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Abstract

In this paper, we present some computational aspects for a Bayesian analysis in-
volving stable distributions. It is well known that, in general, there is no closed form
for the probability density function of a stable distribution. However, the use of a
latent or auxiliary random variable facilitates us to obtain any posterior distribution
when related to stable distributions. To show the usefulness of the computational as-
pects, the methodology is applied to linear and non-linear regression models. Posterior
summaries of interest are obtained using the OpenBUGS software.
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Resumen

En este trabajo, presentamos algunos aspectos computacionales de análisis bayesiano
con distribuciones estables. Es bien sabido que, en general, no hay forma cerrada para
la función de densidad de probabilidad de distribuciones estables. Sin embargo, el
uso de una variable aleatoria latente facilita obtener la distribución à posteriori. La
metodologia se aplica a regresión lineal y non lineal utilizando el software OpenBUGS.

Palabras clave: Leyes Estable, análisis bayesiano, métodos MCMC, software Open-
BUGS.

1 Introduction

A wide class of distributions that encompasses the Gaussian one is given by the class of
stable distributions. This large class defines location-scale families that are closed under
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convolution. This distribution family (see for instance Samorodnitsky and Taqqu, 1994) is
described by four parameters α, β, δ and γ. The α ∈ (0, 2] parameter defines the “fatness
of the tails”, and when α = 2 this class reduces to Gaussian distributions. The β ∈ [−1, 1]
is the skewness parameter and for β = 0 one has symmetric distributions. The location
and scale parameters are, respectively, δ ∈ (−∞,∞) and γ ∈ (0,∞) (see Lévy, 1924).

Stable distributions are usually denoted by Sα(β, δ, γ). If a random variable X ∼
Sα(β, δ, γ), then Z = X−δ

γ ∼ Sα(β, 0, 1), whenever α 6= 1 (see Lukacs, 1970 and Nolan,
2015).

The difficulty associated to stable distributions Sα(β, δ, γ) is that in general there
is no simple closed form for their probability density functions. However, it is known
the probability density functions of stable distributions are continuous (Gnedenko and
Kolmogorov, 1968; Skorohod, 1961) and unimodal (Ibragimov and C̆ernin, 1959; Kanter,
1976). Also the support of all stable distributions is given in (−∞,∞), except for α < 1
and |β| = 1 when the support is [δ,∞) for β = 1 and (−∞, δ] for β = −1 (see page 12 in
Nolan, 2015). The characteristic function ϕ(·) of a stable distribution is given by

log(ϕ(t)) =

{
iδt− γα|t|α[1 + iβ sign(t) tan(πα2 )(|γ t|1−α − 1)], for α 6= 1

iδt− γ|t|[1 + iβ 2
πsign(t) log(γ|t|)], for α = 1,

(1)

where i =
√
−1 and the sign(·) function is given by

sign(x) =


−1, if x < 0
0, if x = 0
1, if x > 0.

(2)

Although this is a good class for data modeling in different areas, one has difficulties
to obtain parameter estimates under a classical inference approach due to the lack of
closed form expressions for the probability density functions. An alternative is the use
of Bayesian methods. However, the computational cost can be further exacerbated in
assessing posterior summaries of interest.

A Bayesian analysis of stable distributions is introduced by Buckle (1995) using Markov
Chain Monte Carlo (MCMC) methods (see also Achcar et al., 2013a). The use of Bayesian
methods with MCMC simulation can have great flexibility by considering latent variables
(see, for instance, Damien et al., 1999 or Tanner and Wong, 1987), where samples of latent
variables are simulated in each step of the Gibbs or Metropolis-Hastings algorithms.

Considering a latent or an auxiliary variable, Buckle (1995) proved a theorem that is
useful to simulate samples from the joint posterior distribution of the parameters α, β, δ
and γ. This theorem establishes that a stable distribution for a random variable Z defined
in R− {0} is obtained as the marginal of a bivariate distribution for the random variable
Z itself and an auxiliary random variable Y . This variable Y is defined in the interval
(−0.5, aα,β), when Z ∈ (−∞, 0), and in (aα,β, 0.5), when Z ∈ (0,∞). The quantity aα,β is
given by

aα,β = −
bα,β
απ

(3)

where bα,β = β π2 min{α, 2− α}.
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The joint probability density function for random variables Z and Y is given by

f(z, y|α, β) =
α

|α− 1|
exp

{
−
∣∣∣∣ z

tα,β(y)

∣∣∣∣θ
}∣∣∣∣ z

tα,β(y)

∣∣∣∣θ 1

|z|
, (4)

where θ = α
α−1 ,

tα,β(y) =

(
sin(πα y + bα,β)

cos(πy)

)(
cos(πy)

cos(π(α− 1)y + bα,β)

) 1
θ

(5)

and Z = X−δ
γ , for γ 6= 0 and α 6= 1.

From the bivariate density (4), Buckle (1995) shows that the marginal distribution for
the random variable Z is Sα(β, 0, 1). Usually, the computational costs to obtain posterior
summaries of interest using MCMC methods is high for this class of models, which could
give some limitations for practical applications. Another problem can be the simulation
algorithm convergence. In this paper, we propose the use of a popular free available
software to obtain the posterior summaries of interest: the OpenBUGS software.

