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Abstract

Bayesian inference for fractionally integrated exponential generalized autoregressive con-
ditional heteroskedastic (FIEGARCH) models using Markov Chain Monte Carlo (MCMC)
methods is described. A simulation study is presented to assess the performance of the
procedure, under the presence of long-memory in the volatility. Samples from FIEGARCH
processes are obtained upon considering the generalized error distribution (GED) for the in-
novation process. Different values for the tail-thickness parameter ν are considered covering
both scenarios, innovation processes with lighter (ν > 2) and heavier (ν < 2) tails than the
Gaussian distribution (ν = 2). A comparison between the performance of quasi-maximum
likelihood (QML) and MCMC procedures is also discussed. An application of the MCMC
procedure to estimate the parameters of a FIEGARCH model for the daily log-returns of
the S&P500 US stock market index is provided.
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1 Introduction

ARCH-type (Autoregressive Conditional Heteroskedasticity) and stochastic volatility (Breidt et
al., 1998) models are commonly used in financial time series modeling to represent the dynamic
evolution of volatilities. By ARCH-type models we mean not only the ARCH model proposed
by Engle (1982) but also several generalizations that were lately proposed.

Among the most popular generalizations of the ARCH model is the generalized ARCH
(GARCH) model, introduced by Bollerslev (1986), for which the conditional variance depends
not only on the p past values of the process (as in the ARCH model), but also on the q past
values of the conditional variance. Although the ARCH and GARCH models are widely used
in practice, they do not take into account the asymmetry in the volatility, that is, the fact
that volatility tends to rise in response to “bad” news and to fall in response to “good” news.
As an alternative, Nelson (1991) introduces the exponential GARCH (EGARCH) model. This
model not only describes the asymmetry on the volatility, but also has the advantage that
the positivity of the conditional variance is always attained since it is defined in terms of the
logarithm function.
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The fractionally integrated EGARCH (FIEGARCH) and fractionally integrated GARCH
(FIGARCH) models proposed, respectively, by Bollerslev and Mikkelsen (1996) and Baillie et
al. (1996), generalize the EGARCH (Nelson, 1991) and the GARCH (Bollerslev, 1986) models,
respectively. FIEGARCH models have not only the capability of modeling clusters of volatility
(as ARCH and GARCH models do) and capturing its asymmetry (as the EGARCH model
does) but they also take into account the characteristic of long memory in the volatility (as
the FIGARCH model does). The non-stationarity of FIGARCH models (in the weak sense)
makes this class of models less attractive for practical applications. Another drawback of the
FIGARCH models is that we must have d ≥ 0 and the polynomial coefficients in its definition
must satisfy some restrictions so the conditional variance will be positive. FIEGARCH models
do not have this problem since the variance is defined in terms of the logarithm function,
moreover, they are weak stationary whenever the long memory parameter d is smaller than 0.5
(Lopes and Prass, 2014).

A complete study on the theoretical properties of FIEGARCH processes is presented in Lopes
and Prass (2014). The authors also conduct a simulation study to analyze the finite sample
performance of the quasi-maximum likelihood (QML) procedure on parameter estimation. The
QML procedure became popular for two main reasons. First, the expression for the quasi-
likelihood function is simpler for the Gaussian case than when considering, for example, the
Student’s t or the generalized error distribution (GED). Second, since the parameters of the
distribution function are not estimated, the dimension of the optimization problem is reduced.
On the other hand, the results in Lopes and Prass (2014) indicate that, although the QML
presents a relatively good performance when the sample size is 2000 and the estimation improves
as the sample size increases, it does so very slowly.

In this work we propose the use of Bayesian methods considering Monte Carlo simulation
techniques on the estimation of the FIEGARCH model parameters. This procedure is usu-
ally considered to analyze financial time series assuming stochastic volatility models (see, for
example, Meyer and Yu, 2000), mostly because of the difficulty on applying traditional statis-
tical techniques due to the complexity of the likelihood function. To generate samples from
the joint posterior distribution for the parameters of interest we consider the Markov Chain
Monte Carlo (MCMC) procedure known in the literature as MH-whithing-Gibbs or Gibbs sam-
pler with Metropolis steps, which is a combination of Gibbs sampler (see, for example, Gelfand
and Smith, 1990; Casela and George, 1992; Smith and Roberts, 1993) and Metropolis-Hastings
(Metropolis et al., 1953; Hastings, 1970; Chib and Greenberg, 1995) algorithms. These samples
are generated from all conditional posterior distributions for each parameter given all the other
parameters, the data and a set of initial conditions.

A simulation study is conducted to assess the finite sample performance of the procedure
proposed here, under the presence of long-memory in the volatility. The samples from FIE-
GARCH processes are obtained upon considering the GED for the innovation process. Taking
into account that financial time series are usually characterized by heavy tailed distributions,
different values for the tail-thickness parameter ν are considered covering both scenarios: inno-
vation processes with lighter and heavier tails than the Gaussian distribution.

The paper is organized as follows. In Section 2 a review on the definition and main properties
of FIEGARCH processes is presented. Section 3 describes the parameter estimation procedure
when Bayesian inference using MCMC is considered. Section 4 describes the steps used in the
simulation study, such as the data generating process, the prior selection procedure and the per-
formance measures considered. This section also reports the simulation results for the MCMC
procedure and the comparison between QML and MCMC approaches. Section 5 presents an
application of the suggested MCMC algorithm to a real data set. Section 6 concludes the paper.
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2 FIEGARCH Processes

Let (1− B)−d be the operator defined by its Maclaurin series expansion, namely,

(1− B)−d =

∞∑
k=0

τd,k Bk, (1)

where τd,0 := 1, τd,k := Γ(k+d)
Γ(k+1)Γ(d) , for all k ≥ 1, Γ(·) is the gamma function and B is the

backward shift operator defined by Bk(Xt) = Xt−k, for all k ∈ N.

Assume that α(·) and β(·) are polynomials of order p and q, respectively, defined by

α(z) =

p∑
i=0

(−αi)zi and β(z) =

q∑
j=0

(−βj)zj , (2)

with α0 = β0 = −1. If α(·) and β(·) have no common roots and if β(·) has no roots in the
closed disk {z : |z| ≤ 1}, then the function λ(·), defined by

λ(z) =
α(z)

β(z)
(1− z)−d :=

∞∑
k=0

λd,kz
k, for all |z| < 1, (3)

is analytic in the open disk {z : |z| < 1}, for any d > 0, and in the closed disk {z : |z| ≤ 1},
whenever d ≤ 0. Therefore, λ(·) is well defined and the power series representation in (3) is
unique. More specifically, the coefficients λd,k, for all k ∈ N, are given by (see Lopes and Prass,
2014)

λd,0 = 1 and λd,k = −α∗k +

k−1∑
i=0

λd,i

k−i∑
j=0

β∗j δd,k−i−j , for all k ≥ 1, (4)

where

α∗m :=

{
αm, if 0 ≤ m ≤ p;

0, if m > p;
β∗m :=

{
βm, if 0 ≤ m ≤ q;

0, if m > q;
(5)

and δd,j := τ−d,j , for all j ∈ N, are the coefficients obtained upon replacing −d by d in (1), that
is

∞∑
k=0

δd,kBk :=
∞∑
j=0

τ−d,jBj = (1− B)d.

Let θ, γ ∈ R and {Zt}t∈Z be a sequence of independent and identically distributed (i.i.d.)
random variables, with zero mean and variance equal to one. Assume that θ and γ are not both
equal to zero and define {g(Zt)}t∈Z by

g(Zt) = θZt + γ[|Zt| − E(|Zt|)], for all t ∈ Z. (6)

It follows that (see Lopes and Prass, 2014) {g(Zt)}t∈Z is a strictly stationary and ergodic
process. Moreover, since E(Z2

0 ) < ∞, {g(Zt)}t∈Z is also weakly stationary with zero mean
(hence a white noise process) and variance σ2

g given by

σ2
g = θ2 + γ2 − [γE(|Z0|)]2 + 2 θ γ E(Z0|Z0|). (7)
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Now, for any d < 0.5 and ω ∈ R, let {Xt}t∈Z be the stochastic process defined by

Xt = σtZt, (8)

ln(σ2
t ) = ω +

α(B)

β(B)
(1− B)−dg(Zt−1)

= ω +

∞∑
k=0

λd,kg(Zt−1−k), for all t ∈ Z. (9)

Then {Xt}t∈Z is a Fractionally Integrated EGARCH process, denoted by FIEGARCH(p, d, q)
(Bollerslev and Mikkelsen, 1996).

The properties of FIEGARCH(p, d, q) processes, with d < 0.5, are given below (the proofs
of these properties can be found in Lopes and Prass, 2014). Henceforth GED(ν) denotes the
generalized error distribution with tail thickness parameter ν.

Proposition 1. Let {Xt}t∈Z be a FIEGARCH(p, d, q) process. Then the following properties
hold:

1. {ln(σ2
t )}t∈Z is a stationary (weakly and strictly) and an ergodic process and the random

variable ln(σ2
t ) is almost surely finite, for all t ∈ Z;

2. if d ∈ (−1, 0.5) and α(z) 6= 0, for |z| ≤ 1, the process {ln(σ2
t )}t∈Z is invertible;

3. {Xt}t∈Z and {σ2
t }t∈Z are strictly stationary and ergodic processes;

4. if {Zt}t∈Z is a sequence of i.i.d. GED(ν) random variables, with v > 1, zero mean and
variance equal to one, then E(Xr

t ) <∞ and E(σ2r
t ) <∞, for all t ∈ Z and r > 0.

