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Abstract. In this paper we consider the estimation and forecasting future
values of some stochastic processes exhibiting long-range dependence, both in
mean and in volatility. We summarize basic definitions, properties and some
results considering ARFIMA and SARFIMA processes, which exhibit long
memory in mean. We proceed in the same manner considering FIGARCH
and Fractionally Integrated Stochastic Volatility (FISV) processes where one
can find long memory in volatility .

Estimation methods in parametric and semiparametric classes are pre-
sented for estimating the fractional parameter based on the classical Ordinary
Least Squares and two robust methodologies (the Least Trimmed Squares and
the MM -estimation).

An application of the SARFIMA methodology, based on the Nile River
monthly flows data, is presented.
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1. Introduction

Models for long-range dependence, or long memory , in mean were first introduced
by Mandelbrot and Wallis [32], Mandelbrot and Taqqu [33], Granger and Joyeux
[17] and Hosking [18], following the seminal work of Hurst [21].

We refer the reader to a recent collection of papers in Doukhan et al. [12]
which reviews long-range dependence from many different angles, both theoreti-
cally and in the applied sense. We also refer the book by Palma [38] for general
results on long-range dependence.
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Persistence or long-range dependence property has been observed in time se-
ries in different areas of the science such as meteorology, astronomy, hydrology,
and economics, as reported in Beran [4]. The long-range dependence can be char-
acterized by two different but equivalent (see Bary [3]) forms given below, where
0.0 < d < 0.5 is a constant:

• in time domain, the autocorrelation function ρX(·) decays hyperbolically
to zero, that is, ρX(k) ' k2d−1, when k →∞;
• in frequency domain, the spectral density function fX(·) is unbounded when
the frequency is near zero, that is, fX(w) ' w−2d, when w → 0.

One of the models that exhibits the long-range dependence is the Autore-
gressive Fractionally Integrated Moving Average (ARFIMA) process. While in the
ARFIMA process, the autocorrelation function shows a hyperbolic decay rate, in
an ARMA process this function decays in an exponential rate.

However, in an ARFIMA process one can not capture the periodicity fre-
quently present in some real data sets, even though still the long memory feature
occurs in these data. The so-called Seasonal Autoregressive Fractionally Integrated
Moving Average (SARFIMA) processes are a natural extension of the ARFIMA
process. This model takes into account the seasonality inherent to such data.

The ARFIMA framework was also naturally extended towards volatility mod-
els. The Fractionally Integrated Generalized Autoregressive Conditionally Het-
eroskedastic (FIGARCH) models were introduced by Baillie, Bollerslev and Mi-
kkelsen [2] and Bollerslev and Mikkelsen [7], motivated by the fact that autocor-
relation function of the squared, log-squared, or the absolute value series of an
asset return decays slowly, even when the return series has no serial correlation.
In order to model long memory in the second moment, Breidt et al. [9] introduced
the Fractionally Integrated Stochastic Volatility (FISV) model.

In this paper we will analyze long-range dependence in mean and volatility .
We shall consider estimation and forecasting for different models.

To describe a method that generates SARFIMA processes, it is convenient
to have a closed formula for the Durbin-Levinson Algorithm. This algorithm is
given by recurrence relations allowing, for the partial autocorrelation function of
the process, to go from lag k to lag (k +1). This algorithm relates autocorrelation
and partial autocorrelation functions of a process and Brietzke et al. [10] give its
closed formula for SARFIMA processes.

Models for heteroskedastic time series with long memory are of great interest
in econometrics and finance, where empirical facts about asset returns have moti-
vated the several extensions of GARCH type models (for a review, see Lopes and
Mendes [26]). Many empirical papers have detected the presence of long memory
in the volatility of risky assets, market indexes, exchange rates. As the number of
models available increases, it becomes of interest a simple, fast, and accurate esti-
mation procedure for the fractional parameter d, independent of the specification
of a parametric model. The regression based semiparametric (semiparametric in
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the sense that a full parametric model is not specified for the spectral density func-
tion of the process) estimators seem to be the natural candidates. However, the
performance of the semiparametric estimators is greatly affected by their asymp-
totic statistical properties, besides depending on their definition and estimation
method and is also heavily dependent on the number of frequencies m = g(n) used
for the regression. Lopes and Mendes [26] considers several long memory models
in mean and in volatility presenting some light on the heavy dependency of the
frequency number m for the semi-parametric estimation procedures.

The regression method was introduced in the pioneer work of Geweke and
Porter-Hudak [16], giving rise to several other proposals. Hurvich and Ray [22]
introduced a cosine-bell function as a spectral window, to reduce bias in the pe-
riodogram function. They found that data tapering and the elimination of the
first periodogram ordinate in the regression equation, could increase the estima-
tor accuracy. However, smaller bias was obtained at the cost of a larger variance.
Velasco [48] also considered smoothed versions of the periodogram function while
in Velasco [49] the consistency and asymptotic normality of the regression estima-
tors was proved for any d, considering non-stationary and non-invertible processes.
Reisen et al. [41] carried out an extensive simulation study comparing both the
semiparametric and parametric approaches in ARFIMA processes. Monte Carlo
methods were also considered by Lopes et al. [28] for non-stationary ARFIMA
processes.

However, not always the ultimate interest is just the estimation of the frac-
tional or seasonal fractional parameter , respectively, denoted by d and D. Fre-
quently, one can also be interested in forecasting values of the processes. Reisen
and Lopes [42] present some simulations and applications of forecasting ARFIMA
processes while, more recently, Bisognin and Lopes [5] give an account of the esti-
mation and forecasting issues for SARFIMA processes.

The paper is organized as follows. In Section 2 we define ARFIMA, SAR-
FIMA, FIGARCH and FISV processes presenting their definitions together with
some properties and results. Section 3 summarizes a closed formula for the Durbin-
Levinson’s algorithm relating the partial autocorrelation and the autocorrelation
functions for the SARFIMA(0, D, 0) processes. In Section 4 we present one para-
metric and five semi-parametric estimation procedures and their respective robust
versions. In Section 5 some forecasting theory for the models presented here is sum-
marized. In Section 6 we present an application and Section 7 contains a summary
of the paper.

2. Long Memory Models

In this section we define both the long memory models in mean and in volatility.
We present below the basic definitions, some properties and results. In this section
we consider ARFIMA, SARFIMA, FIGARCH and FISV processes.
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2.1. ARFIMA(p, d, q) Processes

In this sub-section we define the ARFIMA process, which exhibits the long memory
in mean characteristic.

Definition 2.1. Let {εt}t∈Z be a white noise process with zero mean and variance
σ2

ε > 0, B the backward-shift operator , that is, Bk(Xt) = Xt−k, φ(·) and θ(·)
polynomials of degrees p and q, respectively, given by

φ(z) =
p∑

j=0

(−φj)zj and θ(z) =
q∑

k=0

(−θk)zk,

where φj , 1 ≤ j ≤ p, and θk, 1 ≤ k ≤ q, are real constants with φ0 = −1 = θ0. Let
{Xt}t∈Z be a linear process given by

φ(B)(1− B)d(Xt − µ) = θ(B)εt, t ∈ Z, (2.1)
where µ is the mean of the process, d ∈ (−0.5, 0.5) and ∇d ≡ (1 − B)d is the
difference operator , defined as the binomial expansion

(1−B)d =
∞∑

k=0

(
d
k

)
(−B)k = 1−dB− d

2!
(1−d)B2− d

3!
(1−d)(2−d)B3−· · · , (2.2)

for all d ∈ R, with
(

d

k

)
=

Γ(1 + d)
Γ(1 + k)Γ(1 + d− k)

,

and Γ(·) the Gamma function (see Brockwell and Davis [11]). Then, the process
{Xt}t∈Z is called a general fractional differenced ARFIMA(p, d, q) process, where
d is the degree or parameter of fractional differencing.