The paper is organized as follows: in Section 2, we present a Bayesian analysis for stable
distributions; in Section 3 we introduce the use of stable distributions for linear regression
models while non-linear regression models are considered in Section 4; in Section 5, we
introduce some numerical illustrations; finally, in Section 6, we present some concluding
remarks.

2 A Bayesian Analysis for General Stable Distributions

Let us assume that xi, for i = 1, · · · , n, is a random sample of size n, where Xi ∼
Sα(β, δ, γ), that is, Zi = Xi−δ

γ ∼ Sα(β, 0, 1). Assuming a joint prior distribution for α, β, δ
and γ, given by π0(α, β, δ, γ), Buckle (1995) shows that the joint posterior distribution for
the parameters α, β, δ and γ is given by

π(α, β, δ, γ|x) ∝
∫ (

α

|α− 1| γ

)n
× exp

{
−

n∑
i=1

∣∣∣∣ zi
tα,β(yi)

∣∣∣∣θ
}

n∏
i=1

∣∣∣∣ zi
tα,β(yi)

∣∣∣∣θ 1

|zi|

× π0(α, β, δ, γ)dy, (6)

where θ = α
α−1 , zi = xi−δ

γ , for i = 1, · · · , n, α ∈ (0, 2], β ∈ [−1, 1], δ ∈ (−∞,∞) and

γ ∈ (0,∞); x = (x1, x2, · · · , xn)′ and y = (y1, y2, · · · , yn)′ are respectively, the observed
and non-observed data vectors. Notice that the multivariate distribution in expression (6)
is given in terms of xi and the latent variables yi, and not in terms of zi and yi (there is
the Jacobian γ−1 multiplied by the right-hand-side of expression (4)).

Observe that when α = 2 we have θ = 2 and bα,β = 0. In this case, we have a Gaussian
distribution with mean δ and variance 2γ2.

For a Bayesian analysis of the proposed model, we assume uniform U(a, b) independent
priors for α, β, δ and γ, where the hyperparameters a and b are assumed to be known
in each application following the restrictions α ∈ (0, 2], β ∈ [−1, 1], δ ∈ (−∞,∞) and
γ ∈ (0,∞).

In the simulation algorithm to obtain a Gibbs sample for the random quantities α, β, δ
and γ having the joint posterior distribution (6), we assume a uniform U(−0.5, 0.5) prior
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distribution for the latent random quantities Yi, for i = 1, · · · , n. With this choice of priors,
one has the possibility to use standard software package like OpenBUGS (see Spiegelhalter
et al., 2003) with great simplification to obtain the simulated Gibbs samples for the joint
posterior distribution. In this way, one has the following algorithm:

(i) Start with the initial values α(0), β(0), δ(0), γ(0);

(ii) Simulate a sample y = (y1, · · · , yn)′ from the conditional distributions
π(yi|α(0), β(0), δ(0), γ(0),x), for i = 1, · · · , n; that is, we simulate these latent random
variables y similarly as we simulate the parameters;

(iii) Update α(0), β(0), δ(0), γ(0) by α(1), β(1), δ(1), γ(1) from the conditional distributions
π(α|β(0), δ(0), γ(0),x,y), π(β | α(0), δ(0), γ(0),x,y), π(δ|α(0), β(0), γ(0),x,y) and
π(γ|α(0), β(0), δ(0),x,y);

(iv) Repeat steps (i), (ii) and (iii) until convergence.

From expression (6), the joint posterior probability distribution for α, β, δ, γ and y =
(y1, y2, · · · , yn)′ is given by

π(α, β, δ, γ,y|x) ∝

(
α

|α− 1| γ

)n
exp

{
−

n∑
i=1

∣∣∣∣ zi
tα,β(yi)

∣∣∣∣
}

×
n∏
i=1

∣∣∣∣ zi
tα,β(yi)

∣∣∣∣θ 1

|zi|
×

n∏
i=1

h(yi)π0(α, β, δ, γ), (7)

where θ and tα,β(·) are respectively defined in (4) and (5) and h(y) is a U(−0.5, 0.5) density
function.

Since we are using the OpenBUGS software to simulate samples from the joint pos-
terior distribution we do not present here all full conditional distributions needed for the
Gibbs sampling algorithm. This software only requires the data distribution and prior
distributions for the interested random quantities. This gives great computational sim-
plification for determining posterior summaries of interest as shown in the applications in
Section 6.

3 Linear regression models assuming stable distributions

Consider a random variable X related to a controlled variable V given by the linear
relationship

xi = d0 + d1vi + εi, for i = 1, 2, · · · , n, (8)

where

• the random variable Xi represents the response for the i-th unit associated with an
experimental value of the independent or explanatory variable v assumed as a fixed
value (a common regression model assumption). In this way, xi is an observation of
Xi;
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• the variables ε1, ε2, · · · , εn are considered as components of unknown errors and
are unobserved random variables. Assume that these random variables εi, for
i = 1, 2, · · · , n, are independent and identically distributed with normal distribu-
tion N (0, σ2ε);

• the parameters d0 and d1 are unknown.