3 Parameter Estimation: Bayesian Inference using MCMC

Let ν be the parameter (or vector of parameters) associated with the probability density function
of Z0 and denote by

• η = (ν, d, θ, γ, ω, α1, · · · , αp, β1, · · · , βq) := (η1, η2, · · · , η5+p+q) the vector of unknown
parameters in (9);

• η(−i) the vector containing all parameters in η except ηi, for each i ∈ {1, · · · , 5 + p+ q};

• pZ(·|ν) the probability density function of Z0 given ν;

• Ft the σ-algebra generated by {Zs}s≤t;

• pXt
(·|η,Ft−1) the probability density function of Xt given η and Ft−1, for all t ∈ Z.

From (9) it is evident that, given η, σt is a Ft−1-measurable random variable. Moreover,
since Xt = σtZt and pZ(·|ν,Ft−1) = pZ(·|ν), the following equality holds

pXt
(xt|η,Ft−1) =

1

σt
pZ
(
xtσ
−1
t |ν

)
, with σt = exp

{
1

2

[
ω +

∞∑
k=0

λd,kg(zt−1−k)

]}
, (10)
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for all xt ∈ R and t ∈ Z. Furthermore, from (10), the conditional probability of X :=
(X1, · · · , Xn)′ given η and F0 can be written as

pX
(
x1, · · · , xn|η,F0

)
= pXn

(xn|η, xn−1, · · · , x1,F0)× · · · × pX1
(x1|η,F0)

=
n∏
t=1

1

σt
pZ
(
xtσ
−1
t |ν

)
. (11)

Given any I0 ∈ F0, select a prior conditional density function pI0(·|η) for I0 given η. Also,
select a prior1 density function πi(·) for ηi and a prior conditional probability density function
p(−i)(·|ηi) for η(−i) given ηi, for each i ∈ {1, · · · , 5 + p+ q}.

Observe that, by applying the Bayes’ rule, the conditional probability density function of ηi
given X, η(−i) and any I0, can be written as

p
(
ηi|X,η(−i), I0

)
∝ pX

(
X|η, I0

)
× pI0

(
I0|η

)
× p(−i)(η(−i)|ηi)× πi(ηi), (12)

for each i ∈ {1, · · · , 5 + p+ q}, where pX
(
· |η,F0

)
is given in (11).

The parameter estimation is carried out by considering an MCMC procedure which is a
combination of the Gibbs sampling (Geman and Geman, 1984; Gelfand and Smith, 1990) and
Metropolis-Hastings (Metropolis et al., 1953; Hastings, 1970) algorithms. The main advantage of
the Gibbs sampler is that it simplifies a complex high-dimensional problem by breaking it down
into simple, low-dimensional problems. However, the algorithm assumes that the conditional
distribution of each random variable is known and it is easy to sample from it. For the problem
considered in this work, it is not possible to sample directly from p

(
ηi|X,η(−i), I0

)
, for any

i ∈ {1, · · · , 5 + p+ q}, and hence the Metropolis-Hastings algorithm is considered instead. The
procedure adopted here is known in the literature as MH-whithing-Gibbs or Gibbs sampler with
Metropolis steps.

4 Simulation Study

Section 2 defines a FIEGARCH(p, d, q) process, for any p, q ≥ 0. However, in this simulation
study, the performance of the MCMC procedure is analyzed only for FIEGARCH(0, d, 0) pro-
cesses. Under the assumption that p = q = 0, one has λd,k = πd,k, for all k ∈ Z, and (9)
becomes

ln(σ2
t ) = ω + (1− B)−dg(Zt−1) = ω +

∞∑
k=0

πd,kg(Zt−1−k), for all k ∈ Z.

Therefore, the vector of unknown parameters is η = (ν, d, θ, γ, ω)′ := (η1, · · · , η5)′.

Remark 1. Notice that, for the general case p, q > 0, the polynomials α(·) and β(·), given in
(9), cannot have common roots and also, β(z) and α(z) must be different from zero whenever
|z| ≤ 1 (when one wishes the invertibility property for the process). These conditions must be
incorporated in the expressions of the priors increasing the complexity and the computational
cost of the problem. Therefore, the case p, q > 0 shall be discussed in a future work.

The Bayesian inference approach, using MCMC to obtain posterior density functions, is
used to estimate the parameters of the model. All algorithms were implemented in FORTRAN

1In fact, the priors πi(·) are not necessarily probability density functions. For instance, π(x) = 1 and π(x) =
1/x, are examples of improper priors (i.e., they do not integrate to 1) used in practice.
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95 language but can be converted to other programming languages such as C, R and SPlus. The
authors have not yet implemented the code for FIEGARCH models in more standard MCMC
softwares such as winBUGS or openBUGS. However, the implementation should follow similar
steps as in Meyer and Yu (2000), where stochastic volatility (SV) models were considered.

The authors have also considered using the so-called ARMS (Adaptive Rejection Metropolis
Sampling) within Gibbs algorithm (see Gilks et al., 1995; Gelfand and Smith, 1990; Casela and
George, 1992; Smith and Roberts, 1993; Chib and Greenberg, 1995) instead of MH-whithing-
Gibbs with the truncated normal proposal distribution. ARMS automatically adapts to the
full conditional posterior density without the need to specify tuning parameters such as µ and
σ, defined in (13). However, this algorithm still depends on the specification of two values: a
number n1 of points to create the initial envelope and a number nm of maximum points in the
envelope. When applying the ARMS to sample from the posterior distribution of the parameter
in the FIEGARCH model the following was observed.

• For a time series with small size, say for instance n = 500 observations, the values n1 could
be selected independent of the values of the parameters used to generate the FIEGARCH
sample. In this case, the algorithm runs smoothly. However, for FIEGARCH processes,
the parameter estimation requires higher sample sizes given the characteristic of long-
range dependence in the volatility.

• When considering a larger sample size, say n = 1000 (or higher), the algorithm became
very unstable because the log-likelihood values ln(p

(
ηi|X,η(−i), I0

)
) are very large, spe-

cially when one of the parameters in η(−i) is distant from the true parameter value used
to generate X.

• Although one could use an artifact such as multiplying the posterior log-likelihood by a
normalizing constant, the authors could not find a value that could be globally used for all
posteriors, regardless the parameter ηi in question and the combination of ν and d used
to generate the FIEGARCH time series. To illustrate the variation on the log-likelihood
values, Figures 1 (a) and (b) show the graphs of f1(·, ·) defined by

f1(d, ω) := ln
(
pX
(
X|ν = ν0, d, θ = −0.15, γ = 0.24, ω, I0 = {g(Zt) = 0; t ≤ 0}

))
with ν0 = 1.1 and ν0 = 2.5, respectively. The time series {Xt}2000

t=1 were generated with
d = 0.45, θ = −0.15, γ = 0.24, ω = −5.4 and Z0 ∼ GED(ν0), with ν0 = 1.1 and ν0 = 2.5,
respectively, in Figures 1 (a) and (b).

• Sometimes increasing/decreasing the number of initial points in the envelope solved the
instability for one model but made it worse for the others. For this simulation study we
consider 4 different values of d and 5 different values of ν (totaling 20 different models)
and overdispersed starting points for each model. Under these conditions a value n1 that
could be used for all models was not found. The authors concluded that if one analyzes
each case separately, the algorithm could run smoothly. However this would require too
much time to finish the simulations.

4.1 Data Generating Process

The samples from FIEGARCH(0, d, 0) processes are obtained by setting the following:

• all time series were generated with sample sizes n = 5000.
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(a) (b)

Figure 1: Graphs of f1(d, ω) := ln
(
pX
(
X|ν = ν0, d, θ = −0.15, γ = 0.24, ω, I0 = {g(Zt) =

0; t ≤ 0}
))

. The time series {Xt}2000
t=1 was generated with d = 0.45, θ = −0.15, γ = 0.24,

ω = −5.4 and Z0 ∼ GED(ν0), with (a) ν0 = 1.1; (b) ν0 = 2.5.

• Z0 ∼ GED(ν), with zero mean and variance equal to one. Thus,

pZ(z|ν) =
ν exp

{
− 1

2 |zλ
−1
ν |ν

}
λν21+1/νΓ(1/ν)

, λν =

[
2−2/ν Γ(1/ν)

Γ(3/ν)

]1/2

, for all z ∈ R;

• d ∈ {0.10, 0.25, 0.35, 0.45} and ν ∈ {1.1, 1.5, 1.9, 2.5, 5};

• for all models, ω = −5.40, θ = −0.15 and γ = 0.24. These values are close to the ones
already observed in practical applications (see, for instance, Nelson, 1991; Bollerslev and
Mikkelsen, 1996; Ruiz and Veiga, 2008; Lopes and Prass, 2014).

• the infinite sum in (9) is truncated at m∗ = 50, 000.

For each combination of d and ν, a sample {zt}nt=−m∗ , of size m∗ + n + 1, is drawn from
the GED(ν) distribution and then the sample {xt}nt=1, from the FIEGARCH(0, d, 0) process, is
obtained through the relation

ln(σ2
t ) = ω +

m∗∑
k=0

λd,kg(zt−1−k) and xt = σtzt, for all t = 1, · · · , n.

4.2 Parameter Estimation Settings

The samples from the posterior distributions are obtained by considering the MH-within-Gibbs
algorithm. The estimation was performed by considering both the entire time series {xt}nt=1,
with n = 5000, and a sub-sample of size 2000.