From the expression (2.1), the process

Ut = (1− B)d(Xt − µ), t ∈ Z,

given by

φ(B)Ut = θ(B)εt, t ∈ Z,

is an autoregressive moving average ARMA(p, q) process.
If d ∈ (−0.5, 0.5) then the process {Xt}t∈Z is stationary and invertible (see

Theorem 2.4) and its spectral density function is given by

fX(w) = fU (w)
[

2 sin(
w

2
)
]−2d

, for 0 < w ≤ π, (2.3)

where fU (·) is the spectral density function of the ARMA(p, q) process. One ob-
serves that fX(w) ' w−2d, when w → 0.
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The use of the spectral density function can be seen as a practical device for
determining the precise rate of decay of the autocorrelation function.

When p = 0 = q, in the expression (2.1), one obtain the so-called pure
ARFIMA(0, d, 0) process.

Its commonly used the following terminology: the ARFIMA(p, d, q) process
exhibits the characteristic of long memory when d ∈ (0.0, 0.5), of intermediate
memory when d ∈ (−0.5, 0.0) and of short memory when d = 0.

If d ≥ 0.5 the ARFIMA process is non-stationary although for d ∈ [0.5, 1.0)
it is level-reverting in the sense that there is no long-run impact of an innovation
on the value of the process and in this case the classical estimation procedures
presented in Section 4 of this work still hold (see Lopes et al. [28]; Olbermann et
al. [36] and Velasco [49]). The level-reversion property no longer holds when d ≥ 1.
If d ≤ −0.5 the ARFIMA process is non-invertible.

For more details on the properties of the ARFIMA(p, d, q) processes see, for
instance, Hosking [18] and Lopes et al. [28]. We refer the reader to Sena Jr et al. [46]
for an extensive Monte Carlo simulation study to evaluate the performance of some
parametric and semi-parametric estimators for long and short-memory parameters
of the ARFIMA(p, d, q) model with conditional heteroskedastic innovation errors
(in fact, an ARFIMA-GARCH model).

2.2. SARFIMA(p, d, q)× (P,D, Q)s Processes

In many practical situations a time series can exhibit a periodic pattern. This is
a common feature in fields such as meteorology, economics, hydrology and astron-
omy. Sometimes, even in these fields, the periodicity can depend on time, that is,
the autocorrelation structure of the data varies from season to season. In our analy-
sis, we consider the seasonality period constant over seasons. However, the periodic
pattern of such kind of time series can not be described by an ARFIMA(p, d, q)
process.

We shall consider the autoregressive fractionally integrated moving average
with seasonality processes, denoted hereafter by SARFIMA(p, d, q) × (P, D,Q)s,
which are an extension of the ARFIMA(p, d, q) models, proposed by Granger and
Joyeux [17] and Hosking [18]. The SARFIMA processes exhibit long-range depen-
dence in mean besides the seasonality of period s.

We shall give some definitions and some properties for the SARFIMA(p, d, q)
×(P,D, Q)s processes. We recall, however, that these properties also hold for the
ARFIMA(p, d, q) process when one considers P = Q = 0, D = 0 and s = 1.
These properties are still true for the pure version ARFIMA(0, d, 0) process, when
p = 0 = q.

Definition 2.2. Let {Xt}t∈Z be a stochastic process given by the expression

φ(B)Φ(Bs)∇d∇D
s (Xt − µ) = θ(B)Θ(Bs)εt, for t ∈ Z, (2.4)
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where µ is the mean of the process, {εt}t∈Z is a white noise process, s ∈ N is
the seasonal period, D, d ∈ (−0.5, 0.5), B is the backward-shift operator, that is,
Bk(Xt) = Xt−k, and Bsk(Xt) = Xt−sk, ∇d and ∇D

s are, respectively, the difference
and the seasonal difference operators, where ∇D

s is given by

∇D
s ≡ (1− Bs)D =

∑

k≥0

(
D

k

)
(−Bs)k = 1−DBs − D(1−D)

2!
B2s − · · · (2.5)

and ∇d is given by the expression (2.2). The polynomials φ(·), θ(·), Φ(·), and Θ(·)
have degrees p, q, P , and Q, respectively, and are defined by

φ(z) =
p∑

j=0

(−φj) zj , θ(z) =
q∑

k=0

(−θk) zk,

Φ(z) =
P∑

l=0

(−Φl) zl, Θ(z) =
Q∑

m=0

(−Θm) zm,

where φj , 1 ≤ j ≤ p, θk, 1 ≤ k ≤ q, Φl, 1 ≤ l ≤ P , and Θm, 1 ≤ m ≤
Q are constants and φ0 = θ0 = −1 = Φ0 = Θ0. Then, {Xt}t∈Z is a seasonal
fractionally integrated ARIMA(p, d, q)× (P,D, Q)s process with period s, denoted
by SARFIMA(p, d, q)× (P,D, Q)s, where d and D are, respectively, the degree of
fractional differencing and of seasonal fractional differencing parameters.

Remark 2.3. (a) When P = Q = 0, D = 0 and s = 1 the SARFIMA(p, d, q) ×
(P, D,Q)s process is just the ARFIMA(p, d, q) process (see Beran [4]). In this
situation it is already known the behavior of the parameter estimators and also
the forecasting properties for these models (see Lopes et al. [28]; Reisen et al. [41];
and Reisen and Lopes [42]).

(b) A particular case of the SARFIMA(p, d, q) × (P, D, Q)s process is when p =
q = P = Q = 0. This process is called the seasonal fractionally integrated ARIMA
model with period s, denoted by SARFIMA(0, D, 0)s, which will be the main goal
of our expository paper. It is given by

∇D
s (Xt − µ) ≡ (1− Bs)D(Xt − µ) = εt, t ∈ Z. (2.6)

In what follows we shall describe some of the properties of the SARFIMA-
(0, D, 0)s process. We recall that these properties also hold for the ARFIMA(0, d, 0)
process, when D = d and s = 1 (see, for instance, Hosking [18] and [19]).

Without loss of generality, we shall consider µ = 0 in expressions (2.1), (2.4)
and in their pure versions. For the extensions of these properties to the complete
SARFIMA process, given by Definition 2.2, we refer the reader to Bisognin [6].

Theorem 2.4. Let {Xt}t∈Z be the SARFIMA(0, D, 0)s process given by the expres-
sion (2.6), with zero mean and s ∈ N as the seasonal period. Then,
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(i). when D > −0.5, {Xt}t∈Z is an invertible process with infinite autoregressive
representation given by

Π(Bs)Xt =
∑

k≥0

πkBsk(Xt) =
∑

k≥0

πkXt−sk = εt,

where

πk =
−D(1−D) · · · (k −D − 1)

k!
=

(k −D − 1)!
k!(−D − 1)!

=
Γ(k −D)

Γ(k + 1)Γ(−D)
· (2.7)

When k →∞, πk ∼ 1
Γ(−D)k

−D−1·
(ii). when D < 0.5, {Xt}t∈Z is a stationary process with an infinite moving

average representation given by

Xt = Ψ(Bs)εt =
∑

k≥0

ψkBsk(εt) =
∑

k≥0

ψkεt−sk,

where

ψk =
D(1 + D) · · · (k + D − 1)

k!
=

(k + D − 1)!
k!(D − 1)!

=
Γ(k + D)

Γ(k + 1)Γ(D)
· (2.8)

When k →∞, ψk ∼ 1
Γ(D)k

D−1·
In the following, we assume that D ∈ (−0.5, 0.5).

