theorem 2.1 (Sklar’s Theorem). Let X1, · · · , Xn be random variables with marginals
F1, · · · , Fn, respectively, and joint distribution function H. Then, there exists a copula C
such that,

H(x1, · · · , xn) = C
(
F1(x1), · · · , Fn(xn)

)
, for all (x1, · · · , xn) ∈ Rn.

If Fi’s are continuous, then C is unique. Otherwise, C is uniquely determined on Ran(F1)×
· · · × Ran(Fn). The converse also holds. Furthermore,

C(u1, · · · , un) = H
(
F

(−1)
1 (u1), · · · , F (−1)

n (un)
)
, for all (u1, · · · , un) ∈ In,

where for a function F , F (−1) denotes its pseudo-inverse given by F (−1)(x) = inf
{
u ∈

Ran(F ) : F (u) ≥ x
}
.

A proof of Sklar’s Theorem can be found, for instance, in Schweizer and Sklar (2005).

Remark 2.1. Among many applications of Sklar’s Theorem, one will be particularly
useful in the simulations. Suppose we have an m-dimensional continuous random vector
X, with marginal distributions F1, · · · , Fm, for m > 1. Suppose that we want to estimate
some quantity and investigate what happens when the marginal behavior of X is changed
to, say, G1, · · · , Gm, but the joint dependence structure is kept as intact as possible. If one
knows the copula CX associated to X, this problem can be easily solved. Let u1, · · · ,un
be a sample from the copula CX , where uk = (u

(1)
k , · · · , u(m)

k ), k = 1, · · · , n. Consider the
following samples based on u1, · · · ,un:
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a) {xk}nk=1, where x
(j)
k = F−1j (u

(j)
k ), for k = 1, · · · , n and j = 1, · · · ,m.

b) {yk}nk=1, where y
(j)
k = G−1j (u

(j)
k ), for k = 1, · · · , n and j = 1, · · · ,m.

By Sklar’s Theorem, {xk}nk=1 and {yk}nk=1 are samples with the same joint dependence as
X, but the former has marginals F1, · · · , Fm, while the latter has marginals G1, · · · , Gm.
One can now calculate and compare the quantity of interest by using {xk}nk=1 and {yk}nk=1.
This method allows one to study how the marginal behavior affects some quantity of inter-
est by keeping the joint behavior of the sample (determine by CX) fixed and introducing
the features of interest directly into the marginals.

For more details on copulas, we refer the reader to Nelsen (2006). For connections
with probabilistic metric spaces, see Schweizer and Sklar (2005).

3 Empirical Version of the Mallows Distance

In this section we shall define the Mallows distance estimator considered in the simulations
and prove its convergence to the theoretical Mallows distance. Given two i.i.d. samples
X1, · · · , Xn and Y1, · · · , Yn from distributions F and G, respectively, let F̂n and Ĝn denote
the empirical distribution functions based on these samples. Then, for any α ≥ 1 the
Mallows α-distance estimator is given by

D̂α(F,G) := Dα(F̂n, Ĝn) =

(∫ 1

0

∣∣F̂ (−1)
n (u)− Ĝ(−1)

n (u)
∣∣αdu

)1/α
. (3.5)

The Glivenko-Cantelli theorem assures that F̂n(x)→ F (x) uniformly over x except, per-

haps, in a set of measure zero, which also implies F̂
(−1)
n (x)→ F (−1)(x) almost everywhere

uniformly over x. Also, it can be shown that Dα(fn, f) → 0 for a sequence {fn}n ∈ Fα

and f ∈ Fα, implies fn → f (see, for instance, Shao, 2003). Our aim is to show that

Dα(F̂n, Ĝn) −→ Dα(F,G).

Proposition 3.1. Let α ≥ 1 and let F̂n and Ĝn denote the empirical distribution functions
based on i.i.d. samples X1, · · · , Xn and Y1, · · · , Yn from distributions F and G in Fα,
respectively. Then,

Dα(F̂n, Ĝn) −→
n→∞

Dα(F,G).