The transition kernel q(·|·) considered in the Metropolis-Hastings algorithm is the function
defined as

q(x|y) = f(x; y, σ, a, b),
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where f(·; ·, ·, ·, ·) is the truncated normal density function, defined as

f(x;µ, σ, a, b) =


1

σ

φ
(x−µ

σ

)
Φ
( b−µ

σ

)
− Φ

(a−µ
σ

) , if a ≤ x ≤ b,

0, otherwise,

(13)

where φ(·) and Φ(·) are, respectively, the probability density and cumulative distribution func-
tions of the standard normal distribution; a, b ∈ R are, respectively, the lower and upper limits
of the distribution’s support; µ and σ denote, respectively, the distribution’s (non-truncated
version).

To avoid using overdispersed points so the computational time could be reduced, a reasonable
η(0) was selected by calculating pX

(
X|η,F0

)
for different combinations (180 in total) of ν, d, θ, γ

and ω. Then η(0) is defined as the vector η = (ν, d, θ, γ, ω)′ with the highest likelihood function
value. A chain of length 10000 was generated and, to eliminate any dependence on the initial
η(0), a burn-in of size B = max{B1, B2, B3, B4, B5} was considered, where Bi is the burn-in size
for parameter ηi, for i ∈ {1, 2, 3, 4, 5}, suggested by the Heidelberg and Welch (Heidelberger
and Welch, 1983) diagnostic criteria.

Remark 2. The minimum length of the pilot run suggested by Raftery-Lewis diagnostic
(Raftery and Lewis, 1992) test was 3746. To perform the test we consider q = 0.025 as quantile
of interest, r = 0.005 as the desired margin of error of the estimate, s = 0.95 as the probability
of obtaining an estimate in the interval (q− r, q+ r) and converge.eps = 0.001 as the precision
required for estimate of time to convergence. Since the Raftery-Lewis diagnostic is usually over-
conservative the burn-in and final sample size for the chain were selected taking into account
the results of the Heidelberg and Welch test.

Table 1: Information available in practice for the parameter ηi in η = (ν, d, θ, γ, ω)′ :=
(η1, · · · , η5)′ and the corresponding considered prior, for each i ∈ {1, · · · , 5}.

Information Available Prior

The generalized error distribution is well defined for any ν > 0. ν ∼ I(0,∞)(ν) *

Long-memory in volatility is observed if and only if d ∈ (0, 0.5). This char-
acteristic can be detected, for instance, through the periodogram function
of the time series {ln(X2

t )}nt=1 (see Lopes and Prass, 2014).

d ∼ U(0, 0.5)

Empirical evidence suggests that θ ∈ [−1, 0]. ** θ ∼ U(−1, 0)

Empirical evidence suggests that γ ∈ [0, 1]. ** γ ∼ U(0, 1)

ω = E(ln(h2
t )) = E(ln(X2

t )) + E(ln(Z2
t )).

The choice of the interval for ω will depend on the magnitude of the
data. The sample mean of {ln(X2

t )}nt=1 or ln(σ̂2
X), where σ̂2

X is the sample
variance of {Xt}nt=1, can be used to obtain a raw approximation for ω.

ω ∼ U(−15, 15)

Notes: * Given A ⊂ R, the symbol IA(x) denotes the improper prior defined as 1, if x ∈ A, and 0, if x /∈ A.

** See, for instance, Nelson (1991); Bollerslev and Mikkelsen (1996); Ruiz and Veiga (2008); Lopes and

Prass (2014). To the best of our knowledge, a FIEGARCH model for which θ or γ are not in the intervals,

respectively, [−1, 0] and [0, 1] has never been reported in the literature.
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Table 2: Parameters of the truncated normal distribution (transition kernel) considered, at
iteration m of the Gibbs sampler, to obtain the sample from the posterior distribution of the
parameter ηi in η = (ν, d, θ, γ, ω)′ := (η1, · · · , η5)′, for each i ∈ {1, · · · , 5}.

Parameter ν d θ γ ω

Mean (y) ν(m−1) d(m−1) θ(m−1) γ(m−1) ω(m−1)

Standard Deviation (σ) 0.500 0.025 0.050 0.050 1.500
Lower Limit (a) 0.000 0.000 −1.000 0.000 −15.000
Upper Limit (b) 10.000 0.500 0.000 1.000 15.000

Note: η
(m−1)
i , for any i ∈ {1, · · · , 5}, denotes the parameter value obtained in the (m− 1)th iteration. Different

combinations of standard deviation, lower and upper limits were tested for the parameter ηi in η =

(ν, d, θ, γ, ω)′, for each i ∈ {1, · · · , 5}. The values presented here correspond to the final choice.

The prior distributions for ν, d, θ, γ and ω are selected by considering only the basic set of
information usually available in practice. The information on each parameter and the corre-
sponding prior selected are given in Table 1. Table 2 presents the mean, standard deviation,
lower and upper limits for the transition kernel considered at iteration m of the Gibbs sampler
with Metropolis steps, when the prior for ηi in η = (ν, d, θ, γ, ω)′ := (η1, · · · , η5)′, for each
i ∈ {1, · · · , 5}, is defined as in Table 1.

Since the conditional probability density function of I0 given η is difficult to obtain, in all
scenarios, it is assumed that g(Zs) = 0, for all s ≤ 1, and it is fixed pI0(·|η) = 1. Moreover, since
(9) is well defined regardless of the relation among the parameters of the model, it is assumed
that

p(−i)(η(−i)|ηi) ∝
∏
j 6=i

πj(ηj), for any i ∈ {1, · · · , 5}.

4.3 Estimates and Performance Measures

Let {η(k)
i }Mk=1 be a sample of size M from the posteriori distribution of ηi in η = (ν, d, θ, γ, ω)′ :=

(η1, · · · , η5)′, for any i ∈ {1, · · · , 5}. Denote by η̄i and sdηi , respectively, the sample mean and

standard deviation of {η(k)
i }Mk=1, namely,

η̄i =
1

M

M∑
k=1

η
(k)
i and sdηi =

√√√√ 1

M

M∑
k=1

(η
(k)
i − η̄i)2, for any i ∈ {1, · · · , 5}.

Then the estimate η̂i of ηi is defined as η̂i := η̄i.

Moreover, let q̂i(α) denote the α quantile2 for the posterior sample distribution of ηi, for
any α ∈ [0, 1] and i ∈ {1, · · · , 5}. Then a 100(1− α)% credibility interval for ηi is given by

CI1−α(ηi) =
[
q̂i

(α
2

)
, q̂i

(
1− α

2

)]
, for any i ∈ {1, · · · , 5}.

Furthermore, the estimation bias is given by

biasηi = η̄i − ηi, for any i ∈ {1, · · · , 5}.
2In this work, the following definition is adopted (Brockwell and Davis, 1991). Given any 0 ≤ α ≤ 1, the

number q(α) satisfying P(X ≤ q(α)) ≥ α and P(X ≥ q(α)) ≥ 1−α, is called a quantile of order α (or α quantile)
for the random variable X (or for the distribution function of X).
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4.4 Simulation Results for the MCMC Bayesian Procedure

The simulation results for the procedure proposed in Section 3 are described in the sequel.

Figure 2: Posterior mean (solid circle), the true parameter value (dashed line) and the 95%
credibility interval (solid line) for the parameters ν, d, θ, γ and ω (from top to bottom), for
each combination of d0 and ν0. The posterior distributions were obtained by considering an
improper prior for ν and uniform priors for d, θ, γ and ω. The size of the chains used to obtain
the posterior means are given in Table 3. The sample size for the time series {Xt}nt=1 is n =
2000. The true parameters values considered in this simulation are d0 ∈ {0.10, 0.25, 0.35, 0.45},
ν0 ∈ {1.1, 1.5, 2.5, 5.0}, θ0 = −0.15, γ0 = 0.24 and ω0 = −5.4.

Figures 2 and 3 show the sample mean (solid circle) and the 95% credibility interval (solid
line) for the sample obtained from the posterior distribution of ν, d, θ, γ and ω (respectively,
from top to bottom), for each combination of d0 and ν0. The true parameter values ν0, d0, θ0, γ0

and ω0 are represented in the corresponding row by the dashed line. The graphs related to θ, γ
and ω (respectively, the third, fourth and fifth rows, from top to bottom) consider the same
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Figure 3: Posterior mean (solid circle), the true parameter value (dashed line) and the 95%
credibility interval (solid line) for the parameters ν, d, θ, γ and ω (from top to bottom), for
each combination of d0 and ν0. The posterior distributions were obtained by considering an
improper prior for νand uniform priors for d, θ, γ and ω. The size of the chains used to obtain
the posterior means are given in Table 3. The sample size for the time series {Xt}nt=1 is n =
5000. The true parameters values considered in this simulation are d0 ∈ {0.10, 0.25, 0.35, 0.45},
ν0 ∈ {1.1, 1.5, 2.5, 5.0}, θ0 = −0.15, γ0 = 0.24 and ω0 = −5.4.

scale for all d0 ∈ {0.10, 0.25, 0.35, 0.45}. Also, for the parameters θ, γ and ω, there is one graph
for each d0 and, for each one of these graphs, the true value of ν0 is indicated in the x-axis. The
size of the chain used to obtain the posterior means showed in Figures 2 and 3 are given in Table
3. The sample size for the time series {Xt}nt=1 considered in Figures 2 and 3 are, respectively,
n = 2000 and 5000. The same results shown in Figures 2 and 3 are reported, respectively, in
Tables 11 and 12, given in the Appendix.
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Table 3: Burn-in size B = max{B1, B2, B3, B4, B5} considered to obtain the posterior mean
showed in Figures 2 and 3. The value Bi is the burn-in size for parameter ηi, for i ∈ {1, 2, 3, 4, 5},
suggested by the Heidelberg and Welch diagnostic criteria. The corresponding chain size used
to obtain the posterior means is M = 10000−B.