(iii). The process {Xt}t∈Z has spectral density function given by

fX(w) =
σ2

ε

2π

[
2 sin

(sw

2

)]−2D

, 0 < w ≤ π. (2.9)

At the seasonal frequencies, for ν = 0, 1, · · · , ds/2e, where dxe means the
integer part of x, it behaves as

fX

(
2πν

s
+ w

)
∼ fε

(
2πν

s

)
(sw)−2D, when w → 0·

In the following, let A be the set {1, 2, · · · , s− 1}, and Z≥ be the set {k ∈
Z|k ≥ 0}.

(iv). The process {Xt}t∈Z has autocovariance and autocorrelation functions of
order k, k ∈ Z≥, given, respectively, by

γX(sk + ξ) =

{
(−1)kΓ(1−2D)

Γ(1+k−D)Γ(1−k−D)σ
2
ε = γX(k), if ξ = 0

0, if ξ ∈ A,
(2.10)

and

ρX(sk + ξ) =

{
Γ(k+D)Γ(1−D)
Γ(1+k−D)Γ(D) = ρX(k), if ξ = 0
0, if ξ ∈ A.

(2.11)
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When k →∞, ρX(sk) ∼ Γ(1−D)
Γ(D) k2D−1.

(v). The process {Xt}t∈Z has partial autocorrelation function given by

φX(sk + ξ, sl + η) =

{
−(

k
l

)Γ(l−D)Γ(k−l+1−D)
Γ(−D)Γ(1+k−D) = φX(k, l), if η = 0

0, if η ∈ A,
(2.12)

for any k, l ∈ Z≥, and ξ ∈ A ∪ {0}.
From expression (2.12), when k = l, the partial autocorrelation function of
order k is given by

φX(sk, sk) =
D

k −D
= φX(k, k), for all k ∈ Z≥. (2.13)

Proof. For a proof see Brietzke et al. [10]. ¤
Remark 2.5. (a) The spectral density function of the SARFIMA(0, D, 0)s process
in the seasonal frequencies is unbounded when 0.0 < D < 0.5, and it has zeros
when D is negative.

(b) Among seasonal frequencies the SARFIMA process has similar behavior to the
ARFIMA process.

(c) The SARFIMA(p, d, q) × (P,D, Q)s process is stationary when d + D and D
are less than 0.5 and the polynomials φ(B) · Φ(Bs) = 0 and θ(B) · Θ(Bs) = 0 have
no roots in common and the roots of φ(B) · Φ(Bs) = 0 are outside of the unit
circle. When we consider all the above assumptions and also d + D,D > 0, then
the process has seasonal long memory .

(d) If {Xt}t∈Z is a stationary stochastic SARFIMA(p, d, q)×(P,D, Q)s process (see
expression (2.4)), with d,D ∈ (−0.5, 0.5), its spectral density function is given by

fX(w) =
σ2

ε

2π

|θ(e−iw)|2
|φ(e−iw)|2

|Θ(e−isw)|2
|Φ(e−isw)|2

[
2 sin

(w

2

)]−2d [
2 sin

(sw

2

)]−2D

,

for all 0 < w ≤ π, where σ2
ε is the variance of the white noise {εt}t∈Z process.

The following theorem shows that the stochastic process {Xt}t∈Z, given by
expression (2.6), with seasonality s ∈ N and D < 0.5, is ergodic.

Theorem 2.6. Let {Xt}t∈Z be a SARFIMA(0, D, 0)s process given by expression
(2.6), with zero mean, seasonal period s ∈ N and D < 0.5. Then, {Xt}t∈Z is an
ergodic process.

Proof. Let {Xt}t∈Z be a SARFIMA(0, D, 0)s process, given by expression (2.6),
with zero mean and seasonal period s ∈ N. Let D < 0.5 be the seasonal fractional
differencing parameter. From item (i) in Theorem 2.4, the process {Xt}t∈Z has an
infinite moving average representation given by
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Xt = Ψ(Bs)εt =
∑

k≥0

ψkBsk(εt) =
∑

k≥0

ψkεt−sk,

where the coefficients {ψk}k≥0 are given by the expression (2.8) and {εt}t∈Z is a
white noise process. From item (ii) in Theorem 2.4, for D < 0.5, this is a stationary
process. So, one has

σ2
ε

∑

k≥0

ψ2
k = γX(0) = E(Xt

2) < ∞. (2.14)

In fact,

E(Xt
2) = E


(

∑

k≥0

ψkεk−t)(
∑

j≥0

ψjεj−t)


 = E


∑

k≥0

ψ2
kε2

k−t +
∑

k,j≥0,k 6=j

ψkψjεk−tεj−t




=
∑

k≥0

ψ2
kE(ε2

k−t) = σ2
ε

∑

k≥0

ψ2
k.

Hence, from expression (2.14),
∑

k≥0 ψ2
k < ∞. Lemma 3.1 in Olbermann [37]

proves the ergodicity for moving average processes of finite and infinite order.
This lemma requires the coefficients of an infinite moving average representation
to be squared absolutely summable. Therefore, one concludes that the process
{Xt}t∈Z, given by (2.6), is ergodic. ¤

For general definition and properties of ergodicity in stochastic processes see
Durret [13].

For SARFIMA(0, D, 0)s processes, the next theorem shows that the condi-
tional expectation and conditional variance depend only on the past values distant
from multiples of the seasonality s. This theorem is very important when one needs
to generate the mentioned processes.

Theorem 2.7. Let {Xt}t∈Z be the SARFIMA(0, D, 0)s process given by the expres-
sion (2.6), with zero mean, s ∈ N as the seasonal period and D ∈ (−0.5, 0.5). The
conditional expectation and the conditional variance of Xt, given Xl, for all l < t,
denoted respectively by mt ≡ E(Xt|Xl, l < t) and vt ≡ V ar(Xt|Xl, l < t), are given
by





mζ = 0, for ζ = 1, · · · , s− 1,

msk =
k∑

j=1

φX(sk, sj)Xsk−sj , for k ∈ N,

msk+ζ =
k∑

j=1

φX(sk + ζ, sj) Xsk+ζ−sj ,

(2.15)
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and





vζ = σ2
ε , for ζ = 1, · · · , s− 1,

vsk = σ2
ε

k∏

j=1

(1− φ2
X(sj, sj)), for k ∈ N,

vsk+ζ = vsk,

(2.16)

where t = ζ determines the mean and the variance for lags smaller than s, t = sk
for multiple lags of s, and t = sk+ζ for not multiple lags of s, φX(·, ·) is the partial
autocorrelation function of the process {Xt}t∈Z given by item (v) in Theorem 2.4,
and σ2

ε is the variance of the white noise process.

Proof. For a proof see Bisognin and Lopes [5]. ¤

2.3. FIGARCH(p, d, q) Processes

In this section we shall consider one natural extension of the ARFIMA frame-
work towards volatility models. Models for time series with long-range dependence
in volatility are of great interest in econometrics and finance. Lopes and Mendes
[26] review some extensions of the GARCH class of processes and study the perfor-
mance of 300 regression type estimators for several long memory models, including
FIGARCH processes. The authors show that the performance of the semiparamet-
ric estimators are affected by their asymptotic statistical properties besides by their
strong dependency on the number of frequencies used for the regression.