From the above assumptions, we have normality for the responses, that is,

Xi ∼ N (d0 + d1vi;σ
2
ε). (9)

In this way Xi has a normal distribution with mean d0 + d1vi and common variance
σ2ε . Usually we get estimators for the regression parameters using least squares approach
or standard maximum likelihood methods (see, for instance, Draper and Smith, 1981 or
Seber and Lee, 2003).

Standard generalization for the linear model (8) is given in the presence of k indepen-
dent or explanatory variables, that is, a multiple linear regression model given by

xi = d0 + d1vi1 + d2vi2 + · · ·+ dkvik + εi. (10)

From the normality assumption for the error εi in (10), the random variable Xi has
normal distribution with mean d0 + d1vi1 + d2vi2 + · · ·+ dkvik and variance σ2ε .

In practical applications, we need to check if the above assumptions are satisfied. In
this way, we consider graphical approaches to verify if the model residuals satisfy the above
assumptions.

In the presence of outliers or discordant observations, we could have large impact on
the obtained estimators for the regression model given by (10) which could invalidate the
obtained inferences. In this situation, we could use non-parametric regression models or
to assume more robust probability distributions for the data. One possibility is to assume
that the random variable X in (10) or (8) has a stable distribution Sα(β, δ, γ).

In this way, we assume the response xi in the linear regression model (10), for i =
1, · · · , n, has a stable distribution Xi ∼ Sα(β, δi, γ), that is, Zi = X−δi

γ ∼ Sα(β, 0, 1) and
where the location parameter δi of the stable distribution is related to the explanatory
variables by a linear relation given by,

δi = d0 + d1vi1 + d2vi2 + · · ·+ dkvik. (11)

Assuming a joint prior distribution for α, β,d and γ, where d = (d0, d1, d2, · · · , dk)′
given by π0(α, β,d, γ), Buckle (1995) or Achcar et al. (2013b), show that the joint posterior
distribution for parameters α, β, d and γ, is given by,

π(α, β,d, γ|x) ∝
∫ (

α

|α− 1|γ

)n
exp

{
n∑
i=1

∣∣∣∣ zi
tα,β(yi)

∣∣∣∣θ
}

n∏
i=1

∣∣∣∣ zi
tα,β(yi)

∣∣∣∣θ 1

|zi|
π0(α, β,d, γ)dy,

(12)
where θ = α

α−1 , zi = xi−yi
γ , for i = 1, · · · , n, α ∈ (0, 2], β ∈ [−1, 1] and γ ∈ (0,∞);

x = (x1, x2, · · · , xn)′ and y = (y1, y2, · · · , yn)′ are respectively, the observed and non-
observed data vectors.
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4 Non-linear growth regression models assuming stable dis-
tributions

Growth curves are included in a class of nonlinear models widely used in biology to model
different problems as the population size or biomass (in population ecology and demog-
raphy, for population growth analysis) or the individual body height or biomass (in phys-
iology, for growth analysis of individuals). A growth curve is an empirical model of the
evolution of a quantity over time. Growth curves are employed in many disciplines besides
biology, particularly in statistics, where there is a large literature on this subject related
to nonlinear models. Under a more probabilistic and mathematical statistics approach,
growth curves are often modeled as being a continuous stochastic process.

Standard classical inference methods to obtain point or interval estimates for the pa-
rameters of growth curves are presented within the nonlinear modeling methodology.

Nonlinear regression methodology is similar to the linear regression methodology, that
is, a modeling approach to relate a response X to a vector of covariates, v = (v1, · · · , vk)′,
where v′ denotes the transpose of the vector v. Different from linear models, nonlinear
regression is characterized by the fact that the prediction equation depends nonlinearly
on one or more unknown parameters. Different from the linear regression methodology
often used for building a purely empirical model, nonlinear regression methodology usually
arises when there is some physical reason which implies that the relationship between the
response and the predictors follows a particular functional form.

A nonlinear regression model has the general form,

Xi = f(vi,θ) + εi, (13)

where Xi are the responses, for i = 1, · · · , n; f is a known function of the covariate vector;
vi = (vi1, · · · , vik)′ is a vector of k covariates or independent variables; θ = (θ1, · · · , θp)′
is the vector of p parameters and εi are random errors. The errors εi are usually assumed
to be uncorrelated and normally distributed with mean zero and constant variance.

The most popular criterion to estimate the p parameter vector θ in the nonlinear model
(13) is to find estimates for the parameters (via nonlinear least squares) which minimize
the sum of squared errors, given by,

n∑
i=1

(xi − f(vi,θ))2. (14)

Remark 1. If the errors εi, for i ∈ {1, 2, · · · , n}, follows a normal distribution, then the
least squares estimator for θ is also the maximum likelihood estimator.

Usually, nonlinear regression estimates must be computed by iterative procedures using
optimization methods to minimize the sum of squared errors given by the expression (14).
It is important to point out that the definition of nonlinearity is related to the unknown
parameters and not to the relationship between the covariates and the response. As an
example, X = β0 + β1v+ β2v

2 + ε is considered as a linear model (see, for instance, Bates
and Watts, 1988; Ratkowsky, 1983; Seber and Wild, 1989).

A popular iterative technique to find the least squares estimator of nonlinear models is
the Gauss-Newton algorithm. The Gauss-Newton algorithm increments the working esti-
mate θ̂ at each iteration by an amount equal to the coefficients from the linear regression
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of the current residuals ui, defined as ui = xi − f(vi, θ̂), on the current gradient matrix
X.