ν0 1.1 1.5 1.9 2.5 5.0

n 2000 5000 2000 5000 2000 5000 2000 5000 2000 5000

d0 = 0.10 4000 0 0 0 0 0 0 0 0 0
d0 = 0.25 0 0 0 0 0 1000 2000 0 4000 0
d0 = 0.35 0 0 0 4000 0 0 4000 0 0 0
d0 = 0.45 0 2000 0 0 0 0 4000 0 0 0

From Figures 2 and 3 one observes that, as the sample size n increases, parameter estimation
improves significantly and the width of the credibility interval decreases. The estimation bias
for ν is always negative when ν0 < 1.9 (ν0 = 1.1, if n = 5000) and positive when ν0 ≥
1.9 (ν0 > 1.1, if n = 5000), when n = 2000. For (η2, · · · , η5) = (d, θ, γ, ω) the following
pattern is observed (with a few exceptions): for each ν0 and i ∈ {2, · · · , 5} fixed, either η̄i ≤ ηi
or η̄i ≥ ηi for all d0 ∈ {0.10, 0.25, 0.35, 0.45}. For n = 2000, the exceptions are d̄ when
(d0, ν0) ∈ {(0.10, 1.5), (0.45, 1.1)} and γ̄ when (d0, ν0) ∈ {(0.35, 1.1), (0.45, 1.9)}. For n = 5000,
the exceptions are d̄ when (d0, ν0) ∈ {(0.35, 2.5), (0.45, 2.5)} and γ̄ when (d0, ν0) ∈ {(0.45, 1.5)},
ω̄ when (d0, ν0) ∈ {(0.35, 1.5), (0.45, 1.5)}. Moreover, let ζ(d0, ν0, ηi) be the value of η̄i when the
true parameter values are d = d0 and ν = ν0, for any i ∈ {1, · · · , 5}. Then, the following pattern
also follows: for any i ∈ {1, · · · , 4}, if ζ(0.1, ν(i), ηi) ≤ ζ(0.1, ν(i+1), ηi), then ζ(d0, ν(i), ηi) ≤
ζ(d0, ν(i+1)), for all d0 ∈ {0.25, 0.35, 0.45}, where ν(1) < ν(2) < ν(3) < ν(4) < ν(5) are the
values of ν0 in ascending order. The same follows when ζ(0.1, ν(i), ηi) ≥ ζ(0.1, ν(i+1), ηi), for any
i ∈ {1, · · · , 4},

When n = 2000 (see Figure 2), the credibility intervals CI0.95(ν), CI0.95(d) and CI0.95(γ)
contain the true parameter values (respectively, ν0, d0 and γ0) in all cases. The true param-
eter value θ0 = −0.15 is contained in all credibility intervals CI0.95(θ), except when ν0 = 5.0
and d0 = 0.10. For the parameter ω, the true parameter value ω0 = −5.4 is not contained
in CI0.95(ω) for the following combinations of ν0 and d0: (1.5, 0.45) and (5.0, d0), for all
d0 ∈ {0.10, 0.25, 0.35, 0.45}. When n = 5000 all parameters all contained in their respective
credibility intervals, except ω0 when (ν0, d0) ∈ {(5.0, 0.35), (1.5, 0.45), (5.0, 0.45)}.

It is our believe that some credibility intervals failed to include the true parameter values
due to the fact that the variation on the log-likelihood values in the region around the true
parameter value (θ0 or ω0) is too small. To illustrate the behavior of the log-likelihood function,
Figures 4 (a) - (d) show the graphs of f2(·, ·) defined by

f2(θ, ω) := ln
(
pX
(
X|ν = 5.0, d = d0, θ, γ = 0.24, ω, I0 = {g(Zt) = 0; t ≤ 0}

))
with d0 = 0.10, 0.25, 0.35 and 0.45, respectively. The time series {Xt}2000

t=1 were generated with
θ = −0.15, γ = 0.24, ω = −5.4, Z0 ∼ GED(5.0), and d0 = 0.10, 0.25, 0.35 and 0.45, respectively,
in Figures 4 (a) - (d).
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(a) (b)

(c) (d)

Figure 4: Graphs of f2(θ, ω) := ln
(
pX
(
X|ν = 5.0, d = d0, θ, γ = 0.24, ω, I0 = {g(Zt) = 0; t ≤

0}
))

. The time series {Xt}2000
t=1 was generated with d = 0.45, θ = −0.15, γ = 0.24, ω = −5.4

and Z0 ∼ GED(5.0), with (a) d0 = 0.10; (b) d0 = 0.25; (c) d0 = 0.35; (d) d0 = 0.45.

4.5 A Comparison Between the QML and MCMC Bayesian Procedures

Following the same steps as in Lopes and Prass (2014), we have also conduct a simulation study
to analyze the finite sample performance of the quasi-maximum likelihood (QML) procedure on
parameter estimation. All samples were generated as described in Section 4.1. For each model
1000 replications were considered. For each replication, the parameter estimation was carried
out by considering both the entire time series {xt}nt=1, with n = 5000, and a sub-sample of size
2000.

The simulation results considering QML procedure are showed in Tables 4-8. Statistics
reported, based on 1000 replications, are, respectively, the mean (η̄), the standard deviation
(sd), the bias (bias), the mean absolute error (mae) and the mean square error (mse) of the
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estimates. In these tables Neval denotes the mean for the number of function evaluations
required to achieve the convergence in the algorithm.

Table 4: Estimation results for the simulated FIEGARCH models considering the QML
procedure. The FIEGARCH time series were obtained by considering ν = 1.1, d ∈
{0.10, 0.25, 0.35, 0.45}, θ = −0.15, γ = 0.24 and ω = −5.4. The statistics reported are based on
1000 replications. Neval denotes the mean for the number of function evaluations required to
achieve the algorithm convergence.

n = 2000 n = 5000

η η̄ sd bias mae mse Neval η̄ sd bias mae mse Neval

d = 0.1000 0.0449 0.1907 -0.0551 0.1403 0.0394 101.6070 0.0841 0.0966 -0.0159 0.0762 0.0096 105.7680
θ = -0.1500 -0.1519 0.0483 -0.0019 0.0384 0.0023 101.6070 -0.1509 0.0302 -0.0009 0.0240 0.0009 105.7680
γ = 0.2400 0.2307 0.0684 -0.0093 0.0544 0.0048 101.6070 0.2358 0.0419 -0.0042 0.0334 0.0018 105.7680
ω = -5.4000 -5.3647 0.0684 0.0353 0.0601 0.0059 101.6070 -5.3570 0.0472 0.0430 0.0510 0.0041 105.7680

d = 0.2500 0.1959 0.1357 -0.0541 0.1047 0.0213 108.8400 0.2213 0.0685 -0.0287 0.0566 0.0055 118.6380
θ = -0.1500 -0.1538 0.0468 -0.0038 0.0376 0.0022 108.8400 -0.1523 0.0294 -0.0023 0.0234 0.0009 118.6380
γ = 0.2400 0.2308 0.0675 -0.0092 0.0537 0.0046 108.8400 0.2360 0.0412 -0.0040 0.0327 0.0017 118.6380
ω = -5.4000 -5.3162 0.0997 0.0838 0.1036 0.0170 108.8400 -5.2861 0.0762 0.1139 0.1171 0.0188 118.6380

d = 0.3500 0.2944 0.0996 -0.0556 0.0868 0.0130 118.6400 0.3054 0.0534 -0.0446 0.0549 0.0048 128.6600
θ = -0.1500 -0.1563 0.0449 -0.0063 0.0364 0.0021 118.6400 -0.1552 0.0283 -0.0052 0.0229 0.0008 128.6600
γ = 0.2400 0.2310 0.0667 -0.0090 0.0528 0.0045 118.6400 0.2371 0.0403 -0.0029 0.0321 0.0016 128.6600
ω = -5.4000 -5.2534 0.1441 0.1466 0.1669 0.0423 118.6400 -5.1909 0.1187 0.2091 0.2113 0.0578 128.6600

d = 0.4500 0.3864 0.0793 -0.0636 0.0810 0.0103 127.5360 0.3885 0.0446 -0.0615 0.0642 0.0058 137.8490
θ = -0.1500 -0.1602 0.0427 -0.0102 0.0351 0.0019 127.5360 -0.1597 0.0267 -0.0097 0.0228 0.0008 137.8490
γ = 0.2400 0.2321 0.0651 -0.0079 0.0512 0.0043 127.5360 0.2404 0.0391 0.0004 0.0313 0.0015 137.8490
ω = -5.4000 -5.1460 0.2516 0.2540 0.2912 0.1278 127.5360 -5.0217 0.2240 0.3783 0.3847 0.1933 137.8490

Table 5: Estimation results for the simulated FIEGARCH models considering the QML
procedure. The FIEGARCH time series were obtained by considering ν = 1.5, d ∈
{0.10, 0.25, 0.35, 0.45}, θ = −0.15, γ = 0.24 and ω = −5.4. The statistics reported are based on
1000 replications. Neval denotes the mean for the number of function evaluations required to
achieve the algorithm convergence.

