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ABSTRACT

We consider one parametric and five semiparametric approaches to estimateD in SAR-
FIMA(0, D, 0)s processes, that is, when the process is a fractionally integrated ARMA
model with seasonality s. We also consider the h-step ahead forecasting for these processes.
We present the proof of some features of this model and also a study based on a Monte
Carlo simulation for different sample sizes and different seasonal periods. We compare
the different estimation procedures analyzing the bias, the mean squared error values,
and the confidence intervals for the estimators. We also consider three different methods
to choose the total number of regressors in the regression analysis for the semiparametric
class of estimation procedures. We apply the methodology to the Nile River flows monthly
data, and also to a simulated seasonal fractionally integrated time series.

Keywords: Long Memory Models, Seasonality, Estimation, Forecasting, Bandwidth Size.

1 INTRODUCTION

The ARFIMA(p, d, q) process was first introduced by Granger and Joyeux (1980),
and Hosking (1981 and 1984). The most useful feature of this process is the long memory
characteristic which is reflected by the hyperbolic decay of its autocorrelation function
or by the unboundedness of its spectral density function. While in the ARMA model,
dependency between observations decays at a geometric rate.

We want to consider long memory processes with periodicity, and they can be modelled
by using the so-called SARFIMA(p, d, q) × (P,D,Q)s processes.

Several estimation procedures for the fractional ARFIMA parameter have been pro-
posed, mainly, in the semiparametric and parametric classes. In the first class the re-
gression method proposed by Geweke and Porter-Hudak (1983) was the pioneer. This
approach was very important giving rise to several other works. The authors presented a
proof when d ∈ (−0.5, 0.0), nonetheless, the method denoted here by GPH, has been used
for a wide range of d. Reisen (1994) proposed a modified form of the regression method
based on a smoothed version of the periodogram function.

In the parametric class, the reader will find the methods based on the maximum like-
lihood function as suggested in Fox and Taqqu (1986), and Sowell (1992), among others.
We should point out that the parametric estimator pursued here is the approximated
maximum likelihood method proposed by Whittle (1953), and also considered by Fox and
Taqqu (1986).
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The papers by Porter-Hudak (1990), Ray (1993), Ooms (1995), and Montanari et al.
(2000) deal with seasonality analysis for observable data in different fields of application.
The work by Hassler (1994) presents a complete generalization of fractional differencing
processes with the presence of seasonality treating rigid, and flexible models. It also
illustrates the risk of fractional misspecification. The paper by Peiris and Singh (1996)
deal with prediction, and minimum mean squared error predictors of one step ahead for
seasonal fractionally integrated models. The paper by Reisen and Lopes (1999) present
forecasting results for the ARFIMA(2, d, 2) model including the variance of the mean
squared error value using the smoothed periodogram regression method for estimating the
parameter d. The later paper also presents an analysis of a real observed data comparing
the performance of both ARIMA, and ARFIMA models. Ray (1993) forecasts the IBM
product revenues using a complete SARFIMA(p, d, q) × (P,D,Q)s process.

The main goal of this paper is to analyze the estimation procedures based on five
semiparametric and one parametric approaches to estimate D, the seasonal fractional
parameter , when the model is described by a SARFIMA(0, D, 0)s process. We prove the
ergodicity, some features of the SARFIMA(0, D, 0)s process, and present the h-step ahead
forecasting for it. We apply the methodology to an observed data, and also to a simulated
time series.

The paper is organized as follows: Section 2 gives some definitions, and some properties
of the SARFIMA(p, d, q) × (P,D,Q)s processes. In Section 3 the six estimators of D
used here, and based on semiparametric and parametric classes are outlined. Section 4
gives the h-step ahead for the SARFIMA processes, including the mean squared error of
forecasting, the forecasting error, and the confidence interval for the forecasting values.
Monte Carlo simulations results are in Section 5. An application of the model to the Nile
River monthly flows at Aswan, and a complete simulated time series analysis are shown
in Section 6. Section 7 concludes.

2 SARFIMA(p, d, q) × (P, D, Q)s PROCESSES

In practical situations many time series exhibit a periodic pattern. These time series
are very common in meteorology, economics, hydrology, and astronomy. Sometimes, even
in these fields, the period of the seasonality can depend on time, that is, the autocorrela-
tion structure of the data varies from season to season. Here, in our analysis, we consider
the seasonality period constant over seasons.