Denote by Ft the σ-field of events generated by {Xl; l ≤ t} and assume
that E(Xt|Ft−1) = 0 a.s.. Following Engle [14] and Bollerslev [8] we specify a
GARCH(p, q) model by

Xt = σtZt, (2.17)
where Zt is an independent identically distributed random variable with zero mean
and unit variance such that Xt|Ft−1 is an independent random variable with zero
mean and variance σ2

t ≡ V ar(Xt|Ft−1) defined by

σ2
t = ω + α(B)X2

t + β(B)σ2
t , (2.18)

where ω > 0 is a real constant, α(B) =
∑p

j=1 αjBj and β(B) =
∑q

k=1 βkBk. For a
FIGARCH process (see Baillie et al. [2] and Bollerslev and Mikkelsen [7]) the σt,
in expression (2.17), is defined as

σ2
t = ω (1− β(B))−1 + {1− (1− β(B))−1[1− α(B)− β(B)](1− B)d}X2

t

= ω (1− β(B))−1 + {1− (1− β(B))−1φ(B)(1− B)d}X2
t

= ω (1− β(B))−1 + λ(B)X2
t , (2.19)
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where

λ(B) =
∞∑

k=0

λkBk = 1− (1− β(B))−1φ(B)(1− B)d, (2.20)

φ(B) = 1− α(B)− β(B)) and the binomial series expansion in B, denoted by

(1− B)d ≡ 1− δd(B) = 1−
∞∑

k=1

δd,k Bk, (2.21)

is given by (2.2), with d ∈ [0, 1].

The coefficients δd,k = d Γ(k−d)
Γ(k+1)Γ(1−d) , in expression (2.21), are such that

δd,k = δd,k−1

(
k − 1− d

k

)
,

for all k ≥ 1, where δd,0 ≡ 1.
The following proposition totally characterizes any FIGARCH(p, d, q) process

and also gives a recurrent formula for the coefficients {λk}k≥0 given in expression
(2.20).

Proposition 2.8. Let {Xt}t∈Z be any FIGARCH(p, d, q) process, for d ∈ [0, 1],
defined by expressions (2.17) and (2.19). Then, the coefficients {λk}k≥0, in ex-
pression (2.20), are given by

λ0 = 0

λk =
p∑

j=1

βjλk−j + αk + δd,k −
max{p,q}∑

m=1

γmδd,k−m, if 1 ≤ k ≤ p

λk =
q∑

l=1

βlλk−l + δd,k −
max{p,q}∑

m=1

γmδd,k−m, if k > p,

where

γm =





αm, if p > q,
αm + βm, if p = q,
βm, if p < q,

with αj, 1 ≤ j ≤ p, and βl, 1 ≤ l ≤ q, are given in expression (2.18) and δd,k, for
k ≥ 0, given in expression (2.21).

Proof. For a proof see Lopes and Mendes [26]. ¤
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2.4. FISV(p, d, q) Processes

In this section we shall consider another natural extension of the ARFIMA frame-
work towards volatility models. We consider the Fractionally Integrated Stochastic
Volatility (FISV) model, introduced by Breidt et al. [9]. Lopes and Mendes [26]
also consider this model when analyzing the long-range dependence in volatility .

Let {Yt}t∈Z be the stochastic process such that

Yt = σε g(Xt)εt, (2.22)

where Xt is a long memory in mean process, g(·) is a continuous function and
{εt}t∈Z is a white noise process with zero mean and unit variance. Since V ar(Yt|Xt)
= σ2

ε g(Xt)2, for certain functions g(·) the process defined by (2.22) may be de-
scribed as a long memory stochastic volatility process (see Robinson and Zaffaroni
[43]). This large class of volatility models include the long memory nonlinear mov-
ing average models of Robinson and Zaffaroni [43] and the FISV process introduced
by Breidt et al. [9].

In a FISV(p, d, q) process {Yt}t∈Z, the function g(·) in (2.22) is given by

g(Xt) = exp
(

Xt

2

)
, (2.23)

where {Xt}t∈Z is an ARFIMA(p, d, q) process given by (2.1), and εt and εt are
independent and identically distributed standard normal, and mutually indepen-
dent. One observes that V ar(Yt|Xt) = σ2

ε exp(Xt). In particular, squaring both
sides of equation (2.22), with the function g(·) given by expression (2.23), and
taking logarithms,

ln(Y 2
t ) = µξ + Xt + ξt, (2.24)

where µξ = ln(σ2
ε ) + E[ln(ε2t )], and ξt = ln(ε2t ) − E[ln(ε2t )]. Hence, ln(Y 2

t ) is the
sum of a Gaussian ARFIMA process and independent non-Gaussian noise with
zero mean. Consequently, the autocovariance function of the process ln(Y 2

t ), when
d ∈ (−0.5, 0.5), is such that

γln(Y 2
t )(k) ∼ k2d−1, when k →∞, (2.25)

while its spectral density function has the property that

fln(Y 2
t )(w) ∼ w−2d, when w → 0. (2.26)

For d ∈ (0.0, 0.5), the spectral density function in expression (2.26) is unbounded,
when w → 0. This point is of great importance for the application of the traditional
regression estimation procedures, based on the periodogram function, given in
Section 4. Lopes and Mendes [26] also present the performance of the estimators of
all parameters in FISV models when the white noise process {εt}t∈Z has standard
normal distribution or t-Student distribution with 4 degrees of freedom.
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3. Durbin-Levinson Algorithm

The partial autocorrelation function of a process {Xt}t∈Z with zero mean and
autocovariance function γX(·), such that γX(k) → 0, as k → 0, is defined below.
For more details, see Brockwell and Davis [11]. This definition also holds for any
ARFIMA or SARFIMA processes and item (v) of Theorem 2.4, in Section 2,
presents the partial autocorrelation function of SARFIMA(0, D, 0) processes.

Definition 3.1. Let {Xt}t∈Z be a stochastic process with zero mean and autoco-
variance function γX(·) such that γX(k) → 0, as k → 0. The partial autocorrelation
function, denoted by φX(k, j), k ∈ Z> and j = 1, · · · , k, are the coefficients in the
equation

Psp(X1,X2,··· ,Xk)(Xk+1) =
k∑

j=1

φX(k, j)Xk+1−j ,

where Psp(X1,X2,··· ,Xk)(Xk+1) is the orthogonal projection of Xk+1 in the closed
span sp(X1, X2, · · · , Xk) generated by the previous observations. Then, from the
equations

〈Xk+1 − Psp(X1,X2,··· ,Xk)(Xk+1), Xj〉 = 0, j = 1, · · · , k,

where 〈·, ·〉 defines the internal product on the Hilbert space L2(Ω,A,P) given by
〈X, Y 〉 = E(XY ), we obtain




1 ρX(1) ρX(2) · · · ρX(k − 1)
ρX(1) 1 ρX(1) · · · ρX(k − 2)

..

.
..
.

..

.
..
.

..

.
ρX(k − 1) ρX(k − 2) ρX(k − 3) · · · 1







φX(k, 1)
φX(k, 2)

..

.
φX(k, k)


 =




ρX(1)
ρX(2)

..

.
ρX(k)


 ,

(3.1)

with ρX(·) the autocorrelation function of the process {Xt}t∈Z. The coefficients
φX(k, j), k ∈ Z>, j = 1, · · · , k, are uniquely determined by (3.1).

The definition of partial autocorrelation function plays an important role
in the Durbin-Levinson algorithm (see expressions (3.2) and (3.3) below) and its
expression for seasonal fractionally integrated processes is given in item (v) of
Theorem 2.4.

Brietzke et al. [10] give a closed formula for the Durbin-Levinson Algorithm
for the partial autocorrelation function, defined by the expression (2.12), for sea-
sonal fractionally integrated processes. This is a crucial algorithm and a summary
of its description is given as follows.