n = 2000 n = 5000

η η̄ sd bias mae mse Neval η̄ sd bias mae mse Neval

d = 0.1000 0.0730 0.1378 -0.0270 0.1067 0.0197 96.3460 0.0892 0.0775 -0.0108 0.0620 0.0061 99.4470
θ = -0.1500 -0.1530 0.0377 -0.0030 0.0300 0.0014 96.3460 -0.1510 0.0240 -0.0010 0.0194 0.0006 99.4470
γ = 0.2400 0.2346 0.0599 -0.0054 0.0479 0.0036 96.3460 0.2384 0.0374 -0.0016 0.0298 0.0014 99.4470
ω = -5.4000 -5.3860 0.0486 0.0140 0.0395 0.0026 96.3460 -5.3827 0.0317 0.0173 0.0289 0.0013 99.4470

d = 0.2500 0.2206 0.1094 -0.0294 0.0846 0.0128 104.0570 0.2353 0.0578 -0.0147 0.0474 0.0036 112.2100
θ = -0.1500 -0.1543 0.0371 -0.0043 0.0297 0.0014 104.0570 -0.1517 0.0237 -0.0017 0.0193 0.0006 112.2100
γ = 0.2400 0.2344 0.0591 -0.0056 0.0474 0.0035 104.0570 0.2384 0.0366 -0.0016 0.0291 0.0013 112.2100
ω = -5.4000 -5.3622 0.0695 0.0378 0.0616 0.0063 104.0570 -5.3489 0.0494 0.0511 0.0585 0.0051 112.2100

d = 0.3500 0.3200 0.0912 -0.0300 0.0715 0.0092 111.8830 0.3319 0.0478 -0.0181 0.0407 0.0026 121.2610
θ = -0.1500 -0.1557 0.0360 -0.0057 0.0290 0.0013 111.8830 -0.1528 0.0230 -0.0028 0.0188 0.0005 121.2610
γ = 0.2400 0.2347 0.0579 -0.0053 0.0466 0.0034 111.8830 0.2388 0.0355 -0.0012 0.0284 0.0013 121.2610
ω = -5.4000 -5.3290 0.1071 0.0710 0.1010 0.0165 111.8830 -5.2970 0.0835 0.1030 0.1121 0.0176 121.2610

d = 0.4500 0.4213 0.0732 -0.0287 0.0608 0.0062 122.4590 0.4295 0.0410 -0.0205 0.0368 0.0021 132.9790
θ = -0.1500 -0.1571 0.0343 -0.0071 0.0278 0.0012 122.4590 -0.1538 0.0218 -0.0038 0.0179 0.0005 132.9790
γ = 0.2400 0.2354 0.0557 -0.0046 0.0447 0.0031 122.4590 0.2394 0.0339 -0.0006 0.0273 0.0012 132.9790
ω = -5.4000 -5.2698 0.2090 0.1302 0.1953 0.0606 122.4590 -5.2025 0.1793 0.1975 0.2230 0.0711 132.9790
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Table 6: Estimation results for the simulated FIEGARCH models considering the QML
procedure. The FIEGARCH time series were obtained by considering ν = 1.9, d ∈
{0.10, 0.25, 0.35, 0.45}, θ = −0.15, γ = 0.24 and ω = −5.4. The statistics reported are based on
1000 replications. Neval denotes the mean for the number of function evaluations required to
achieve the algorithm convergence.

n = 2000 n = 5000

η η̄ sd bias mae mse Neval η̄ sd bias mae mse Neval

d = 0.1000 0.0689 0.1244 -0.0311 0.0965 0.0165 93.3030 0.0881 0.0724 -0.0119 0.0569 0.0054 97.6140
θ = -0.1500 -0.1498 0.0317 0.0002 0.0254 0.0010 93.3030 -0.1502 0.0198 -0.0002 0.0158 0.0004 97.6140
γ = 0.2400 0.2364 0.0521 -0.0036 0.0415 0.0027 93.3030 0.2389 0.0337 -0.0011 0.0268 0.0011 97.6140
ω = -5.4000 -5.3982 0.0382 0.0018 0.0308 0.0015 93.3030 -5.3972 0.0257 0.0028 0.0206 0.0007 97.6140

d = 0.2500 0.2203 0.0980 -0.0297 0.0774 0.0105 100.7190 0.2368 0.0564 -0.0132 0.0454 0.0034 109.3460
θ = -0.1500 -0.1506 0.0311 -0.0006 0.0250 0.0010 100.7190 -0.1506 0.0194 -0.0006 0.0155 0.0004 109.3460
γ = 0.2400 0.2366 0.0515 -0.0034 0.0409 0.0027 100.7190 0.2391 0.0328 -0.0009 0.0260 0.0011 109.3460
ω = -5.4000 -5.3945 0.0525 0.0055 0.0424 0.0028 100.7190 -5.3918 0.0388 0.0082 0.0315 0.0016 109.3460

d = 0.3500 0.3237 0.0839 -0.0263 0.0662 0.0077 107.5320 0.3384 0.0468 -0.0116 0.0381 0.0023 117.9370
θ = -0.1500 -0.1514 0.0302 -0.0014 0.0241 0.0009 107.5320 -0.1510 0.0188 -0.0010 0.0151 0.0004 117.9370
γ = 0.2400 0.2367 0.0503 -0.0033 0.0400 0.0025 107.5320 0.2393 0.0316 -0.0007 0.0250 0.0010 117.9370
ω = -5.4000 -5.3891 0.0840 0.0109 0.0673 0.0072 107.5320 -5.3831 0.0696 0.0169 0.0567 0.0051 117.9370

d = 0.4500 0.4302 0.0684 -0.0198 0.0554 0.0051 117.1190 0.4416 0.0391 -0.0084 0.0318 0.0016 128.6340
θ = -0.1500 -0.1520 0.0287 -0.0020 0.0230 0.0008 117.1190 -0.1511 0.0179 -0.0011 0.0144 0.0003 128.6340
γ = 0.2400 0.2369 0.0482 -0.0031 0.0383 0.0023 117.1190 0.2395 0.0298 -0.0005 0.0236 0.0009 128.6340
ω = -5.4000 -5.3798 0.1795 0.0202 0.1426 0.0326 117.1190 -5.3674 0.1640 0.0326 0.1322 0.0280 128.6340

Table 7: Estimation results for the simulated FIEGARCH models considering the QML
procedure. The FIEGARCH time series were obtained by considering ν = 2.5, d ∈
{0.10, 0.25, 0.35, 0.45}, θ = −0.15, γ = 0.24 and ω = −5.4. The statistics reported are based on
1000 replications. Neval denotes the mean for the number of function evaluations required to
achieve the algorithm convergence.

n = 2000 n = 5000

η η̄ sd bias mae mse Neval η̄ sd bias mae mse Neval

d = 0.1000 0.0774 0.1059 -0.0226 0.0836 0.0117 91.7590 0.0896 0.0669 -0.0104 0.0539 0.0046 96.9160
θ = -0.1500 -0.1515 0.0280 -0.0015 0.0221 0.0008 91.7590 -0.1504 0.0183 -0.0004 0.0147 0.0003 96.9160
γ = 0.2400 0.2349 0.0496 -0.0051 0.0398 0.0025 91.7590 0.2378 0.0324 -0.0022 0.0257 0.0011 96.9160
ω = -5.4000 -5.4109 0.0362 -0.0109 0.0301 0.0014 91.7590 -5.4106 0.0230 -0.0106 0.0202 0.0006 96.9160

d = 0.2500 0.2257 0.0830 -0.0243 0.0658 0.0075 99.0640 0.2385 0.0509 -0.0115 0.0412 0.0027 108.1180
θ = -0.1500 -0.1526 0.0277 -0.0026 0.0219 0.0008 99.0640 -0.1510 0.0180 -0.0010 0.0144 0.0003 108.1180
γ = 0.2400 0.2345 0.0493 -0.0055 0.0394 0.0025 99.0640 0.2377 0.0319 -0.0023 0.0252 0.0010 108.1180
ω = -5.4000 -5.4251 0.0517 -0.0251 0.0454 0.0033 99.0640 -5.4312 0.0359 -0.0312 0.0389 0.0023 108.1180

d = 0.3500 0.3265 0.0700 -0.0235 0.0559 0.0055 106.1320 0.3385 0.0417 -0.0115 0.0342 0.0019 114.9920
θ = -0.1500 -0.1536 0.0271 -0.0036 0.0215 0.0007 106.1320 -0.1517 0.0175 -0.0017 0.0140 0.0003 114.9920
γ = 0.2400 0.2347 0.0481 -0.0053 0.0384 0.0023 106.1320 0.2381 0.0310 -0.0019 0.0245 0.0010 114.9920
ω = -5.4000 -5.4455 0.0841 -0.0455 0.0758 0.0092 106.1320 -5.4641 0.0649 -0.0641 0.0758 0.0083 114.9920

d = 0.4500 0.4293 0.0591 -0.0207 0.0481 0.0039 114.8900 0.4395 0.0349 -0.0105 0.0290 0.0013 125.2540
θ = -0.1500 -0.1547 0.0261 -0.0047 0.0209 0.0007 114.8900 -0.1526 0.0167 -0.0026 0.0135 0.0003 125.2540
γ = 0.2400 0.2357 0.0459 -0.0043 0.0367 0.0021 114.8900 0.2395 0.0295 -0.0005 0.0233 0.0009 125.2540
ω = -5.4000 -5.4806 0.1797 -0.0806 0.1576 0.0388 114.8900 -5.5241 0.1539 -0.1241 0.1633 0.0391 125.2540
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Table 8: Estimation results for the simulated FIEGARCH models considering the QML
procedure. The FIEGARCH time series were obtained by considering ν = 5.0, d ∈
{0.10, 0.25, 0.35, 0.45}, θ = −0.15, γ = 0.24 and ω = −5.4. The statistics reported are based on
1000 replications. Neval denotes the mean for the number of function evaluations required to
achieve the algorithm convergence.