Proof. First, it is clear that F̂n and Ĝn are in Fα. Since, for α ≥ 1, the α-Mallows
distance is a metric in Fα, on one hand we have

Dα(F,G) ≤ Dα(F, F̂n) + Dα(F̂n, Ĝn) + Dα(Ĝn, G),

and on the other hand

Dα(F̂n, Ĝn) ≤ Dα(F̂n, F ) + Dα(F,G) + Dα(G, Ĝn),

from where it follows that∣∣Dα(F̂n, Ĝn)−Dα(F,G)
∣∣ ≤ Dα(F̂n, F ) + Dα(Ĝn, G) −→ 0,
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since Dα(F̂n, F ) → 0 and Dα(Ĝn, G) → 0, as n goes to infinity. This shows that

Dα(F̂n, Ĝn)→ Dα(F,G) and completes the proof.

Asymptotic results for Dα(F̂n, F ) are known in some special cases. For instance,

some CLT-type results, convergence rates and limiting distributions for Dα(F̂n, F ) can be
found in Samworth and Johnson (2004) and references therein and also in Johnson and
Samworth (2005). At our best knowledge, there are no asymptotic results available for

Dα(F̂n, Ĝn).

4 Simulation Results: Mallows Distance

In this section we present the Monte Carlo simulation results regarding the Mallows dis-
tance between the components of a bidimensional VARFIMA(0,d, 0). In the simulations,
the fractional differencing parameter d := (d1, d2) is taken to range over all combinations
of di ∈ {−0.4,−0.3,−0.2,−0.1, 0.1, 0.2, 0.3, 0.4}, i = 1, 2. In this work, we always calcu-
late the Mallows α-distance for α = 2, and refer to it simply by Mallows distance. The
estimator used is the one presented in (3.5).

All Monte Carlo simulations are based on time series of fixed sample size 2,000 obtained
from bidimensional VARFIMA(0,d, 0) processes. We perform 1,000 replications of each
experiment. To generate the time series, we apply the traditional method of truncating the
multidimensional infinite moving average representation of the process. The truncation
point is fixed in 50,000 for all d.

All simulations are performed using the computational resources from the (Brazilian)
National Center of Super Computing (CESUP-UFRGS). The routines are all implemented
in FORTRAN 95 language optimized by using OpenMP directives for parallel computing.

We start by presenting the results for the Gaussian innovation case.

4.1 Gaussian innovations with equal variances

Figure 1 shows the graph of d2 by Mallows distance for different correlations. The results
are based on Gaussian innovations with fixed mean µ = (0, 0) and variance σ2 = (1, 1),
for correlations ρ ∈ {0, 0.5, 0.95}.

An interesting feature shown in Figure 11 is that, for small values of d (both coor-
dinates smaller than 0.1), the Mallows distance behaves homogeneously across different
correlation values. This behavior suggests that the Mallows distance is not significatively
sensitive to the correlation for small values of di, i = 1, 2.

There is, however, difference when both coordinates start to increase. A clear differen-
tiation across the correlation appears when the parameters d1 and d2 are both greater or
equal than 0.2. From the graphs on Figure 1, we can infer that the greater the long range
dependence in each coordinate is (or, equivalently, the greater the values of d1 and d2

1Tables containing the results from which the graphs are draw from are not presented here due to the
restriction on the number of pages. They can be found, along with additional graphs and information,
as an addendum at http://mat.ufrgs.br/∼slopes/selected publications.htm.
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are) the greater the difference among the estimated Mallows distance values for different
correlations. Also notice that, when at least one coordinate of d is small (less or equal
than 0.1), the Mallows distance values behave like an increasing function of the other
coordinate.

From the graphs, it is clear that the correlation starts to influence and differentiate the
Mallows distance values only when both coordinates are greater than 0.1. Furthermore,
it appears that the magnitude of the values in the fractional differencing parameter d
has more influence in differentiating the Mallows distance than the magnitude of the
correlation itself. However, as expected, the Mallows distance values decrease as the
correlation increases for almost all cases.

We can summarize our findings as follows:

1. The Mallows distance generally decreases as the correlation increases for almost all
d and behaves like an exponential when the coordinates of d assume values over
0.1;

2. The Mallows distance appears not be affected by the correlation when at least one
coordinate in d is smaller than 0.2.