Let {Xt}t∈Z be a SARFIMA(0, D, 0)s process, given in expression (2.6), with
mean µ equal to zero. We want to show that its partial autocorrelation function
φX(·, ·), given in item (v) of Theorem 2.4, satisfies the following systems
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φX(sl, sl) =
ρX(sl)−∑sl−1

j=1 φX(sl − 1, j)ρX(sl − j)

1−∑sl−1
j=1 φX(sl − 1, j)ρX(j)

(3.2)

and

φX(k + 1, sl) = φX(k, sl)− φX(k + 1, k + 1)φX(k, k + 1− sl), (3.3)

for any l ∈ Z> such that sl < k + 1, where k + 1 may or may not be a multiple of
s, where ρX(·) is given in item (iv) of Theorem 2.4.

Recurrence relations (3.2) and (3.3) are known as the Durbin-Levinson al-
gorithm and they explain how to go from lag k to lag (k + 1) for the partial
autocorrelation function φX(·, ·). Brietzke et al. [10] prove the recurrence relation
(3.2)-(3.3) for any D ∈ (−0.5, 0.5), with D 6= 0.

Lemma 3.2. Let {Xt}t∈Z be a process given by (2.6 ). For any k, l ∈ Z>, the partial
autocorrelation function of {Xt}t∈Z, denoted by φX(·, ·), satisfies the system given
in (3.3 ), whenever l < k + 1.

Proof. For a proof see Brietzke et al. [10]. ¤

Lemma 3.3. Let {Xt}t∈Z be a process given by (2.4 ), where D ∈ (−0.5, 0.5) with
D 6= 0. Then, the quocient in expression (3.2 ) is given by

ρX(l)−∑l−1
j=1 φX(l− 1, j)ρX(l− j)

1−∑l−1
j=1 φX(l− 1, j)ρX(j)

=

l−1∑

j=0

(l− 1

j

)Γ(j −D)Γ(l− j −D)Γ(l− j + D)

Γ(l − j −D + 1)

l−1∑

j=0

(l− 1

j

)Γ(j −D)Γ(l− j −D)Γ(j + D)

Γ(j −D + 1)

. (3.4)

Proof. For a proof see Brietzke et al. [10]. ¤

We still need to show that (3.4) is equal to φX(l, l). This follows from Theorem
3.7 below. One can show that the numerator of the left-hand side of expression
(3.4) times (l −D) (or its denominator times D) is equal to φX(l, l), that is,

(l −D)
l−1∑

j=0

(
l − 1

j

)
Γ(j −D)Γ(l − j −D)Γ(l − j + D)

Γ(l − j −D + 1)

= D

l−1∑

j=0

(
l − 1

j

)
Γ(j −D)Γ(l − j −D)Γ(j + D)

Γ(j −D + 1)
. (3.5)

Moreover, one can also show that
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(l −D)
l−1∑

j=0

(
l − 1

j

)
Γ(j −D)Γ(l − j −D)Γ(l − j + D)

Γ(l − j −D + 1)

= DΓ(−D)Γ(D − l + 1)(l − 1)! 2l−1 ·
l−2∏

i=0

(
D − i + 1

2

)
. (3.6)

The equalities (3.5) and (3.6) follow, respectively, from Corollaries 3.10 and
3.8, below. The system (3.2) follows immediately from expressions (3.5) and (2.13).
The Durbin-Levinson algorithm is a consequence of Theorem 2.4 and equality (3.6)
above. We shall first define the hypergeometric function.

Definition 3.4. If ai, bi and x are complex numbers, with bi /∈ Z6, we define the
hypergeometric function by

3F2

(
a1, a2, a3; b1, b2; x) =

∞∑
n=0

(
a1

)
n

(
a2

)
n

(
a3

)
n(

b1

)
n

(
b2

)
n

xn

n!
,

where (a)n stands for the Pochhammer symbol

(a)n =
Γ(a + n)

Γ(a)
=

{
a(a + 1) · · · (a + n− 1), if n ≥ 1
1, if n = 0.

This series is absolutely convergent for all x ∈ C such that |x| < 1, and also for
|x| = 1, provided <(

b1 + b2

)
> <(

a1 + a2 + a3

)
, where <(z) means the real part

of z ∈ C. Furthermore, it is said to be balanced if b1 + b2 = 1 + a1 + a2 + a3. Note
that in case some ai is a nonpositive integer the above sum is finite and it suffices
to let n range from 0 to −ai.

The following identity for a terminating balanced hypergeometric sum is very
useful. For the identity’s proof we refer the reader to Andrews et al. [1], Thm.
2.2.6, page 69.

Theorem 3.5 (Identity of Pfaff–Saalschütz). Let k ∈ Z>, and a, b, and c be complex
numbers such that c, 1 + a + b− c− k /∈ Z6. Then,

3F2

(−k, a, b; c, 1 + a + b− c− k; 1
)

=

(
c− a

)
k

(
c− b

)
k(

c
)
k

(
c− a− b

)
k

. (3.7)

Remark 3.6. If
(
cn

)
n≥0

is a sequence of complex numbers satisfying

cn+1

cn
=

(a1 + n)(a2 + n)(a3 + n)x
(n + 1)(b1 + n)(b2 + n)

for all n,
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straightforward computations show that

∞∑
n=0

cn = c0 · 3F2

(
a1, a2, a3; b1, b2; x

)
. (3.8)

The identity (3.7) and the above remark are fundamental for the proof of the
following theorem.

Theorem 3.7. Let x and z be complex numbers, with x /∈ Z and z /∈ Z>. Then,

l−1∑

j=0

(
l − 1

j

)
Γ(j − x) Γ(l − j + x)

z − j
=

Γ(−x) Γ(1 + x) Γ(1− z)
z Γ(l − z)

·(l−1)!
l−1∏

i=1

(
x−z+i

)
.

(3.9)
For z ∈ {l, l + 1, . . .} the right-hand side of expression (3.9 ) has a removable
singularity and by analytic continuation the result is still true.

Proof. For a proof see Brietzke et al. [10]. ¤

Corollary 3.8. If l ∈ N− {1} and D is a noninteger complex number, then

(l −D)
l−1∑

j=0

(
l − 1

j

)
Γ(j −D) Γ(l + D − j)

l −D − j

= D Γ(−D) Γ(D − l + 1) (l − 1)! 2l−1 ·
l−2∏

i=0

(
D − i + 1

2

)
. (3.10)

Corollary 3.9. If l ∈ N− {1} and D is a noninteger complex number, then

D

l−1∑

k=0

(
l − 1

k

)
Γ(l − 1− k + D) Γ(k −D + 1)

l − 1− k −D

= D Γ(−D) Γ(D − l + 1) (l − 1)! 2l−1 ·
l−2∏

i=0

(
D − i + 1

2

)
. (3.11)

Corollary 3.10. If l ∈ N and D is a noninteger complex number, then
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(l −D)
l−1∑

j=0

(
l − 1

j

)
Γ(j −D) Γ(l + D − j)

l −D − j

= D

l−1∑

k=0

(
l − 1

k

)
Γ(l − 1− k + D) Γ(k −D + 1)

l − 1− k −D
. (3.12)

4. Classical and Robust Estimation Procedures

In the literature of the stochastic long memory processes, there exist several esti-
mation procedures for the fractional parameter d. We now summarize some of these
estimation procedures both for long memory models in mean and in volatility: here
we present one parametric and four semi-parametric methods. For these methods
we also consider their robust versions. For a non-parametric method based on
wavelet theory applied to the fractional parameter estimation, in ARFIMA pro-
cesses, we refer the reader to Lopes and Pinheiro [25]. We also refer the reader
to Olbermann et al. [35] for another work where a non-parametric method based
on wavelet theory is used to estimate the hyperbolic rate decay parameter for the
autocorrelation function of Manneville-Pomeau processes.