n = 2000 n = 5000

η η̄ sd bias mae mse Neval η̄ sd bias mae mse Neval

d = 0.1000 0.0784 0.0939 -0.0216 0.0721 0.0093 90.1900 0.0937 0.0519 -0.0063 0.0408 0.0027 94.4360
θ = -0.1500 -0.1495 0.0238 0.0005 0.0188 0.0006 90.1900 -0.1498 0.0154 0.0002 0.0123 0.0002 94.4360
γ = 0.2400 0.2386 0.0432 -0.0014 0.0346 0.0019 90.1900 0.2390 0.0278 -0.0010 0.0223 0.0008 94.4360
ω = -5.4000 -5.4280 0.0324 -0.0280 0.0345 0.0018 90.1900 -5.4291 0.0211 -0.0291 0.0308 0.0013 94.4360

d = 0.2500 0.2242 0.0691 -0.0258 0.0557 0.0054 98.0300 0.2347 0.0378 -0.0153 0.0321 0.0017 106.5890
θ = -0.1500 -0.1508 0.0233 -0.0008 0.0184 0.0005 98.0300 -0.1509 0.0151 -0.0009 0.0121 0.0002 106.5890
γ = 0.2400 0.2373 0.0430 -0.0027 0.0344 0.0019 98.0300 0.2385 0.0273 -0.0015 0.0218 0.0007 106.5890
ω = -5.4000 -5.4677 0.0501 -0.0677 0.0712 0.0071 98.0300 -5.4830 0.0367 -0.0830 0.0833 0.0082 106.5890

d = 0.3500 0.3184 0.0564 -0.0316 0.0498 0.0042 105.2960 0.3241 0.0312 -0.0259 0.0324 0.0016 114.6520
θ = -0.1500 -0.1529 0.0227 -0.0029 0.0180 0.0005 105.2960 -0.1533 0.0146 -0.0033 0.0119 0.0002 114.6520
γ = 0.2400 0.2366 0.0427 -0.0034 0.0342 0.0018 105.2960 0.2390 0.0269 -0.0010 0.0215 0.0007 114.6520
ω = -5.4000 -5.5223 0.0840 -0.1223 0.1273 0.0220 105.2960 -5.5614 0.0674 -0.1614 0.1619 0.0306 114.6520

d = 0.4500 0.4115 0.0485 -0.0385 0.0495 0.0038 112.9310 0.4134 0.0288 -0.0366 0.0391 0.0022 121.4870
θ = -0.1500 -0.1564 0.0218 -0.0064 0.0178 0.0005 112.9310 -0.1575 0.0140 -0.0075 0.0125 0.0003 121.4870
γ = 0.2400 0.2374 0.0426 -0.0026 0.0337 0.0018 112.9310 0.2421 0.0267 0.0021 0.0213 0.0007 121.4870
ω = -5.4000 -5.6166 0.1777 -0.2166 0.2349 0.0785 112.9310 -5.7034 0.1551 -0.3034 0.3060 0.1161 121.4870

From Tables 4-8 one observes that, as the sample size increases, the estimation improves.
For all models, θ and γ are better estimated than the other parameters. In all cases the bias for
the parameter d is negative. For ω, the bias is positive when ν ≤ 1.9 and negative when ν > 1.9.
Except for a few cases, the biases for θ and γ are always negative. In summary, the same fact
reported in Lopes and Prass (2014) can be observed here, that is, although the QML presents
a relatively good performance when the sample size is 2000 and the estimation improves as the
sample size increases, it does so very slowly.

Table 9 presents the values for the RMSE measure, defined by

RMSE =

√√√√ 1

n

n∑
t=1

(σ2
t − σ̂2

t )
2,

where n ∈ {2000, 5000} are the sample sizes of the considered FIEGARCH(0, d, 0) time se-
ries; {σ2

t }nt=1 are the volatility values generated by considering the true parameter values
η = (ν, d, θ, γ, ω) and {σ̂2

t }nt=1 are the smoothed volatility values obtained by considering the
estimates η̂ = (ν̂, d̂, θ̂, γ̂, ω̂). For the MCMC approach ν̂, d̂, θ̂, γ̂, ω̂ are the posterior means, ob-
tained by considering a sample of size M = 10000 − B, with B given in Table 3. Therefore,
there is only one corresponding RMSE value for each model. For the QML method we consider
re = 1000 replications so that 1000 RMSE values are obtained for each model. In this case,
only the minimum, maximum and the mean RMSE values are reported (the mean RMSE
value corresponds to the mean over 1000 replications for this statistic).

From Table 9 one observes that the RMSE values for the QML and MCMC procedures are
very close to each other, for all models. Moreover, the RMSE values not always decrease as n
increases. This result indicates that the improvement in parameter estimation when n increases
does not significantly improves the volatility estimation, in terms of RMSE.
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Table 9: RMSE values for the QML and MCMC procedures, for n ∈ {2000, 5000}. For the
QML procedure only the minimum (Min), maximum (Max) and the mean RMSE values are
reported (the mean is taken over 1000 replications).

n = 2000 n = 5000

ν0 d0 QML
MCMC

QML
MCMC

Min mean Max Min mean Max

1.1

0.10 1.0647 1.0654 1.0663 1.0656 1.0649 1.0654 1.0662 1.0652
0.25 1.0629 1.0655 1.0690 1.0651 1.0634 1.0655 1.0689 1.0643
0.35 1.0594 1.0656 1.0752 1.0640 1.0603 1.0657 1.0746 1.0630
0.45 1.0508 1.0660 1.0931 1.0617 1.0519 1.0662 1.0907 1.0607

1.5

0.10 1.0646 1.0654 1.0663 1.0654 1.0648 1.0654 1.0660 1.0654
0.25 1.0628 1.0654 1.0687 1.0656 1.0632 1.0655 1.0682 1.0657
0.35 1.0588 1.0655 1.0740 1.0663 1.0590 1.0656 1.0725 1.0667
0.45 1.0488 1.0660 1.0880 1.0690 1.0492 1.0661 1.0834 1.0704

1.9

0.10 1.0645 1.0654 1.0661 1.0653 1.0649 1.0654 1.0659 1.0655
0.25 1.0626 1.0655 1.0686 1.0653 1.0631 1.0654 1.0679 1.0657
0.35 1.0584 1.0656 1.0728 1.0655 1.0596 1.0656 1.0724 1.0661
0.45 1.0484 1.0661 1.0865 1.0664 1.0510 1.0660 1.0847 1.0672

2.5

0.10 1.0646 1.0653 1.0662 1.0654 1.0648 1.0654 1.0660 1.0655
0.25 1.0625 1.0654 1.0689 1.0661 1.0631 1.0654 1.0682 1.0659
0.35 1.0587 1.0655 1.0742 1.0677 1.0600 1.0655 1.0730 1.0667
0.45 1.0506 1.0660 1.0887 1.0718 1.0531 1.066 1.0869 1.0691

5.0

0.10 1.0644 1.0653 1.0662 1.0650 1.0647 1.0653 1.0660 1.0654
0.25 1.0623 1.0653 1.0691 1.0654 1.0630 1.0653 1.0682 1.0661
0.35 1.0590 1.0653 1.0751 1.0668 1.0593 1.0653 1.0728 1.0681
0.45 1.0508 1.0655 1.0916 1.0714 1.0502 1.0655 1.0856 1.0743

It is a fact that for the QML procedure the expression for the quasi-likelihood function is
simpler since the Gaussian distribution is used instead of the true density (in our case, the
GED). Moreover, the results shown in Figures 2 and 3 (see also Tables 11 and 12), in Tables
4-8 and in Table 9 indicate that the MCMC and QML approaches are very competitive. Also,
the number of iterations for the QML procedure (Neval/5) is really small if compared with the
number of iterations (size of the chain) in the MCMC algorithm.

To generate a chain of length 10000, the MCMC procedure takes around 10 minutes, when
n = 2000, and 40 minutes, if n = 5000. For the QML procedure, 1000 replications can be
performed in around 5 minutes, if n = 2000, and 35 minutes, if n = 5000. Although the
computational time for the MCMC procedure is much higher than for the QML, it has some
advantages such as:

• the possibility of selecting the prior distribution based on a known information from the
literature or provided by a specialist;

• standard errors for the parameters tend to be smaller when the Bayesian approach is
considered;

• the posterior predictive distribution makes use of the entire posterior distribution of the
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parameter(s) given the observed data to yield a probability distribution over an interval
rather than simply a point estimate (as it would do in the frequentist approach);

• when Bayesian approach is considered, a sample from the posterior distribution of each
parameter is obtained, rather than a single point, which makes it possible to construct
confidence intervals and performing hypothesis test without making further assumptions
on the estimates distribution.

5 An Application

In this section we present an application of the MCMC procedure previously discussed to the
daily log-returns of the S&P500 US stock market index in the period from January 03, 2000 to
November 03, 2011. This time series was already considered in Pumi and Lopes (2013) were
a different methodology was applied to estimate the long-range parameter associated to the
absolute log-returns.