If the function f(·) in (13) is continuously differentiable in θ, then it can be linearized
locally as

f(v,θ) = f(v,θ0) + V0(θ − θ0), (15)

where V0 is the n× p gradient matrix with elements ∂f(vi,θ0)/∂θj and θ0 is a vector of
initial values for the iterative procedure. This leads to the Gauss-Newton algorithm for
estimating θ,

θ1 = θ0 + (V0
′V0)−1V0

′e, (16)

where e is the vector of working residuals ei = xi − f(vi,θ0), for i = 1, 2, · · · , n.
If the errors εi are independent and normally distributed N (0, σ2ε), then the Gauss-

Newton algorithm is an application of Fisher’s method of scoring. This algorithm is
implemented in many existing statistical softwares as, for instance, R, Minitab (version
16) or SAS.

If X is of full column rank in a neighborhood of the least squares solution, then it can
be shown that the Gauss-Newton algorithm converges to the solution from a sufficiently
good starting value. In practical applications, there is no guarantee, though, that the
algorithm will converge from values further from the solution. Some improvement of the
Gauss-Newton algorithm are given in the literature as the Levenberg-Marquart damping
algorithm (see, for instance, Seber and Wild, 1989).

Standard inferences for the parameters of nonlinear models are obtained from the
asymptotical normality of the least squares estimators θ̂ with mean θ and variance-
covariance matrix σ2ε(V

′V)−1, where the variance σ2ε is usually estimated by,

s2 =
1

n− p

n∑
i=1

[xi − f(vi, θ̂)]2. (17)

It is important to point out that since most asymptotic inference for nonlinear re-
gression models is based on the analogy to linear models, and since this inference is only
approximated as the actual model differs from a linear model, various measures of nonlin-
earity have been proposed in the literature to verify how good linear approximations are
likely to be in each case. One class of measures focuses on curvature (intrinsic curvatures)
of the function f(·) and it is based on the size of the second derivatives of f (see, for
instance, Bates and Watts, 1980). Another class of measures is the intrinsic curvature de-
fined by the residuals ui = xi − f(vi, θ̂) or parameters effect curvatures (see, for instance,
Bates and Watts, 1988).

In many applications, the systematic part of the response is known to be monotonic
increasing in v, where v might represent time or dosage. Nonlinear regression models with
this property are called growth models. The simplest growth model is the exponential
growth model defined as

f(v,θ) = θ1 exp(−θ2v), (18)

where θ = (θ1, θ2)
′.

There are several growth models introduced in the literature. In this paper we consider
the following special cases

1. f(v,θ) = θ1 + θ2v
θ3 , where θ = (θ1, θ2, θ3)

′.
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2. f(v,θ) = θ1 + θ2 exp(θ3v) (exponential growth model), where θ = (θ1, θ2, θ3)
′.

3. f(v,θ) = θ1 exp(−θ2v) + θ3 exp(−θ4v), where θ = (θ1, θ2, θ3, θ4)
′.

4. f(v,θ) = θ1v/(θ2 + v) (Michaelis-Menten), where θ = (θ1, θ2)
′.

5. f(v,θ) = θ1 exp(− exp(θ2 − θ3v)) (Gompertz ), where θ = (θ1, θ2, θ3)
′.

6. f(v,θ) = θ1 + (θ2 − θ1)/[1 + exp((v − θ3)/θ4)] (logistic), where θ = (θ1, θ2, θ3, θ4)
′.

7. f(v,θ) = θ1 + (θ2 − θ1) exp(θ3 v
θ4) (Weibull), where θ = (θ1, θ2, θ3, θ4)

′.

8. f(v,θ) = 1− exp[− exp(θ1 − θ2v)] (sigmoid), where θ = (θ1, θ2)
′.

Observe that these different models could be considered to model growth curves. Very
often we have physical interpretations for the use of a particular model. In others we try
different growth models to decide which one best fits the data.

In many situations the usual normality assumption for the errors in (13) will not be
appropriate. For instance, this can be the case when we have discordant observations
which could have an impact on the obtained inferences. In this way, we could assume
more robust distributions for the data, as the stable distribution.

We point out that the use of asymptotical inference results could not be accurate
depending on the sample sizes and on the intrinsic curvature of the function f(·) in (13).
In those cases, we propose the use of stable distributions for the response Xi in (13).

Let us assume that the response xi, for i = 1, · · · , n, in the nonlinear regression model
(13) has a stable distribution Xi ∼ Sα(β, δi, γ), that is, Zi = X−δi

γ ∼ Sα(β, 0, 1) and where
the location parameter δi of the stable distribution is related to the explanatory variables
by a nonlinear relation given by,

δi = f(vi,d). (19)

Assuming a joint prior distribution for α, β, d and γ, where d = (d0, d1, d2, · · · , dk)′
given by π0(α, β,d, γ), Buckle (1995) shows that the joint posterior distribution for pa-
rameters α, β, d and γ, is given by the general form (12).

5 Applications

5.1 An example of a simple linear regression model

In Table 5.1, we have a data set related to an industrial experiment, where x denotes the
response and v denotes an explanatory variable associated to each response, for n = 15
observations (see Johnson and Bhattacharyya, 1980).