We shall consider the seasonal autoregressive fractionally integrated moving average
processes, denoted here by SARFIMA(p, d, q)× (P,D,Q)s, which are an extension of the
ARFIMA (p, d, q) models, proposed by Granger and Joyeux (1980), and Hosking (1981).

The following sub-section gives some definitions, and some properties for the SARFIMA
(p, d, q) × (P,D,Q)s processes.

2.1 Some Definitions and Properties

Definition 2.1: Let {Xt}t∈Z be a stochastic process given by the expression

φ(B)Φ(Bs)∇d∇D
s (Xt − µ) = θ(B)Θ(Bs)εt, (2.1)

where µ is the mean of the process, {εt}t∈Z is a white noise process, s is the seasonal
period, B is the backward-shift operator, that is, BkXt = Xt−k, and BskXt = Xt−sk, ∇

d,
and ∇D

s are, respectively, the difference and the seasonal difference operators, that is,
∇D

s := (1−Bs)D =
∑

k>0

(
D
k

)
(−Bs)k,where

(
D
k

)
= Γ(1 +D)/[Γ(1 + k)Γ(1 +D − k)], and
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when s = 1 and D = d we have ∇D
s = ∇d. The polynomials φ(·), θ(·), Φ(·), and Θ(·)

with degrees p, q, P , and Q, respectively, are defined by

φ(B) =

p∑

i=0

(−φi)B
i, θ(B) =

q∑

j=0

(−θj)B
j ,

Φ(B) =

P∑

k=0

(−Φk)B
k, Θ(B) =

Q∑

l=0

(−Θl)B
l,

where φi, 1 6 i 6 p, θj , 1 6 j 6 q, Φk, 1 6 k 6 P , and Θl, 1 6 l 6 Q are constants. Then,
{Xt}t∈Z is a seasonal fractionally integrated ARMA process with period s, denoted by
SARFIMA(p, d, q)×(P,D,Q)s, where d and D are, respectively, the degree of differencing
and of seasonal differencing parameters.

Remarks: (1) A particular case of the SARFIMA(p, d, q) × (P,D,Q)s process is when
p = q = P = Q = 0. This process is called the pure seasonal fractionally integrated model
with period s, denoted by SARFIMA(0, D, 0)s, which will be the mainly goal of our study
in this work and it is given by

∇D
s (Xt − µ) ≡ (1 − Bs)D(Xt − µ) = εt, t ∈ Z. (2.2)

(2) When P = Q = 0, D = 0 and s = 1 the SARFIMA(p, d, q) × (P,D,Q)s process is
just the ARFIMA(p, d, q) process (see Beran, 1994). In this case we already know the
behaviour of the parameter estimators (see Reisen and Lopes, 1999 and Lopes et al.,
2004).

We now shall give some of the properties of the SARFIMA(0, D, 0)s process.

Theorem 2.1: Let {Xt}t∈Z be the SARFIMA(0, D, 0)s process given by the expression
(2.2), with zero mean and s ∈ N as the seasonal period. Then,

(i) when D > −0.5, {Xt}t∈Z is an invertible process with infinite autoregressive repre-
sentation given by

Π(Bs)Xt =
∑

k>0

πkXt−sk = εt,

where

πk =
−D(1 −D) · · · (k −D − 1)

k!
=

(k −D − 1)!

k!(−D − 1)!
=

Γ(k −D)

Γ(k + 1)Γ(−D)
· (2.3)

When k → ∞, πk ∼ k−D−1

Γ(−D) ·

(ii) when D < 0.5, {Xt}t∈Z is a stationary process with an infinite moving average
representation given by

Xt = Ψ(Bs)εt =
∑

k>0

ψkεt−sk,

where

ψk =
D(1 +D) · · · (k +D − 1)

k!
=

(k +D − 1)!

k!(D − 1)!
=

Γ(k +D)

Γ(k + 1)Γ(D)
· (2.4)

When k → ∞, ψk ∼ kD−1

Γ(D) ·

In the following, we assume that D ∈ (−0.5, 0.5).
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(iii) The process {Xt}t∈Z has spectral density function given by

fX(w) =
σ2

ε

2π

[
2 sin

(sw
2

)]
−2D

, 0 < w 6 π. (2.5)

At the seasonal frequencies, for ν = 0, 1, · · · , [s/2], where [x] means the integer part
of x, it behaves as

fX

(
2πν

s
+ w

)
∼ fε

(
2πν

s

)
(sw)−2D, when w → 0·

In the following, let A be the set {1, 2, · · · , s− 1}, and Z> be the set {k ∈ Z|k > 0}.