3. The higher the parameter d, the greater the difference among the Mallows distance
estimates across different correlations. This suggests that the Mallows distance is
less sensitive to the correlation than to the parameter d.

4.2 Gaussian innovations with unequal variances

The results from the previous subsection bring some light into the dynamics between
the components of Gaussian VARFIMA processes from the Mallows distance point of
view. All simulations involving Gaussian innovations are performed by using a variance-
covariance matrix whose values in the main diagonal are identical (equal to one, to be
precise).

In this section we investigate the following question: how (if at all) the Mallows dis-
tance behavior change when the innovation’s second moments are altered? In other words,
we study what happens if the innovation process’ marginals have different variances. A
simple approach is to compare the case where the marginals have equal variances to the
case where they are different in the spirit of Remark 2.1.

Figure 2 shows the graphs of d2 by Mallows distance for fixed d1 and correlation
ρ ∈ {0, 0.5, 0.95}. The variance was taken to be σ2 = (1, 2). From the graphs, it is
clear that increasing the variance of one innovation component also increases the Mallows
distance in comparison to the equal variances case (Figure 1). Increasing the correla-
tion in the unequal variances case produces little to no difference in the global behavior
of the Mallows distance, except when both innovation components present strong long
range dependence, particularly when d = (0.4, 0.4). Notice that the magnitude of the
Mallows distance is larger in the unequal variances case, as can be seen by the scale on
the graphs. Figures 1 and 2 show that the equal variances case present a more erratic
Mallows distance behavior across correlation when compared to the smooth curves on the
unequal variances one. As a function of d2, high values of d1 (> 0.2) produce a more
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erratic behavior for the Mallows distance, which becomes sensitive to the correlation for
d2 > 0.2. We also observe that the Mallows distance behaviors in Figure 2(a)-(f) are all
very similar to each other. Surprisingly, the results suggest that the different variances
in the marginals stabilize the Mallows distance behavior, weakening the influence of the
fractional differencing parameter d.

We can summarize our findings as follows:

1. Compared to the equal variances case, the unequal variances situation is more stable
with respect to the Mallows distance and to the parameter d, so that for di ≤ 0.2,
there is little to no difference in the Mallows distance values within d2.

2. The magnitude of the Mallows distance is generally larger than the equal variances
case.

3. The difference in the marginal variances appear to reduce the influence of the frac-
tional differencing parameter d causing the Mallows distance to be less sensitive to
the correlation in the innovation.

4.3 More on the unequal variances

After studying the differences when the innovations process have unequal variances (σ2 =
(1, 1) and σ2 = (1, 2) cases), two questions naturally arise:

1. How (if at all) does the magnitude of the components of σ2 influence the Mallows
distance? That is, compared to the case σ2 = (1, 2), will the Mallows distance
significantly change if we take σ2 = (2, 3)?

2. How (if at all) does the magnitude of the difference between the components of σ2

influence the Mallows distance? That is, compared to the case σ2 = (1, 2), will the
Mallows distance change much if we take σ2 = (1, 3)?

In order to answer the questions above, we apply the ideas explained in Remark 2.1
to simulate Gaussian VARFIMA processes with innovation marginal variances equal to
σ2 = (1, 3) and σ2 = (2, 3). We compare the results with the case σ2 = (1, 2) from last
subsection (the simulations were actually performed all together using the ideas in Remark
2.1). We apply the Gaussian copula with parameter ρ and the marginals are taken to
be normally distributed with zero mean and the desired marginal variances. Also, since
the marginals are normally distributed, the parameter ρ still represents the correlation
between the components.