Table 5.1: An industrial experiment data set.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

x 1.2 1.5 1.5 3.3 2.5 2.1 2.5 3.2 2.8 1.5 2.2 2.2 1.9 1.8 2.8
v 19 15 35 52 35 33 30 57 49 26 45 39 25 40 40
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From a preliminary data analysis, we see that a linear regression model (8) is suitable
for this data set. The estimated regression straight line obtained by minimum squares
estimates and using the software MINITAB (version 16) is given by x̂i = 0.603+0.0444 vi,
where the regression parameter d1 is statistically different from zero (p-value< 0.05). From
standard residuals graphs we verify that the required assumptions (residuals normality and
homoscedastic variance are satisfied).

Under a Bayesian approach, we have in Table 5.2, the posterior summaries of interest
assuming the linear regression model defined by (8) with a stable distribution for the
response. Using the OpenBugs software we assume the following prior distributions: α ∼
U(0, 2), β ∼ U(−1, 0), d0 ∼ N (0, 1), d1 ∼ N (0, 1) and γ ∼ U(0, 3). Observe that we
are assuming approximately non-informative priors for the parameters of the model. This
procedure will be used in the other Bayesian analysis. We further assume independence
among the random quantities. We also assume a uniform U(−0.5, 0.5) distribution for the
latent variable Yi, for i = 1, 2, · · · , 15. We simulated 800,000 Gibbs samples, with a “burn-
in-sample” of 300,000 samples discarded to eliminate the effects of the initial values in the
iterative simulation procedure. We take a final sample of size 1,000 (every 500th sample
chosen from the 500,000 samples). Gibbs sampling algorithm convergence was monitored
from standard trace plots of the simulated samples.

In Table 5.2, we also have the sum of absolute values (SAV) for the differences between
the observed and fitted mean values, given by,

SAV =
n∑
i=1

absolute[observed(i)− fitted mean(i)]. (20)

In Table 5.2, we also have the posterior summaries of the regression model (8) assum-
ing a normal N (0, σ2ε) distribution for the error and the following priors for the parameters
of the model: d0 ∼ N (0, 1), d1 ∼ N (0, 1) and ζ = 1/σ2ε ∼ U(0, 3). In this case, we simu-
lated 55,000 Gibbs samples taking a “burn-in-sample” of size 5,000 using the OpenBUGS
software. We take a final sample of size 1,000 (every 50th sample chosen from the 50,000
samples). From the results of Table 5.2, we observe similar results assuming both normal-
ity or stable distribution for the data. In this case, we conclude that we do not need to
assume a stable distribution for the data, since the results are very similar to the results
obtained from the normality assumption for the errors. Besides, the computational cost
using stable distributions is very high (see Achcar et al., 2013b).

In Figure 5.1(a) we have the plots of observed and fitted means considering both models
versus samples. From the graphs of Figure 5.1(a), we observe similar fit for both models
(linear regression model assuming both normality and stable distributions). Observe that
we have SAV = 4.496 when we assume a stable distribution while SAV = 4.504 when we
assume a normal distribution. Hence, we have very close results.

Now let us consider the presence of an outlier or discordant response (considered as a
measurement error) replacing the 15th response (equal to 2.8) in Table 5.1 by the value
8.0. In Table 5.3, we have the obtained posterior summaries assuming the same priors
and the same simulation procedure as in Table 5.2. In Figure 5.1(b), we have the plots
of observed and fitted means considering both models versus samples in the presence of
one outlier. From this figure, we observe that the model with a stable distribution is very
robust to the presence of the outlier given similar inference results as obtained without
its presence (see results in Table 5.2). Table 5.3 also reports the estimated regression
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Table 5.2: Posterior summaries (linear regression).

Stable distribution (SAV= 4.496)

Parameter Mean Standard Deviation 95% Credible Interval

α 1.7160 0.2123 (1.2380, 1.9890)
β −0.6183 0.2391 (−0.9881,−0.0719)
d0 0.5431 0.3559 (−0.1981, 1.2270)
d1 0.0460 0.0093 (0.0283, 0.0652)
γ 0.2931 0.0638 (0.1960, 0.446)

Normal distribution (SAV= 4.504)

Parameter Mean Standard Deviation 95% Credible Interval

d0 0.4802 0.4927 (−0.56587, 1.4230)
d1 0.0475 0.0131 (0.0213, 0.0737)
ζ 0.4949 0.1709 (0.2119, 0.8834)

parameters with normal error and we observe how strongly the results are affected by the
presence of this outlier. Observe that we have SAV = 4.623 assuming a stable distribution
(a value very close to the SAV values given in Table 5.2, without the presence of an outlier)
and SAV = 6.394 assuming a normal distribution.

2 4 6 8 10 12 14

1.
5

2.
0

2.
5

3.
0

Stable Mean,
X
Normal Mean

(a)

2 4 6 8 10 12 14

1.
5

2.
0

2.
5

3.
0

3.
5

Stable Mean

X

Normal Mean

(b)

Figure 5.1: Observed and fitted means values, considering both models: (a) samples; (b)
presence of one outlier.