The sample size of the index time series is n = 2980, which leads to n = 2979 log-returns.
Figure 5 presents the S&P500 time series and the corresponding log-returns {rt}2979

t=1 .

(a) (b)

Figure 5: S&P500 index time series: (a) original time series; (b) log-return time series.

(a) (b)

Figure 6: (a) Histogram of the log-return time series and the curves of the GED(ν) density,
for ν = 1, 2 and 3; (b) autocorrelation function of the squared log-returns time series.

It is well known that log-returns of financial time are usually uncorrelated while the absolute
and squared returns are correlated and present slow decay of covariance, characteristic associated
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to long-range dependence in volatility. Moreover, the distribution of the log-return time series
presents heavier tails than the Gaussian one. Figure 6 presents the histogram of the standardized
log-returns series and the autocorrelation function of the squared log-return time series. The
histogram clearly indicates that the distribution of the log-returns, although symmetric, is not
Gaussian (ν = 2). The slow decay of the sample autocorrelation function suggests long-range
dependence on the absolute return time series, therefore, in the volatility.

A FIEGARCH(0, d, 0) model, with Z0 ∼ GED(ν) was assumed and the MCMC approach
was applied to estimate the parameters of the model. The priors and kernel parameters are
the same as in Section 3. A chain of size 10000 was generated and the Heidelberg and Welch
diagnostic criteria was used to define the burn-in size. The estimation results are shown in
Table 10. For this table a burn-in of size 1000 was considered (Heidelberg and Welch diagnostic
suggested B2 = 0 and Bi = 1000, for i = 1, 2, 4, 5) so that the posterior means were obtained by
considering a chain of size 9000. The time series {σ̂2

t }2979
t=1 , obtained by considering the estimated

parameter values η̂ = (ν̂, d̂, θ̂, γ̂, ω̂), and {r2
t }2979
t=1 are presented in Figure 7.

Table 10 shows that the estimate for parameter d is extremely close to the non-stationarity
region (d ≥ 0.5). This results is coherent with the ones reported in the literature. Moreover,
ν̂ = 1.3222 confirms the hypothesis that the distribution for the log-returns is not Gaussian.
Figure 7 shows that the fitted model was able to capture very well the behavior of the volatility,
which in practical applications is roughly approximated by the squared log-returns time series.

Table 10: Statistics for the sample obtained from the posterior distribution of the parameters
corresponding to the FIEGARCH(0, d, 0) model for the S&P500 log-returns time series. The
the lower and upper limits for the 95% credibility interval, the mean and the standard deviation
were obtained by considering a chain of size 9000.

Parameter ν d θ γ ω

lower limit 1.2415 0.4917 -0.3505 0.2263 -9.9547
mean 1.3222 0.4977 -0.3007 0.2694 -9.8515

upper limit 1.4014 0.4999 -0.2655 0.3178 -9.7530
standard deviation 0.0414 0.0022 0.0218 0.0238 0.0497

(a) (b)

Figure 7: S&P500 index time series: (a) squared log-return time series; (b) smoothed volatility
obtained by considering the MCMC estimates for the parameters of the FIEGARCH model.
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6 Conclusions

The Bayesian inference approach for parameter estimation on FIEGARCH models was described
and a Monte Carlo simulation study was conducted to analyze the performance of the method
under the presence of long-range dependence in volatility. The samples from FIEGARCH
processes were obtained by considering the infinite sum representation for the logarithm of the
volatility. A recurrence formula was used to obtain the coefficients for this representation. The
generalized error distribution, with different tail-thickness parameters was considered so both
innovation processes with lighter and heavier tails than the Gaussian distribution, were covered.

Markov Chain Monte Carlo (MCMC) methods were used to obtain samples from the pos-
terior distribution of the parameters. A sensitivity analysis was performed by considering the
following steps. An improper prior for ν and uniform priors d, θ, γ and ω were selected so only
the basic set of information usually available in practice was considered. Two different sample
sizes for the FIEGARCH time series were considered: n = 2000 and 5000 and the performance
of MCMC procedure was compared for these two cases.

The simulation study showed that as the sample size n increases the parameter estimation
improves. The true parameters values ν0, d0 and γo were contained in the 95% credibility
interval, for any combination of ν0 ∈ {1.1, 1.5, 1.9, 2.5, 5.0} and d0 ∈ {0.10, 0.25, 0.35, 0.45}
considered. The true parameters values γ0 and ω0 were not contained in any credibility intervals
for some combinations of d0 and ν0. The number of combinations for which the credibility
interval fails to contain the true parameter values decreases as n increases. It is our believe that
the estimation failed in those cases due to the slow variation of the log-likelihood value in the
neighborhood of θ0 and ν0.

We have also conducted a simulation study to analyze the finite sample performance of the
quasi-maximum likelihood (QML) procedure on parameter estimation. The smoothed volatility
{σ̂2

t }nt=1 calculated upon considering η̂ = (ν̂, d̂, θ̂, γ̂, ω̂)′ obtained from the MCMC and QML
procedures was compared with the simulated volatility {σ2

t }nt=1 in order to analyze which method
provides better estimates for it. We have concluded that the MCMC and QML approaches
are very competitive in terms of parameter estimation. The number of iterations for the QML
procedure (Neval/5) is really small if compared with the number of iterations (size of the chain)
in the MCMC algorithm. However, when Bayesian approach is considered, a sample from the
posterior distribution of each parameter is obtained, rather than a single point, which makes
it possible to construct confidence intervals and performing hypothesis test without making
further assumptions on the estimates distribution.

To illustrate the use of the methodology an application to a real data set was considered.
The daily log-returns of the S&P500 US stock market index in the period from January 03,
2000 to November 03, 2011 were analyzed. A FIEGARCH(0, d, 0) model with Z0 ∼ GEd(ν)
was considered based on the histogram of the log-returns and on the decay of the autocorrelation
function of the squared log-returns. The estimated values for d and ν were, respectively, d̂ =
0.4977 and ν̂ = 1.3222, yielding results coherent with the ones found in the literature for the
S&P500 log-returns index time series.
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Appendix

This appendix contains extra tables which help to illustrate the results discussed in the text.
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Table 11: Summary for the sample obtained from posterior distributions considering an im-
proper prior for ν and uniform priors for the remaining parameters. The statistics are based
on a chain of size 10000 − B, were B = max{B1, B2, B3, B4, B5} and Bi is the burn-in size
for parameter ηi, for i ∈ {1, 2, 3, 4, 5}, suggested by the Heidelberg and Welch diagnostic cri-
teria. The true parameter values considered in this simulation are d0 ∈ {0.10, 0.25, 0.35, 0.45},
ν0 ∈ {1.1, 1.5, 2.5, 5.0}, θ0 = −0.15, γ0 = −0.24 and ω0 = −5.4. The sample size for the
FIEGARCH time series is n = 2000.

d0 ν0 B
ν̄ (sdν) d̄ (sdd) θ̄ (sdθ) γ̄ (sdγ) ω̄ (sdω)
CI0.95(ν) CI0.95(d) CI0.95(θ) CI0.95(γ) CI0.95(ω)

0.10

1.1 4000
1.096 (0.048) 0.164 (0.094) -0.178 (0.042) 0.251 (0.061) -5.446 (0.067)
[1.007; 1.185] [0.010; 0.340] [-0.260; -0.094] [0.134; 0.373] [-5.544; -5.299]

1.5 0
1.475 (0.069) 0.117 (0.081) -0.106 (0.037) 0.248 (0.054) -5.399 (0.045)
[1.345; 1.615] [0.005; 0.291] [-0.178; -0.035] [0.141; 0.354] [-5.481; -5.314]

1.9 0
2.055 (0.106) 0.137 (0.084) -0.146 (0.031) 0.205 (0.050) -5.413 (0.037)
[1.859; 2.270] [0.008; 0.312] [-0.207; -0.087] [0.104; 0.303] [-5.485; -5.345]

2.5 0
2.701 (0.150) 0.081 (0.059) -0.181 (0.027) 0.239 (0.045) -5.396 (0.032)
[2.420; 3.005] [0.003; 0.220] [-0.234; -0.130] [0.150; 0.328] [-5.456; -5.335]

5.0 0
5.260 (0.380) 0.101 (0.061) -0.110 (0.020) 0.292 (0.036) -5.341 (0.029)
[4.587; 6.049] [0.007; 0.229] [-0.148; -0.072] [0.222; 0.364] [-5.391; -5.285]

0.25

1.1 0
1.098 (0.049) 0.283 (0.090) -0.182 (0.041) 0.241 (0.059) -5.447 (0.084)
[1.001; 1.193] [0.082; 0.437] [-0.267; -0.102] [0.131; 0.358] [-5.581; -5.240]

1.5 0
1.481 (0.068) 0.187 (0.102) -0.103 (0.036) 0.249 (0.054) -5.388 (0.054)
[1.355; 1.617] [0.016; 0.387] [-0.175; -0.034] [0.139; 0.352] [-5.486; -5.276]

1.9 0
2.048 (0.105) 0.295 (0.084) -0.140 (0.032) 0.218 (0.048) -5.440 (0.061)
[1.855; 2.261] [0.110; 0.441] [-0.205; -0.080] [0.124; 0.310] [-5.578; -5.332]

2.5 2000
2.710 (0.151) 0.177 (0.080) -0.180 (0.027) 0.241 (0.043) -5.386 (0.038)
[2.430; 3.025] [0.028; 0.332] [-0.233; -0.128] [0.154; 0.327] [-5.454; -5.307]