The methodology in this section will be presented based on ARFIMA(p, d, q)
processes which are the simplest among all the others analyzed in Section 2.

We recall that when {Yt}t∈Z follows a FISV process with d ∈ (−0.5, 0.5),
ln(Y 2

t ) is the sum of a zero mean Gaussian ARFIMA process and an independent
non-Gaussian innovation process. Also, the FIGARCH(p, d, q) process, with d ∈
[0, 1], has been defined in expression (8) of Baillie et al. [2] as an ARFIMA process
on the squared data with a more complicated error structure. Thus, the regression
based methods described below also apply to the other processes considered in
Section 2.3 and 2.4.

In this section we summarize six methods for the estimation of the fractional
differencing parameter:

• The semi-parametric regression method based on the periodogram function pro-
posed by Geweke and Porter-Hudak [16]. This estimator is denoted hereafter by
GPH;

• The semi-parametric regression method based on the smoothed periodogram
when one considers the Bartlett lag window. This estimator is denoted hereafter
by BA;

• The semi-parametric regression method based on GPH with trimming l and
bandwidth g(n) proposed by Robinson [44]. This estimator is denoted here by R;
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• The semi-parametric method based on the partial sum process proposed by
Mandelbrot and Taqqu [33], based on Hurst [21] estimator. This estimator is largely
known as the R/S statistics;

• The cosine-bell tapered data method, denoted in the sequel by GPHT , considers
the cosine-bell function as a transformation of the data and follows similarly to
the GPH method. It was proposed by Hurvich and Ray [22];

• The parametric approximated maximum likelihood method, proposed by Fox
and Taqqu [15], based on the approximation given by Whittle [50], is denoted
hereafter by W .

Let {Xt}t∈Z be a ARFIMA(p, d, q) process with d ∈ (−0.5, 0.5), given by
(2.1). Its spectral density function is given by

fX(w) = fU (w)
[

2 sin
(w

2

)]−2d

, for 0 < w ≤ π, (4.1)

where fU (·) is the spectral density function of the ARMA process.
Consider the set of harmonic frequencies wj = 2πj

n , j = 0, 1, · · · , dn/2e, where
n is the sample size and dxe means the integer part of x. By taking the logarithm
of the spectral density function fX(·) given by (4.1), and adding ln(fU (0)), and
ln(I(wj)) to both sides of this expression we obtain

ln(I(wj)) = ln(fU (0))− d ln
[

2 sin
(wj

2

)]2

+ ln
{

fU (wj)
fU (0)

}
+ ln

{
I(wj)

fX(wj)

}
, (4.2)

where I(·) is the periodogram function given by

I(w) =
1
2π

(
γ̂X(0) + 2

n−1∑

l=1

γ̂X(l) cos(l w)

)
, (4.3)

with γ̂X(h) = 1
n

∑n−h
k=1 (xk − x̄)(xk+h − x̄), for h ∈ {0, 1, · · · , n− 1}, is the sample

autocovariance function and x̄ = 1
n

∑n
k=1 xk is the sample mean of the process

{Xt}t∈Z in (2.1).
When considering only the frequencies close to zero, the term ln{ fU (wj)

fU (0) }
may be discarded. Then, we may rewrite (4.2) in the context of a simple linear
regression model

yj = a− d xj + ej , j = 1, · · · ,m, (4.4)

where m = g(n) = nα, for 0 < α < 1, (a,−d) are the regression coefficients, a =
ln(fU (0)), yj = ln(I(wj)), xj = ln{2 sin(wj/2)}2 and the errors ej = ln{ I(wj)

fX(wj)
}

are uncorrelated random variables centered at zero with constant variance.
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A semi-parametric regression estimator may be obtained by minimizing some
loss function of the residuals rj = yj − â + d̂ xj . We will consider three differ-
ent loss functions. They give rise to the classical Ordinary Least Squares method
(OLS), and two high breakdown point robust methods, the Least Trimmed Squares
method (LTS), and the MM -estimation method.

The OLS estimators are the values (â,−d̂) which minimize the loss function

L1(m) =
m∑

j=1

(rj)2, (4.5)

where rj = yj − â + d̂ xj is the residual related to the regression (4.4).
Whenever the errors ei follow a normal distribution, the OLS estimates have

the minimum variance among all unbiased estimates. In fact, it is well known (see
Huber [20]) that regression outliers, leverage points, and gross errors are respon-
sible for considerable bias and inefficiency (even in the Gaussian environment) in
the OLS estimates.

Robust alternatives to OLS may be obtained by minimizing a robust version
of the dispersion of the residuals. The Least Trimmed Squares (LTS) estimates of
Rousseeuw [45] minimize the loss function

L2(m) =
m∗∑

j=1

(r2)j:m , (4.6)

where (r2)j:m are the squared and then ordered residuals, that is, (r2)1:m ≤ · · · ≤
(r2)m∗:m, and m∗ is the number of points used in the optimization procedure. The
constant m∗ is responsible both for the breakdown point value and the efficiency.
When m∗ is approximately m/2 the breakdown point is approximately 50%. The
LTS estimates have been previously used by Taqqu et al. [47] for the estimation
of the long-range parameter in ARFIMA models and by Lopes and Mendes [26]
for the estimation of long-range parameter both in mean and in volatility models.

The MM -estimates (see Yohai [51]) may present simultaneously high break-
down point and high efficiency. They are defined as the solution (â,−d̂) which
minimizes the loss function

L3(m) =
m∑

j=1

ρ2

(rj

κ

)2

, (4.7)

subject to the constraint
1
m

m∑

j=1

ρ1(
rj

κ
) ≤ b , (4.8)

where ρ2 and ρ1 are symmetric, bounded, nondecreasing functions on [0,∞) with
ρj(0) = 0 and limu→∞ ρj(u) = 1, for j = 1, 2, κ is a scale parameter, and b is a
tuning constant. The breakdown point of the MM -estimator only depends on ρ1

and it is given by min(b, 1− b).
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4.1. Classical and Robust GPH Estimators

The first estimation method based on the periodogram function was introduced
in the pioneer work of Geweke and Porter-Hudak [16].

Let {Xt}t∈Z be a ARFIMA(p, d, q) process with d ∈ (−0.5, 0.5), given by the
expression (2.1). From the linear regression given by (4.4) the classical GPH-LS
estimator of d is then given by

GPH − LS = −

g(n)∑

j=1

(xj − x̄)(yj − ȳ)

g(n)∑

j=1

(xj − x̄)2

, (4.9)

where the trimming value g(n) is usually g(n) = nα, for 0 < α < 1, yj is based on
(4.3) and xj is as previously defined in expression (4.4). Lopes et al. [28] considered
α in the interval [0.55, 0.65], and Porter-Hudak [40] considered α ∈ {0.62, 0.75}
for the case of seasonal fractionally integrated time series data. Lopes and Mendes
[26] consider α ∈ {0.50, 0.52, · · · , 0.84, 0.86}. The version not tunned by α, that is,
based on the dn

2 e data points, equivalent to set α = 0.8997, was also considered in
Lopes and Mendes [26].

To obtain the robust versions of the GPH estimator we just apply the LTS
and the MM methodologies to the regression model (4.4) with m = nα, based on
(4.3). This gives rise to the GPH-LTS and the GPH-MM estimators.

4.2. Classical and Robust BA Estimators

The periodogram function is not a consistent estimator for the spectral density
function (see Brockwell and Davis [11]). Lopes and Lopes [29] analyzes the conver-
gence in distribution sense for the periodogram function based on a time series of
a stationary process. This process is obtained from the iterations of a continuous
transformation invariant for an ergodic probability. In this later work, the authors
only assume a certain rate of convergence to zero for the autocovariance function of
the stochastic process, that is, it is assumed that there exist C > 0 and ξ > 2 such
that |γX(k)| ≤ C|k|−ξ, for all k ∈ Z, where γX(·) is the autocovariance function of
the process. This result can be applied to a time series obtained from the iteration
of a certain class of deterministic transformations (or its natural extension; see,
for instance, Lopes and Lopes [30]) whose initial point is distributed according to
an ergodic probability.