5.2 An example with a growth non-linear model

In Table 5.4, we have a data set, reported by Bache et al. (1972), related to the concen-
tration of polychlorinated biphenyl (PCB) residues in a series of lake trout from Cayuga
Lake, NY, USA. The ages of the fishes were accurately known, since they were annually
stocked as yearlings and distinctly marked as to the year class. Every fish was mechani-
cally chopped, ground, thoroughly mixed, and 5-gram samples were taken. The samples
were treated and PCB residues in parts per million (ppm) were estimated using column
chromatography.



Regression models assuming a stable distribution 11

Table 5.3: Posterior summaries (presence of one outlier).

Stable distribution (SAV = 4.623)

Parameter Mean Standard Deviation 95% Credible Interval

α 1.3730 0.2195 (1.0580, 1.8430)
β −0.5726 0.2703 (−0.9821,−0.0426)
d0 0.4797 0.3461 (−0.3483, 1.0400)
d1 0.0465 0.0096 (0.0292, 0.0701)
γ 0.3221 0.0802 (0.2004, 0.4856)

Normal distribution (SAV = 6.394)

Parameter Mean Standard Deviation 95% Credible Interval

d0 0.2408 0.7866 (−1.3100, 1.8200)
d1 0.0632 0.0225 (0.0201, 0.1061)
ζ 0.4949 0.1709 (0.2119, 0.8834)

Table 5.4: Lake trout data set.

Row 1 2 3 4 5 6 7 8 9 10

Age 1 1 1 1 2 2 2 3 3 3
PCB 0.6 1.6 0.5 1.2 2.0 1.3 2.5 2.2 2.4 1.2

log(PCB) -0.5118 0.4700 -0.6932 0.1823 0.6932 0.2624 0.9163 0.7885 0.8755 0.1823

Row 11 12 13 14 15 16 16 18 19 20

Age 4 4 4 5 6 6 6 7 7 7
PCB 3.5 4.1 5.1 5.7 3.4 9.7 8.6 4.0 5.5 10.7

log(PCB) 1.2528 1.4110 1.6229 1.7405 1.2238 2.2721 2.1518 1.3863 1.7048 2.3514

Row 21 22 23 24 25 26 27 28

Age 8 8 8 9 11 12 12 12
PCB 17.5 13.4 4.5 30.4 12.4 13.4 26.2 7.4

log(PCB) 2.8622 2.5953 1.5041 3.4144 2.5177 2.5953 3.2658 2.0015
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From a preliminary data analysis, we see that a nonlinear regression model (13) is
suitable for the data set both in the original and transformed scales (see Figure 5.2).

We assume standard classical approach for nonlinear models considering the eigth
growth models introduced in Section 4. The responses are in the logarithmic scale log(PCB),
and we use the software MINITAB (version 16). Table 5.5 presents the estimation results
for each assumed growth model and we observe that for some growth models we need a
large number of iterations for the Gauss-Newton algorithm convergence.
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Figure 5.2: Observed values against age for PCB and log(PCB).

In Figure 5.3, we have the plots of observed log(PCB) and fitted models versus obser-
vations. From these plots, we observe that the most of the assumed models give reasonable
fit for the data (models 1, 2, 4, 5, 6 and 7 given in Table 5.5). Only models 3 and 8 are not
suitable for the data. It is important to observe that the sum of absolute values for the
differences (observed - estimated mean) for models 1, 2, 4, 5, 6 and 7 are given, respec-
tively, by 11.4412, 11.1411, 12.0196, 11.0047, 11.0209 and 11.0310. That is, those values
are very similar to each other, showing an indication of similar fit. Considering models 3
and 8, the values for these differences are given, respectively by, 15.5568 and 23.4592 (see
also Figure 5.3).

Observe that the obtained classical estimates given in Table 5.5, could be very unstable
heavily depending on the initial values used in the iterative algorithm. Usually it is difficult
to get empirical good initial values to be used in the iterative procedure. We also point
out that the standard errors (given in parenthesis in the right panel of Table 5.5) of the
obtained estimates could be very large as it is observed in this table.

Under a Bayesian approach, we have in Table 5.6, the posterior summaries of interest
considering the eight growth models 1-8 introduced in Section 4 with a normal distribution
for the error (see expression (13)) and the OpenBUGS software assuming the following
prior distributions: θj ∼ U(0, 1), j = 1, 2, 3, 4 and ζ = 1/σ2 ∼ G(1, 1), where G(a, b)
denotes a gamma distribution with mean a/b and variance a/b2. We simulated 10,000
Gibbs samples, with a “burn-in-sample” of 1,000 samples discarded to eliminate the effects
of the initial values in the iterative simulation procedure and taking a final sample of
size 900 (every 10th sample choosen from the 9,000 samples). Gibbs sampling algorithm
convergence was monitored from standard trace plots of the simulated samples.

From the results of Table 5.6, we observe that the posterior standard deviation for
each estimated parameter of the growth model is very small. It is important to point
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Table 5.5: Classical estimates for the growth models.