(iv) The process {Xt}t∈Z has autocovariance and autocorrelation functions of order k,
k ∈ Z>, given, respectively, by

γX(sk + ξ) =

{
(−1)kΓ(1−2D)

Γ(1+k−D)Γ(1−k−D)σ
2
ε = γX(k), if ξ = 0

0, if ξ ∈ A,
(2.6)

and

ρX(sk + ξ) =

{
Γ(k+D)Γ(1−D)
Γ(1+k−D)Γ(D) = ρX(k), if ξ = 0

0, if ξ ∈ A.
(2.7)

When k → ∞, ρX(sk) ∼ Γ(1−D)
Γ(D) k2D−1.

(v) The process {Xt}t∈Z has partial autocorrelation function given by

φX(sk + ξ, sl + η) =

{
−

(
k
l

)Γ(l−D)Γ(k−l+1−D)
Γ(−D)Γ(1+k−D) = φX(k, l), if η = 0

0, if η ∈ A,
(2.8)

for any k, l ∈ Z>, and ξ ∈ A ∪ {0}.

From expression (2.8), when l = k, the partial autocorrelation function of order k
is given by

φX(sk, sk) =
D

k −D
= φX(k, k), for all k ∈ Z>. (2.9)

The proof of this theorem can be found in Brietzke et al. (2005).

Remarks: (1) The spectral density function of the SARFIMA(0, D, 0)s process in the
seasonal frequencies is unbounded when 0<D< 0.5, and it has zeroes when D is negative.

(2) Among seasonal frequencies the SARFIMA processes have similar behaviour as the
ARFIMA processes.

(3) The SARFIMA(p, d, q)× (P,D,Q)s process is stationary when d, and D are less than
0.5, and the polynomials φ(B) · Φ(B) = 0, and θ(B) · Θ(B) = 0 have no roots in common,
and all roots are outside of the unit circle. When D > 0, the process has seasonal long
memory.

(4) The paper by Brietzke et al. (2005) gives a closed formula for the Durbin-Levinson’s
algorithm relating the partial autocorrelation and the autocorrelation functions for the
seasonal fractionally integrated processes. This algorithm is very important for generating
these processes when one uses the method proposed by Hosking (1984) (see Section 5).
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(5) The ergodicity of the stochastic process {Xt}t∈Z, given by the expression (2.2), with
seasonality s and D < 0.5 is based on the infinite moving average representation of this
process and it is sufficient to show that the coefficients of this representation is square
summable. For a complete proof see Bisognin and Lopes (2005).

The next theorem shows that for SARFIMA(0, D, 0)s processes the conditional expec-
tation and the conditional variance depend only on the past values distant from multiples
of the seasonality s. This theorem is very important when one needs to generate the
mentioned processes (see Section 5 of this work).

Theorem 2.2: Let {Xt}t∈Z be a SARFIMA(0, D, 0)s process given by the expression
(2.2), with zero mean, s ∈ N as the seasonal period, and D ∈ (−0.5, 0.5). The conditional
expectation and the conditional variance of Xt, given Xl, for all l < t, denoted respectively
by mt ≡ E(Xt|Xl, l < t) and vt ≡ V ar(Xt|Xl, l < t), are given by






mζ = 0, for ζ ∈ A,

msk =

k∑

j=1

φX(sk, sj)Xsk−sj , for k ∈ N,

msk+ζ =
k∑

j=1

φX(sk + ζ, sj)Xsk+ζ−sj , for ζ ∈ A,

(2.10)

and





vζ = σ2
ε , for ζ ∈ A,

vsk = σ2
ε

k∏

j=1

[1 − φ2
X(sj, sj)], for k ∈ N,

vsk+ζ = vsk, for ζ ∈ A,

(2.11)

where t = ζ determines the mean and the variance for lags smaller than s, t = sk for lags
multiple of s, and t = sk+ζ for lags not multiple of s, φX(·, ·) is the partial autocorrelation
function of the process {Xt}t∈Z given by item (v) in Theorem 2.1, σ2

ε is the variance of
the white noise process and A is the set {1, 2, · · · , s− 1}.