5.0 4000
5.199 (0.360) 0.245 (0.064) -0.113 (0.019) 0.283 (0.036) -5.306 (0.042)
[4.537; 5.937] [0.105; 0.363] [-0.152; -0.076] [0.209; 0.351] [-5.379; -5.193]

0.35

1.1 0
1.096 (0.048) 0.374 (0.069) -0.186 (0.039) 0.234 (0.057) -5.441 (0.112)
[1.000; 1.194] [0.211; 0.484] [-0.267; -0.109] [0.126; 0.351] [-5.638; -5.199]

1.5 0
1.482 (0.068) 0.272 (0.106) -0.102 (0.036) 0.254 (0.054) -5.344 (0.071)
[1.355; 1.618] [0.062; 0.459] [-0.173; -0.034] [0.150; 0.361] [-5.467; -5.182]

1.9 0
2.047 (0.104) 0.405 (0.056) -0.137 (0.029) 0.229 (0.044) -5.480 (0.096)
[1.854; 2.257] [0.283; 0.492] [-0.195; -0.081] [0.144; 0.318] [-5.695; -5.311]

2.5 4000
2.713 (0.151) 0.287 (0.075) -0.177 (0.026) 0.239 (0.042) -5.371 (0.051)
[2.419; 3.028] [0.117; 0.419] [-0.229; -0.127] [0.161; 0.323] [-5.457; -5.268]

5.0 0
5.194 (0.357) 0.359 (0.053) -0.119 (0.018) 0.275 (0.036) -5.211 (0.061)
[4.525; 5.920] [0.246; 0.456] [-0.155; -0.084] [0.205; 0.345] [-5.333; -5.087]

0.45

1.1 0
1.096 (0.049) 0.447 (0.037) -0.196 (0.036) 0.235 (0.055) -5.424 (0.140)
[1.003; 1.194] [0.358; 0.497] [-0.268; -0.125] [0.131; 0.345] [-5.692; -5.132]

1.5 0
1.482 (0.068) 0.387 (0.075) -0.102 (0.034) 0.266 (0.050) -5.180 (0.111)
[1.354; 1.624] [0.211; 0.493] [-0.170; -0.038] [0.169; 0.370] [-5.382; -4.917]

1.9 0
2.020 (0.099) 0.466 (0.026) -0.146 (0.028) 0.249 (0.041) -5.572 (0.122)
[1.831; 2.223] [0.401; 0.499] [-0.200; -0.094] [0.172; 0.333] [-5.835; -5.346]

2.5 4000
2.727 (0.156) 0.402 (0.053) -0.178 (0.026) 0.244 (0.042) -5.305 (0.081)
[2.436; 3.055] [0.289; 0.491] [-0.229; -0.128] [0.164; 0.328] [-5.442; -5.125]

5.0 0
5.159 (0.342) 0.452 (0.032) -0.126 (0.016) 0.271 (0.034) -4.985 (0.089)
[4.517; 5.848] [0.382; 0.497] [-0.158; -0.094] [0.206; 0.338] [-5.155; -4.793]

Note: The bold-face font for the credibility interval indicates that the interval does not contain the true

parameter value.
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Table 12: Summary for the sample obtained from posterior distributions considering an im-
proper prior for ν and uniform priors for the remaining parameters. The statistics are based
on a chain of size 10000 − B, were B = max{B1, B2, B3, B4, B5} and Bi is the burn-in size
for parameter ηi, for i ∈ {1, 2, 3, 4, 5}, suggested by the Heidelberg and Welch diagnostic cri-
teria. The true parameter values considered in this simulation are d0 ∈ {0.10, 0.25, 0.35, 0.45},
ν0 ∈ {1.1, 1.5, 2.5, 5.0}, θ0 = −0.15, γ0 = −0.24 and ω0 = −5.4. The sample size for the
FIEGARCH time series is n = 5000.

d0 ν0 B
ν̄ (sdν) d̄ (sdd) θ̄ (sdθ) γ̄ (sdγ) ω̄ (sdω)
CI0.95(ν) CI0.95(d) CI0.95(θ) CI0.95(γ) CI0.95(ω)

0.10

1.1 0
1.080 (0.029) 0.134 (0.075) -0.134 (0.026) 0.223 (0.037) -5.435 (0.035)
[1.025; 1.138] [0.010; 0.284] [-0.185; -0.083] [0.152; 0.294] [-5.498; -5.363]

1.5 0
1.508 (0.047) 0.072 (0.049) -0.161 (0.023) 0.229 (0.034) -5.423 (0.028)
[1.418; 1.601] [0.003; 0.183] [-0.207; -0.115] [0.164; 0.294] [-5.474; -5.366]

1.9 0
1.964 (0.061) 0.093 (0.054) -0.162 (0.020) 0.252 (0.032) -5.421 (0.026)
[1.840; 2.082] [0.007; 0.205] [-0.202; -0.123] [0.188; 0.315] [-5.482; -5.377]

2.5 0
2.613 (0.093) 0.084 (0.052) -0.126 (0.017) 0.241 (0.030) -5.401 (0.021)
[2.438; 2.796] [0.005; 0.196] [-0.160; -0.093] [0.184; 0.300] [-5.440; -5.361]

5.0 0
5.215 (0.230) 0.099 (0.044) -0.125 (0.012) 0.281 (0.023) -5.376 (0.020)
[4.770; 5.671] [0.015; 0.184] [-0.150; -0.101] [0.236; 0.328] [-5.411; -5.337]

0.25

1.1 0
1.080 (0.030) 0.268 (0.072) -0.137 (0.026) 0.220 (0.036) -5.443 (0.049)
[1.026; 1.144] [0.109; 0.394] [-0.188; -0.088] [0.151; 0.291] [-5.535; -5.329]

1.5 0
1.509 (0.046) 0.164 (0.063) -0.159 (0.023) 0.231 (0.033) -5.417 (0.030)
[1.426; 1.598] [0.039; 0.281] [-0.204; -0.115] [0.168; 0.298] [-5.474; -5.353]

1.9 1000
1.960 (0.064) 0.227 (0.053) -0.161 (0.020) 0.255 (0.032) -5.432 (0.035)
[1.836; 2.084] [0.119; 0.325] [-0.200; -0.123] [0.192; 0.316] [-5.503; -5.372]

2.5 0
2.615 (0.091) 0.238 (0.054) -0.125 (0.018) 0.243 (0.030) -5.393 (0.031)
[2.446; 2.810] [0.129; 0.337] [-0.161; -0.091] [0.187; 0.303] [-5.453; -5.330]

5.0 0
5.208 (0.228) 0.250 (0.037) -0.128 (0.012) 0.275 (0.023) -5.347 (0.028)
[4.787; 5.675] [0.176; 0.318] [-0.152; -0.105] [0.229; 0.320] [-5.405; -5.298]

0.35

1.1 0
1.079 (0.029) 0.368 (0.055) -0.141 (0.025) 0.218 (0.035) -5.457 (0.075)
[1.021; 1.137] [0.254; 0.468] [-0.189; -0.093] [0.152; 0.289] [-5.586; -5.291]

1.5 4000
1.511 (0.044) 0.265 (0.056) -0.157 (0.023) 0.237 (0.032) -5.384 (0.040)
[1.417; 1.603] [0.151; 0.368] [-0.201; -0.113] [0.177; 0.302] [-5.457; -5.301]

1.9 0
1.957 (0.062) 0.335 (0.044) -0.160 (0.020) 0.258 (0.031) -5.463 (0.055)
[1.834; 2.085] [0.247; 0.420] [-0.198; -0.122] [0.199; 0.321] [-5.580; -5.370]

2.5 0
2.624 (0.092) 0.351 (0.042) -0.125 (0.017) 0.243 (0.029) -5.373 (0.047)
[2.448; 2.805] [0.268; 0.431] [-0.159; -0.093] [0.189; 0.301] [-5.473; -5.291]

5.0 0
5.227 (0.222) 0.354 (0.030) -0.132 (0.012) 0.268 (0.023) -5.269 (0.042)
[4.802; 5.665] [0.294; 0.415] [-0.155; -0.110] [0.225; 0.315] [-5.351; -5.186]

0.45

1.1 2000
1.081 (0.028) 0.449 (0.034) -0.149 (0.023) 0.224 (0.032) -5.473 (0.117)
[1.027; 1.132] [0.371; 0.497] [-0.193; -0.104] [0.164; 0.289] [-5.705; -5.225]

1.5 0
1.515 (0.045) 0.387 (0.047) -0.154 (0.021) 0.246 (0.031) -5.240 (0.079)
[1.430; 1.604] [0.295; 0.474] [-0.195; -0.112] [0.188; 0.311] [-5.379; -5.062]

1.9 0
1.948 (0.064) 0.440 (0.032) -0.158 (0.018) 0.262 (0.029) -5.541 (0.100)
[1.832; 2.079] [0.373; 0.493] [-0.194; -0.124] [0.206; 0.322] [-5.755; -5.362]

2.5 0
2.622 (0.093) 0.453 (0.028) -0.128 (0.016) 0.246 (0.027) -5.323 (0.086)
[2.454; 2.814] [0.393; 0.497] [-0.160; -0.098] [0.195; 0.301] [-5.488; -5.162]

5.0 0
5.264 (0.219) 0.455 (0.023) -0.137 (0.011) 0.262 (0.022) -5.033 (0.074)
[4.835; 5.717] [0.407; 0.495] [-0.159; -0.115] [0.219; 0.305] [-5.166; -4.883]

Note: The bold-face font for the credibility interval indicates that the interval does not contain the true

parameter value.
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