Returning to the general setting, by considering the Bartlett lag window,
a consistent estimator for the spectral density function may be obtained. This
smoothed version of the periodogram function is defined by

Ismooth(w) =
1
2π

ν∑

j=−ν

κ

(
j

ν

)
γ̂X(j) cos(j w), (4.10)
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where κ(·) is the Bartlett lag window given by

κ(x) =
{

1− |x|, if |x| ≤ 1
0, otherwise, (4.11)

with ν being the truncation point of the weighted function.
The classical and robust versions are obtained by applying the OLS, the

LTS and the MM methodologies to the regression model (4.4) based on (4.10)
and (4.11), producing the BA-LS, the BA-LTS, and the BA-MM estimators.

4.3. Classical and Robust R Estimators

The regression estimator R, proposed by Robinson [44] is obtained by applying
the Ordinary Least Squares method in (4.4) based on (4.3), but considering only
the frequencies j ∈ {l, l + 1, · · · , g(n)}, where l > 1 is a trimming value that tends
to infinity more slowly than g(n).

It is interesting to compare the R and the LTS concepts. The R concept trims
the extreme xj values associated with the frequencies close to zero, which we know
are the important ones. On the other hand, the LTS concept trims the extreme
ordered residuals which may or may be not associated to small frequencies, but
certainly are associated to leverage points. In other words, the LTS procedure
identifies which data points associated with small frequencies are outliers and, if
they exist, excludes them from the calculations. The R-LTS and R-MM versions
are obtained by applying the robust methodologies, as previously.

4.4. Classical and Robust R/S Estimators

Various methods for estimating the self-similarity parameter H or the intensity of
long-range dependence in a time series are available, some of which are described in
detail in Beran [4]. In a pioneer work by Mandelbrot and van Ness [31] the authors
describe the self-similarity parameter H through the fractional Brownian motion
processes. The R/S statistics, the so-called rescaled adjusted range, was firstly
considered by Mandelbrot and Taqqu [33], based on Hurst [21] estimator. The self-
similarity parameter H is related to the fractional parameter d by the equation d =
H + 1

2 . Lo [24] proposes the use of the R/S statistics with a different normalization
that makes the estimator more robust to some form of short-range dependence. It
is based on the range of the partial sum process Sk =

∑k
j=1(Xj − X̄n) and it is

defined by

R/S(q) =
max1≤k≤n Sk −min1≤k≤n Sk

σ̂(q)
, (4.12)

where X̄n = 1
n

n∑

j=1

Xj , σ̂2(q) = γ̂S(0) + 2
∑q

j=1 ωj(q)γ̂S(j), the sample autocovari-

ances γS(h) = 1
n

∑n−h
l=1 (Sl−S̄n)(Sl+h−S̄n), for 0 ≤ h < n, account for the possible

short-range dependence up to the qth order and the weights ωj(q) = 1− 1
q+1 cor-

respond to the Bartlett window.
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4.5. Classical and Robust GPHT Estimators

The GPHT method (see Hurvich and Ray [22] and Velasco [49]) uses a modified
periodogram function given by

I(wj) =
1

n−1∑
t=0

g(t)2

∣∣∣∣∣
n−1∑
t=0

g(t)Xte
−i wj t

∣∣∣∣∣

2

, (4.13)

where the tapered data is obtained from the cosine-bell function g(·) defined by

g(t) =
1
2

[
1− cos

(
2π(t + 0.5)

n

)]
. (4.14)

We obtain the classical GPHT -LS and the robust versions GPHT -LTS and
GPHT -MM by applying the classical and the robust methodologies on model
(4.4) based on (4.13) and (4.14), and setting m = nα.

4.6. Classical W Estimator

The W estimator was proposed by Whittle [50]. He considered the function

Q(η) =
∫ π

−π

I(w)
fX(w;η)

dw,

where η denotes the vector of unknown parameters, and fX(· ;η) is the spectral
density function of {Xt}t∈Z, given by (4.1) and I(·) is the periodogram function
given by (4.3).

The W estimator is the value of η which minimizes the function Q(·). Here
η is the vector (φ1, · · · , φp, d, σε, θ1, · · · , θq). The estimation procedure is carried
out by finding the value η̂ which minimizes

Bn(η) =
dn−1

2 e∑

j=1

I(wj)
fX(wj ; η)

. (4.15)

More details of this estimator can be found in Fox and Taqqu [15]. Differently
from the previous four estimators, the W estimator is in the parametric class.

We point out that the estimation procedures considered for the ARFIMA
processes in this section can be easily extended to the stochastic volatility models
given in Sections 2.3 and 2.4.

5. Forecasting in Long Memory Processes

Let {Xt}t∈Z be a SARFIMA(0, D, 0)s process with D ∈ (−0.5, 0.5), given by the
expression (2.6). Suppose one wants to forecast the value Xt+h for h-step-ahead.
The minimum mean squared error forecasting value is given by

X̂t(h) ≡ E (Xt+h |Ft), (5.1)
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where Ft is the σ-field of events generated by {X`; ` 6 t}. This minimizes the
mean squared error of forecasting E(Xt+h −X̂t(h)). In this case, the forecasting
error is given by

et(h) = Xt+h − X̂t(h). (5.2)

To calculate the forecasting values one uses the following facts:

(a). E(Xt+h|Ft) =
{

Xt+h, if h 6 0,

X̂t(h), if h > 0;

(b). E(εt+h|Ft) =
{

εt+h, if h 6 0,
0, if h > 0.

Therefore, to calculate the forecasting values, one

(a). substitutes the past expectations (h 6 0) for known values, Xt+h and εt+h;
(b). substitutes the future expectations (h > 0) for forecasting values X̂t(h)

and 0.

The following theorem presents some results for forecasting a future value of
a SARFIMA(0, D, 0)s process, given by the expression (2.6).

Theorem 5.1. Let {Xt}t∈Z be a SARFIMA(0, D, 0)s process, with zero mean and
seasonality s ∈ N, given in expression (2.6). Consider D > −0.5. Then, for all
h ∈ N:

(i). The minimum mean squared error forecasting value is given by

X̂n(h) = −
∑

k≥0

πk X̂n(h− sk), (5.3)

where πk is given in expression (2.7).

(ii). The forecasting error is given by en(h) =
dh

s e−1∑

k=0

ψk εn+h−sk, where ψk is

given by expression (2.8).
(iii). The theoretical and sample variances of the forecast error are given, re-

spectively, by

V ar(en(h)) = σ2
ε

dh
s e−1∑

k=0

ψ2
k, and V̂ ar(en(h)) = σ̂2

ε

dh
s e−1∑

k=0

ψ̂2
k,

where ψ̂k is given by expression (2.8) when D is replaced by one of its esti-
mated values, through some of the estimation procedures proposed in Section
4.

(iv). The bias and the percentage bias to estimate the theoretical variance of the
forecasting error are given by

bias(h) = V̂ ar(en(h))− V ar(en(h))
and
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perbias(h) =
|V̂ ar(en(h))− V ar(en(h))|

V ar(en(h))
× 100 %.

(v). The mean squared error of forecasting is given by msefn =
1
h

h∑

k=1

(en(k))2.