Figure 3 and 4 show the graphs of d2 by Mallows distance for fixed d1 for variances
σ2 = (1, 3) and σ2 = (2, 3), respectively. These are the analogous of Figure 1 (equal
variances case) and 2 (σ2 = (1, 2)). Upon analyzing the graphs, one notice that cases
σ2 = (1, 2) and σ2 = (2, 3) present very similar magnitudes for the Mallows distance
values, while the case σ2 = (1, 3) present much larger values. The equal variances case
present the smallest values among all. This indicates that the difference between the
components in σ2 has a strong influence on the magnitude of the Mallows distance,
stronger than the magnitude of the components in σ2.
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For d1 < 0.2 (Figures 2, 3 and 4 (a)-(e)), we notice that the overall behavior of the
Mallows distance is similar among the unequal variances case and basically no differenti-
ation across correlation can be observed in any of the graphs. For d1 > 0.2, we observe
that the cases σ2 = (1, 2) and σ2 = (2, 3) are closer to each other than to any other
cases. For d1 = 0.3, in the unequal variances case, a small differentiation across cor-
relation start to surface for d2 > 0, which become stronger when d1 = 0.4. We notice
that the differentiation for d1 > 0.2 is stronger when σ2 = (2, 3) which may indicate
that the magnitude of the σ2 components somehow affects the Mallows distance differ-
entiation across correlation. Also the Mallows distance behavior for d1 = 0.4 is similar
for σ2 ∈ {(1, 1), (1, 2), (2, 3)}, but clearly different for σ2 = (1, 3). In comparison to the
equal variances case, it seems that the components of σ2 strongly influences the Mallows
distance behavior, making it more stable across the correlation. Notice the resemblance
of the graphs for d1 = 0.3 (frame (g) in the respective figures) in the unequal variance
case to the one for d1 = 0.2 (in Figure 1(f)) in the case of equal variances. This also
happens for the case d1 = 0.4 which is close to the case d1 = 0.3 in the equal variances
case.

We conclude that the magnitude of the Mallows distance responds positively to both,
the magnitude and the difference between the components of σ2, but clearly the response
is stronger to the latter. This is no surprise, since the higher the difference between the
variances of two normally distributed random variables with same mean, the more distant
the values assumed by a sample of each are, which is directly reflected into the Mallows
distance values.

We can summarize our findings as follows:

1. The Mallows distance respond positively to the difference between the components
of σ2. The higher the difference, the higher the magnitude of the Mallows distance.

2. The magnitude of σ2 seems to influence positively the Mallows distance sensitivity
regarding the correlation, especially for high d. That is, the higher the magnitude of
σ2, the more sensitive the Mallows distance become with respect to the correlation
in the presence of strong long range dependence.

3. The overall Mallows distance behavior seem to be unaffected by the unequal vari-
ances in the innovation process, except for the magnitude of the values.

4. For d1 < 0.2, the correlation has no affect in the Mallows distance in the unequal
variances case. Also, it appears that the influence of the fractional differencing
parameter d is attenuated in the unequal variance case.

4.4 Non-Gaussian innovation and heavy-tailed marginals

So far, all results presented are based on the bivariate Gaussian distribution. A question
that naturally arises is does the Mallows distance behave in the same way if the innovations
generating the VARFIMA process have a distribution other than the bivariate Gaussian?
In order to partially answer this question, we simulate innovations from the Frank copula
with different parameters and added to it, via Sklar’s theorem, standard normal marginals.
In this way we obtain a sample with dependence following a Frank copula, but standard
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normal marginals, from which we generate the VARFIMA(0,d, 0) process and calculate
the empirical Mallows distance between the components of the process. Our aim is to
compare the results obtained this way with the bivariate Gaussian with standard normal
marginals ones presented in Subsection 4.1.

In order to make a fair comparison, we would like to somehow match the dependence
strength in the Frank innovation case with the Gaussian innovation case. We use the
Kendall’s τ theoretical values as a measure of the dependence strength in the innovation.
The Kendall’s τ for the Gaussian case with correlation ρ and for the Frank copula with
parameter θ are given, respectively, by

τρ =
2

π
arcsin(ρ) and τθ = 1− 4

θ2

(
θ −

∫ θ

0

t

et − 1
dt

)
.

To match the Kendall’s τ in the Gaussian case for ρ ∈ {0, 0.5, 0.95}, a good approximation
is θ ∈ {0, 3.3, 18}. These are the values chosen for the simulations.

Figure 5 presents the results for the Mallows distance between the components of
VARFIMA(0,d, 0) process with Frank innovations and standard normal marginals. This
is the analogous of Figure 1 in the Gaussian case. From the figures, we observe in both
the same shape and almost the same magnitude of the Mallows distance. We observe that
when both components of d have high values (≥ 0.2), there is a clear differentiation across
the parameters. The higher the dependence in the innovation, the higher the Mallows
distance sensitivity to this dependence in both cases. For high values of d1, we observe
that the Mallows distance values are slightly higher in the Frank-Normal case.