Fitted model Iteration Estimate
(Standard Error)

θ1 θ2 θ3 θ4
(1) log(PCB) = θ1 + θ2Ageθ3 11 -4.8664 4.7033 0.1968 -

(8.4290) (8.2768) (0.2739)

(2) log(PCB) = θ1 + θ2 exp[θ3Age] 17 3.1293 -3.9292 -0.1903 -
(0.5785) (0.4513) (0.0744)

(3) log(PCB) = θ1 exp[−θ2Age]+ 200 12.9631 0.0304 -12.7809 0.0495
θ3 exp[−θ4Age] (10164.1) (7.1) (10163.5) (8.1)

(4) log(PCB) = θ1Age/[θ2 + Age] 12 8.6431 23.9661 - -
(5.3952) (20.0487)

(5) log(PCB) = θ1× 14 2.7062 1.5332 0.4354 -
exp[− exp(θ2 − θ3Age)] (0.3003) (0.4300) (0.1358)

(6) log(PCB) = θ1+ 13 2.9168 -5.1460 -0.8508 3.5608
(θ2 − θ1)/[1 + exp((Age − θ3)/θ4)] (0.7308) (22.1369) (16.8113) (4.2535)

(7) log(PCB) = θ1+ 18 2.92618 -0.5612 0.1445 1.1874

(θ2 − θ1) exp[θ3Ageθ4 ] (0.8067) (0.8808) (0.1734) (0.7762)

(8) log(PCB) = 1− 21 -3.4462 -1.2850 - -
exp[− exp(θ1 − θ2Age)] (5.8041) (2.2605)
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Figure 5.3: Observed log(PCB) values against estimated means considering the eight fitted
models.

out that these posterior summaries obtained using MCMC methods are very accurate not
depending on approximations as when considering the classical approach. From Figure
5.4 we observe that we have a good fit of some models for the data.

To decide on the best statistical model we also could use the selection Bayesian De-
viance Information Criterion (DIC) introduced by Spiegelhalter et al. (2002). This cri-
terion is especially useful in problems where samples of the posterior distribution for the
parameters of the model have been simulated using Markov Chain Monte Carlo (MCMC)
methods.

Define the deviation as

D(θ) = −2 logL(θ) + C, (21)
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Table 5.6: Bayesian estimates for the growth models assuming a normal error.

Fitted model DIC Posterior Mean
(Standard Deviation)

θ1 θ2 θ3 θ4
(1) log(PCB) = θ1 + θ2Ageθ3 45.0 -0.7804 0.9227 0.5946 -

(0.4839) (0.3843) (0.1458)

(2) log(PCB) = θ1 + θ2 exp[θ3Age] 61.71 -0.5457 1.0960 0.1065 -
(0.5339) (0.4373) (0.0279)

(3) log(PCB) = θ1 exp[−θ2Age]+ 52.56 -1.701 0.4978 1.0940 -0.0852
θ3 exp[−θ4Age] (0.6316) (0.2242) (0.2721) (0.0241)

(4) log(PCB) = θ1Age/[θ2 + Age] 67.6 2.3140 2.0540 - -
(0.3152) (0.6620)

(5) log(PCB) = θ1× 49.47 2.5060 1.5406 0.5010 -
exp[− exp(θ2 − θ3Age)] (0.2677) (0.4094) (0.1404)

(6) log(PCB) = θ1+ 51.17 2.3190 -1.4580 1.8730 1.7460
(θ2 − θ1)/[1 + exp((Age − θ3)/θ4)] (0.2294) (0.6554) (0.6762) (0.4869)

(7) log(PCB) = θ1+ -6.609 -1.318 -0.4967 -0.7765 0.3727

(θ2 − θ1) exp[θ3Ageθ4 ] (0.6242) (0.4649) (0.3716) (0.1372)

(8) log(PCB) = 1− 87.31 -0.3885 -0.7789 - -
exp[− exp(θ1 − θ2Age)] (1.0480) (0.5216)

where θ is the vector of unknown parameters in the model, L(θ) is the likelihood function
and C is a constant that does not need to be known in the models comparison. The DIC
criterion is given by

DIC = D(θ̂) + 2nD, (22)

where D(θ̂) is the deviation evaluated at the posterior mean θ̂ = E(θ|data) and nD
is the effective number of parameters of the model given by nD = D − D(θ̂), with D =
E(D(θ)|data) is the posterior deviation measuring the quality of the data fit for the model.
Smaller values of DIC indicate better models. Notice that these values can be negative.
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Figure 5.4: Observed log(PCB) values against posterior means considering eight fitted
models.

Overall, model 5 (Gompertz) gives the smallest value for the sum of absolute values
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Table 5.7: Bayesian estimates for the Gompertz growth model assuming a stable distri-
bution for the responses.

Parameter Mean Standard Deviation 95% Credible Interval

α 0.8859 0.0759 (0.7069, 0.9738)
β -0.7813 0.0918 (-0.9552, -0.5773)
d1 2.6740 0.4199 (2.1720, 3.3060)
d2 1.7300 0.5028 (0.8745, 2.6220)
d3 0.4568 0.1405 (0.2735, 0.7191)
γ 0.4554 0.0805 (0.2670, 0.5993)

for the differences (observed - estimated mean) and small DIC (49.47) value, that is, we
could consider this model as the best fitted model.