(vi). Moreover, if the process {εt}t∈Z is such that εt ∼ N (0, σ2
ε), for any t ∈ Z,

then an 100(1− γ)% confidence interval for Xn+h is given by

X̂n(h)− zγ
2
σ̂ε



dh

s e−1∑

k=0

ψ̂2
k




1
2

6 Xn+h 6 X̂n(h) + zγ
2
σ̂ε



dh

s e−1∑

k=0

ψ̂2
k




1
2

,

where z γ
2

is the value such that P(Z > zγ
2
) = γ

2 , with Z ∼ N (0, 1), and ψ̂k is
given by the above item (iii).

Proof. For a proof see Bisognin and Lopes [5]. ¤

We point out that a similar result to Theorem 5.1 can be stated for ARFIMA
processes.

6. An Application

In this section we analyze an observed time series data, and also a simulated sea-
sonal fractionally integrated ARMA time series. Our goal is to give an application
of the SARFIMA methodology, analyzing these two time series in order to detect
whether seasonal long memory is present in these data.

In Section 6.1 we analyze an observed time series as an application to the
SARFIMA(p, d, q)×(P,D, Q)s process. As it is not easy to find observed examples
modeled by the pure SARFIMA(0, D, 0)s process, we simulate a time series and
analyzed it in Section 6.2.

6.1. Nile River Monthly Flows Data

We consider the time series reporting the Nile River monthly flows at Aswan,
kindly provided by A. Montanari (for the graphic of the data we refer the reader
to Montanari et al. [34]). This time series consists of 1,466 observations, from
August of 1872 to September of 1994, and it is approximately a Gaussian time
series.

Figures 6.1 (a) and (b) present, respectively, the sample autocorrelation func-
tion and the periodogram function for the Nile River flows at Aswan. From these
figures one can see long memory features for this time series, since its sample au-
tocorrelation has a slowly hyperbolic decay, and its periodogram function exhibits
periodic pattern caused by an annual cycle. Figure 6.1 (b) shows the peaks on
the Fourier frequencies wj , where j =

[
n
s

]
i =

[
1,466
12

]
i = 122i, for i = 0, 1, · · · , 6.

These features are also reported in Montanari et al. [34].
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(a) (b)

Figure 6.1: Nile River Monthly Flows Data at Aswan: (a) sample autocorrelation
function; (b) periodogram function.

The model that best fits the original data is a SARFIMA(p, d, q)× (P, D, Q)s

with p = q = P = Q = 1, d = 0, D = W and s = 12 (for a complete analysis,
we refer the reader to Bisognin and Lopes [5]). The long memory parameter is
estimated by the approximated maximum likelihood method proposed by Fox and
Taqqu [15] (see Section 4), with W = 0.1980.

Table 6.1: Estimated Values of D for: (a) Nile River Monthly Flows Data;
(b) Simulated Time Series Data.

SARFIMA(0, D, 0)s with s = 12 and α = 0.55
Estimator GPH BA R R/S GPHT W

(a) Nile River Monthly

Flows Data 0.2399 0.3126 0.2381 0.1638 0.4196 0.1980
(b) Simulated Time

Series Data 0.4219 0.4216 0.4398 0.3893 0.4185 0.3834

Table 6.1 (a) gives the estimation results for this time series with seasonality
s = 12, since Figures 6.1 (a) and (b) exhibits this periodic pattern. All the semi-
parametric estimation procedures select the number of regressors m = g(n), in the
expression (4.4), from the first seasonal frequency, no matter what value one uses
for s.

Table 6.2 gives the estimators and its standard deviation (denoted here by
Std. Dev.) values for the parameters in the SARFIMA(p, d, q)× (P, D,Q)s model,
that best fitted the Nile River monthly flows data at Aswan.

The residual analysis was also performed for the fitted model and it indicates
that the errors are approximately Gaussian white noise.
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Table 6.2: Fitted Model for the Nile River Flows Data.

SARFIMA(p, d, q)× (P, D, Q)s

with p = q = P = Q = 1, d = 0, D = W and s = 12

φ1 Φ1 D θ1 Θ1

Estimator 0.6147 0.9944 0.1980 -0.2238 0.9207

Std. Dev. 0.0291 0.0295 0.0011 0.0357 0.0145

6.2. Simulated Time Series

Here we consider a complete estimation, and also the forecasting analysis, for a
simulated seasonal fractionally integrated time series as in expression (2.6), when
n = 1, 466, D = 0.4, and s = 12.

Figures 6.2 (a), and (b) show the sample autocorrelation, and the peri-
odogram functions of this simulated time series: there exist long memory charac-
teristics in this time series. By analyzing the periodogram function we also observe
a periodic pattern with seasonality s = 12.

(a) (b)

Figure 6.2: Simulated Time Series Data: (a) sample autocorrelation function;
(b) periodogram function.

Table 6.1 (b) gives the estimators of the parameter D for a SARFIMA(0, D,
0)s with s = 12, that best fits the simulated time series.

The best estimator for the simulated time series is W = 0.3834 ' 0.4. In the
semi-parametric estimator class the total number of regressors m = g(n), in the
expression (4.4), was selected from the first seasonal frequency.

Figure 6.3 shows the confidence interval at 95% confidence level for the 5-step
ahead forecasting values based on all estimation procedures considered in Section
4 for the simulated time series data.

We refer the reader to Lopes and Nunes [27] and Pinheiro and Lopes [39] for
a long-range dependence studies in DNA sequences. For a self-similar analysis in
the Ethernet traffic we refer the work by Leland et al. [23]. We also mention Beran
[4], Doukhan et al. [12] and Palma [38] for a series of examples and applications
on long-range dependence.
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Figure 6.3: Confidence interval at 95% confidence level for the 5-step ahead
forecasting in the simulated time series data.

7. Conclusions

In this paper we addressed the issue of modeling the long-range dependence through
a series of different stochastic processes.

We considered models with long memory in mean (ARFIMA and SARFIMA
processes) and in volatility (FIGARCH and FISV processes), with innovations
following either a Gaussian or a non-Gaussian distribution.

In studying SARFIMA(0, D, 0)s processes we emphasize Theorems 2.1-2.3
and 5.1. Theorem 2.2 presents the ergodicity property while Theorem 2.3 presents
the conditional expectation, and conditional variance for these processes. Theo-
rem 2.3 is very important for generating any SARFIMA(0, D, 0)s process or its
complete version SARFIMA(p, d, q)× (P, D,Q)s process. Theorem 5.1 gives some
properties for forecasting the value Xn+h, when h > 1, in SARFIMA(0, D, 0)s

processes.
Based on the Pfaff–Saalschütz’s Identity and some properties of the hypergeo-

metric functions, we derived a compact and closed formula for the Durbin-Levinson
algorithm in order to obtain the partial autocorrelation functions of order k for
SARFIMA(0, D, 0)s processes.

In Section 4 we presented one parametric and four semiparametric meth-
ods for estimating the fractional differencing parameter. The classical Ordinary
Least Squares (OLS) method and two robust methodologies (that is, the Least
Trimmed Squares (LTS) and the MM -estimation) were presented for each esti-
mation method in the semiparametric class.

We recall that in a FISV process the logarithm transformation of its squared
value is the sum of a zero mean Gaussian ARFIMA process and an indepen-
dent non-Gaussian innovation process. Also, the FIGARCH(p, d, q) process is an
ARFIMA process on the squared data with a more complicated error structure.
In view of this, all the estimation methods proposed in Section 4, or in any of the
author’s papers mentioned in the references, can also be applied to FIGARCH and
FISV processes besides the ARFIMA process.
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As an illustration of the SARFIMA methodology we presented an application
in hydrology.
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cance: Análise Probabiĺıstica e Inferência (CNPq-No. 476781/2004-3) and also by
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