Another question not discussed so far is whether or not the marginals distribution
tails influence the Mallows distance in any way. In other words, is there any difference
in the Mallows distance behavior if we only change the type of the marginal from, say,
Gaussian marginals to heavy-tailed ones?

To answer this question we apply the ideas of Remark 2.1 to simulate Frank copula
innovations with parameter θ ∈ {0, 3.3, 18} coupled with standard normal, t3 and t7
marginals, where, as usual, tν stands for the Student’s t distribution with ν degrees of
freedom. We recall that our previous experiments indicate that the innovation variances
interfere in the Mallows distance. Since t3, t7 and normal distributions have different
variances, we use a standardized version of the t distribution with unitary variance to
avoid any differences in the Mallows distance from sources other than the marginals’ tail
behavior. For simplicity, whenever t3 and t7 marginal cases are mentioned, we mean the
respective standardized version.

Figures 5 shows the simulation results for the Frank-Normal couple. Figure 6, the
Frank-t3 couple results are shown. In Figure 7, the case Frank-t7 is presented. Comparing
Figures 5 and 7, we notice that they all look very similar. In fact, the absolute difference
on the estimated Mallows distance between the case t7 and standard normal marginals
ranges on [0.2311, 1.5897], for all d. Also in these cases (Frank-Normal and Frank-t7),
the Mallows distance behavior follows a similar pattern to the Gaussian case with equal
variances.

In Figure 6, we observe that the Mallows distance values in the Frank-t3 case are
higher than the respective ones in the other cases, but the overall curve pattern is the



S.R.C. Lopes, G. Pumi and K. Zaniol 11

same. A differentiation across the parameter occurs only when at least one coordinate of
d is greater or equal than 0.2. Otherwise, little differentiation appears.

The similarities between the cases t7 and standard normal marginals are not really
surprising because the difference in the tail of these distribution is small. However, the t3
marginals case shows that the Mallows distance is sensitive to tail fatness in the innovation,
which is reflected mainly in the magnitude of the Mallows distance. The pattern followed
by the Mallows distance however, does not seem to be significatively affected neither by
the innovation’s non-Gaussianity, nor by the marginals’ tails. We can summarize our
findings as follows:

1. The Mallows distance behavior does not seem to be affected by the type of inno-
vations, within the same dependence strength (here measured by the innovation
theoretical Kendall’s τ).

2. The marginal’s tail seem to have little influence in the Mallows distance. Neverthe-
less, when present, this effect seem basically to be reflected in the magnitude of the
Mallows distance values, which are slightly higher in the presence of heavy-tailed
marginals.

Remark 4.1. The tables from which the graphs presented in this section were drawn
from, along with the estimates’ standard deviation and extra graphs, can be found as
an addendum at http://mat.ufrgs.br/∼slopes/selected publications.htm. The standard
deviation for the estimated Mallows distance may look, at first glance, high compared to
the magnitude of the respective estimate. This is because the sample distribution of the
estimated Mallows distance (which is always non-negative) are generally skewed to the
right, but concentrated at the mean. This suggest that the limiting distribution for the
empirical Mallows distance, as defined in (3.5), is skewed to the right.

5 Simulation Results: Kendall’s τ comparison

In the previous section we investigated the behavior of the Mallows distance between
the components of VARFIMA(0,d, 0) processes in several contexts. So, as a measure of
how close two process are our findings natural or surprising? Are they shared for all
types of dependence measure or are they unique to the Mallows distance? In order to
provide a comparison, we perform the same experiment presented in Section 4 applying
the Kendall’s τ as a dependence measure instead of the Mallows distance. To insure
fidelity, we performed the calculations using the same methodology as in the previous
section. We start by presenting the Gaussian noise with equal variance case.