Now, we assume a stable distribution for the responses considering the Gompertz
growth curve model (model 5) introduced in Section 4. Under a Bayesian approach, we
have in Table 5.7, the posterior summaries of interest assuming the nonlinear regression
model 5, that is, considering the regression model (13) for the location parameter of the
stable distribution given by,

δi = d1 exp[− exp(d2 − d3Agei)]. (23)

In the Bayesian analysis for this model, we use the OpenBugs software assuming the
following prior distributions: α ∼ U(0, 2), β ∼ U(−1, 0), dj ∼ N (0, 1), j = 1, 2, 3 and
γ ∼ U(0, 3). We also assume a uniform U(−0.5, 0.5) distribution for the latent variable
Yi, for i = 1, 2, · · · , 15. We simulated 4,000,000 Gibbs samples, with a “burn-in-sample”
of 1,000,000 samples discarded to eliminate the effects of the initial values in the iterative
simulation procedure. We take a final sample of size 3,000 (every 1000th sample chosen
from the 3,000,000 samples). Gibbs sampling algorithm convergence was monitored from
standard trace plots of the simulated samples.

In Figure 5.5, we have the plot of the posterior means assuming Gompertz growth
model (model 5) with a normal error against the observations together with the plot of the
location posterior against observations assuming a stable distribution. We observe similar
results. We also observe that the sum of absolute values for the differences (observed -
estimated mean) for model 5 with a stable distribution is given by 12.1437, that is, similar
to the obtained value assuming normal errors (11.0915).

Let us now consider the presence of one outlier or discordant response (considered as a
measurement error) replacing the 5th PCB response (2.0) value in Table 5.4 by the value
200.0. This high value is necessary because otherwise the effect can not be observed. In
Table 5.8, we have the obtained posterior summaries assuming the same priors and same
simulation procedure as in Table 5.7. In Figure 5.6, we have the plots of observed and fitted
means considering both models versus samples. From the graphs of Figure 5.6, we observe
that the model with a stable distribution is very robust to the presence of the outlier
given similar inference results as obtained without the presence of this outlier (see results
in Table 5.7). We also observe in Table 5.8, that the estimated regression parameters
with normal error are strongly affected by the presence of this outlier. Observe that we
have sum of absolute values for the differences (observed - estimated mean) equals to
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Figure 5.5: Observed log(PCB) values against posterior means considering the Gompertz
growth model, with Normal error and assuming a stable distribution.
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Figure 5.6: Observed log(PCB) values against posterior means considering the Gompertz
growth model with Normal error, assuming a stable distribution (presence of one outlier).

11.8064 assuming a stable distribution (a value very close to the respective one without
the presence of an outlier) while the sum of absolute values for the differences (observed
- estimated mean) is equal to 16.1205 assuming a normal distribution.

6 Some concluding remarks

The use of stable distributions could be a good alternative, especially using Bayesian meth-
ods with MCMC simulation technique. This class of distributions is very robust to the
presence of discordant observations. The presence of outliers or discordant observations,
many times due to measurement errors, is very common in practical applications of lin-
ear or nonlinear regression analysis. In the presence of these discordant observations, the
usual obtained classical inferences on the regression parameters or in the predictions un-
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Table 5.8: Bayesian estimates for the Gompertz growth model assuming a stable distri-
bution for the responses (presence of one outlier).

Stable distribution (SAV = 11.8064)

Parameter Mean Standard Deviation 95% Credible Interval

α 0.8682 0.0806 (0.6694, 0.9674)
β -0.6747 0.2485 (-0.9476, -0.0344)
d1 2.4580 0.2719 (2.0980; 3.1040)
d2 1.8230 0.4832 (0.9447; 2.6920)
d3 0.5305 0.1201 (0.3114; 0.7528)
γ 0.4202 0.1141 (0.1708, 0.6201)

Normal distribution (SAV = 16.1205)

Parameter Mean Standard Deviation 95% Credible Interval

θ1 2.0730 0.3714 (1.4060, 2.8870)
θ2 0.7145 0.6787 (-0.7258, 2.0210)
θ3 0.6920 0.3985 (0.1847, 1.6290)

der the usual assumption of errors normality and homoscedastic variance could be greatly
affected, which could imply in wrong inference results. In this way, the use of stable dis-
tributions could be a good alternative, since this distribution has a great flexibility to fit
for the data. With the use of Bayesian methods and MCMC simulation algorithms it is
possible to obtain inferences for the model despite the nonexistence of an analytical form
for the density function as it was showed in this work. It is important to point out that the
computational effort in the sample simulations for the joint posterior distribution of inter-
est can be largely simplified using standard free available softwares like the OpenBUGS
software.

In the illustrative examples introduced here, we observed that the use of data aug-
mentation techniques (see, for instance, Damien et al., 1999) is the key to obtain a good
performance for the MCMC simulation method for applications using stable distributions.

We emphasize that the use of OpenBUGS software does not require large computa-
tional time to get posterior summaries of interest, even when the simulation of a large
number of Gibbs samples are needed to achieve the algorithm convergence. These re-
sults could be of great interest for researchers and practitioners, when dealing with non
Gaussian data, as in the applications presented here.
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Lévy, P. (1924). “Théorie des erreurs la loi de Gauss et les lois exceptionelles”, Bulletin Society Math-
ematical, Vol. 52, 49-85.

Lukacs, E. (1970). Characteristic Functions. New York: Hafner Publishing.

Nolan, J.P. (2015). “Stable Distributions - Models for Heavy Tailed Data”. Boston: Birkhäuser.
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