5.1 Gaussian innovations with equal variances

Figure 82 presents the plots of d2 by Kendall’s τ for fixed d1 and ρ ∈ {0, 0.5, 0.95}. This
is the analogous of Figure 1 in the Mallows distance case. Notice that the Kendall’s τ is

2Tables containing the results from which the graphs are draw can also be found in the addendum at
http://mat.ufrgs.br/∼slopes/selected publications.htm. The tables also contain the standard deviation
for the estimated Kendall’s τ presented in this section. They are generally small, as one could expect
given its asymptotic distribution.
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much more sensitive to the correlation in the innovation than the Mallows distance. As
the difference between the parameters d1 and d2 increases, the difference on the Kendall’s
τ between the components become higher and the range of the Kendall’s τ values also
increases as |d1| increases.

Also notice that, for ρ = 0, a simple hypothesis test show that in most cases (58 out of
64), the components can be regarded as statistically independent3. The exceptions are the
values of di for which d1 + d2 ≥ 0.6, that is, when there is strong long range dependence.

5.2 Gaussian innovations with unequal variances

In this subsection we present simulation results analogous to those in Subsection 4.3 in
the context of the Kendall’s τ . Figures 8 to 11 present the graphs of d2 by the Kendall’s
τ for fixed d1 for the cases σ2 equal to (1, 1), (1, 2), (1, 3) and (2, 3), respectively. From
all graphs, it is clear that the variance strongly influences the Kendall’s τ between the
components. We notice the differences in the scale between unequal and equal variances
cases. The much smaller values in the unequal variances case indicates that the different
variances in the innovation somehow balances the number of concordant and discordant
pairs, so that, at the Kendall’s τ point of view, the components are more distinct compared
to the equal variances case. For ρ 6= 0, even though the magnitude of the Kendall’s τ is
small, the components cannot be considered statistically independent regardless d. For
ρ = 0 and σ2 = (1, 2), the independence hypothesis is always rejected when di > 0, for
i = 1, 2, and only in 3 (out of 48) combinations the hypothesis of independence is rejected
when at least one parameter in d is negative. Similar results hold for σ2 ∈ {(1, 3), (2, 3)}.

The Kendall’s τ behavior as the correlation increases is erratic, especially compared to
the smooth behavior in the equal variances case. In all cases, a more or less similar pattern
is followed and, arguably, the cases σ2 = (1, 2) and σ2 = (2, 3) are more alike then any
other combination. Based on these results, it is clear that the variance heavily influences
the Kendall’s τ behavior. However, it is not clear what influences the most the value
of τ , if the magnitude of the difference between the components on the variance, or the
magnitude of the components themselves. Also notice that there are no overlaps/crossings
within the correlation, which means that in all cases, the Kendall’s τ is sensitive to the
correlation in the innovation process.

5.3 Non-Gaussian innovation and heavy-tailed marginals

We also repeated the experiment of Section 4.4 and the simulation results are shown in
Figures 12 to 14, which are the analogous of Figures 5 to 7, respectively. As expected,
given the Kendall’s τ nature, there is no relevant difference among the estimated values

3At 95% confidence level, the critical point of the two tailed test H0 : the components are independent
is 0.0009356. The test is obtained by the normal approximation to the Kendall’s τ , which rejects H0 if

|τ̂ | > uα/2

√
2(2n+ 5)

9n(n− 1)
,

where uk stands for the 100×k-percentile of the standard normal distribution. In this work, all hypothesis
tests are performed at 95% significance level and n = 2, 000.
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of the Kendall’s τ between the three cases studied (see Section 4.4 for details on the
experiment).

6 Conclusions and Final Remarks

In this work we present an extensive empirical analysis on the dependence among the
components of VARFIMA(0,d, 0) process through the Mallows distance point of view. We
examine several cases, including Gaussian and non-Gaussian innovation processes, heavy-
tailed marginals, equal and unequal marginal variances, among others. These marginal
features are introduced in the process at the innovation’s level, mostly by using copula
tools. The goal is to investigate a possible relationship between the Mallows distance, the
fractional differencing parameter d, the type and dependence in the innovation process
as well as its marginal behavior.

To estimate the Mallows distance we use an estimator based on the marginals’ em-
pirical quantiles. In Section 3, the estimator is shown to converge to the theoretical
Mallows distance. Section 4 is dedicated to present the simulation results. It is divided
in 4 subsections. In Subsection 4.1 we present the results for the case where the innova-
tion process is Gaussian, for several combinations of d and ρ. In this standard case, our
findings suggest that the Mallows distance is not generally sensitive to the correlation on
the innovation, except in the presence of strong long range dependence. As expected, the
Mallows distance decreases as the correlation increases.

In Subsections 4.2 and 4.3 we study the case where the innovation process is still Gaus-
sian, but the marginal variances are different. We conclude that the different variances do
not affect the Mallows distance behavior, but do affect its magnitude. We discover that
the higher the difference between the variance components, the higher the magnitude of
the Mallows distance. We find that equal variances produce smaller Mallows distance
compared to unequal variances. The Mallows distance also responds to the magnitude
of the variance components. The higher the magnitude, the more sensitive the Mallows
distance becomes with respect to correlation in the innovation process in the presence of
long range dependence. The overall Mallows distance behavior seems to be indifferent
with respect to the marginal variances, except, as mentioned, for its magnitude. We also
conclude that the fractional differencing parameter influence is attenuated by differences
in the variances.

In Subsection 4.4 we attack the problem of non-Gaussianity in the innovation process
by considering innovations with Frank copula distribution, but Gaussian marginals. We
compared innovations with the same dependence strength, measured here by the Kendall’s
τ . We find that, as long as the dependence strength is kept at the same level, non-Gaussian
innovations produce no change in the Mallows distance. We also investigate whether
heavy-tailed marginals influence the Mallows distance at all. We discover that, except for
a small change in the magnitude of the estimates, the Mallows distance behavior do not
change under heavy-tailed innovations.

Are our results unique to the Mallows distance or are they shared by other dependence
measures? To partially answer this question, we repeat all the simulations presented in
Section 4 calculating the Kendall’s τ instead of the Mallows distance. We find that
the Kendall’s τ , in clear opposition to the Mallows distance, is highly sensitive to the
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innovations dependence in all experiments, but indifferent for most marginal changes we
have applied. A bold exception is the unequal variances case, for which the Kendall’s τ
changes from its usual smooth behavior to an erratic one.

Overall we conclude that the Mallows distance is usually indifferent to changes in the
innovation dependence, except in the presence of strong long range dependence and that
the fractional differencing parameter plays an important role in determining the depen-
dence structure of VARFIMA(0,d, 0) processes whatever the marginal or joint dependence
considered is.
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Appendix: Figures

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1: Plots of d2 by Mallows distance for fixed d1.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2: Plots of d2 by Mallows distance for fixed d1 and σ2 = (1, 2).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3: Plots of d2 by Mallows distance for fixed d1 and σ2 = (2, 3).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4: Plots of d2 by Mallows distance for fixed d1 and σ2 = (1, 3).

Figure 5: Plots of d2 by Mallows distance for fixed d1 and θ ∈ {0, 3.3, 18}. Marginals were
taken to be standard normal.
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Figure 6: Plots of d2 by Mallows distance for fixed d1 and θ ∈ {0, 3.3, 18}. Marginals were
taken to be (standardized) t3.

Figure 7: Plots of d2 by Mallows distance for fixed d1 and θ ∈ {0, 3.3, 18}. Marginals were
taken to be (standardized) t7.
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Figure 8: Plots of d2 by Kendall’s τ for fixed d1.

Figure 9: Plots of d2 by Kendall’s τ for fixed d1 and σ2 = (1, 2).
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Figure 10: Plots of d2 by Kendall’s τ for fixed d1 and σ2 = (1, 3).

Figure 11: Plots of d2 by Kendall’s τ for fixed d1 and σ2 = (2, 3).
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Figure 12: Plots of d2 by Kendall’s τ for fixed d1 and θ ∈ {0, 3.3, 18}. Marginals were
taken to be standard normal.

Figure 13: Plots of d2 by Kendall’s τ for fixed d1 and θ ∈ {0, 3.3, 18}. Marginals were
taken to be (standardized) t3.
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Figure 14: Plots of d2 by Kendall’s τ for fixed d1 and θ ∈ {0, 3.3, 18}. Marginals were
taken to be (standardized) t7.