Proof: Let {Xt}t∈Z be a SARFIMA(0, D, 0)s process with seasonality s, given by the
expression (2.2). First, we want to obtain the conditional expectation of the {Xt}t∈Z

processes. From Hosking (1984), for any stationary stochastic process with zero mean, of
the form (2.2), its conditional expectation, given the past observations, can be written as

mt ≡ E(Xt|Xℓ, ℓ < t) =
t∑

j=1

φX(t, j)Xt−j , (2.12)

where φX(·, ·) is the partial autocorrelation function of a SARFIMA(0, D, 0)s process
given in item (v) of Theorem 2.1. Let s be in N and ζ ∈ A. From expression (2.12), when
t = ζ we have

mζ =

ζ∑

j=1

φX(ζ, j)Xζ−j = 0,

since φX(ζ, j) = 0 for j ∈ {1, · · · , ζ} (see Theorem 2.1). For t = sk in expression (2.12)
we have

msk =
sk∑

j=1

φX(sk, j)Xsk−j =
k∑

j=1

φX(sk, sj)Xs(k−j) =
k∑

j=1

φX(k, j)Xs(k−j),
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since from expression (2.8) one knows that φX(sk, sj + ζ) = 0, for any ζ 6= 0, and
j ∈ {1, 2, · · · , k}. For t = sk + ζ in expression (2.12), where ζ ∈ A, we have

msk+ζ=

sk+ζ∑

j=1

φX(sk + ζ, j)Xsk+ζ−j =
k∑

j=1

φX(sk + ζ, sj)Xs(k−j)+ζ =
k∑

j=1

φX(k, j)Xs(k−j)+ζ ,

since from expression (2.8) one knows that φ(sk + ξ, sj + η) = 0, for any ξ, η ∈ A, and
j ∈ {1, 2, · · · , k}. This proves expression (2.10).

Secondly, one wants to prove expression (2.11). For any stationary stochastic process
with zero mean, the conditional variance, given the past observations, is given by (see
Hosking, 1984)

vt ≡ V ar(Xt|Xℓ, ℓ < t) = σ2
ε

t∏

j=1

[1 − φ2
X(j, j)], (2.13)

where σ2
ε is the variance of the white noise process.

From item (v) of Theorem 2.1, φX(sk + ζ, sk + ζ) = 0, when ζ ∈ A. Therefore,

vζ = σ2
ε

∏ζ
j=1[1 − φ2

X(j, j)] = σ2
ε . For t = sk in expression (2.13), one has

vsk = σ2
ε

sk∏

j=1

[1 − φ2
X(j, j)] = σ2

ε

k∏

j=1

[1 − φ2
X(sj, sj)].

Finally, for t = sk + ζ in expression (2.13), where ζ ∈ A, one has

vsk+ζ = σ2
ε

sk+ζ∏

j=1

[1 − φ2
X(j, j)] = σ2

ε

k∏

j=1

[1 − φ2
X(sj, sj)] = vsk,

since φX(sk + ζ, sk + ζ) = 0, whenever k ∈ N, and ζ ∈ A.

Thus, the system (2.11) holds, and we conclude the proof.

The next section presents the estimation procedures for the seasonal differencing pa-
rameter D.

3 ESTIMATION PROCEDURES

In the literature of the stochastic SARFIMA processes, there exist several estimation
procedures for the seasonal differencing parameter D. In this section we summarize six
different procedures: one in the parametric and five in the semiparametric class.

In the semiparametric class we deal with the regression method using the periodogram
function with total number of regressors g(n) = nα, where n is the sample size e 0 < α < 1.
This estimator is proposed by Geweke and Porter-Hudak (1983) and it will be denoted
by GPH.

We also consider the method proposed by Reisen (1994), denoted here by SPR.
The regression estimator SPR is obtained by replacing the periodogram function by
the smoothed periodogram function with Parzen lag window. Reisen (1994) shows that
SPR is obtained of the same form as the GPH with truncation point in the Parzen lag
window defined by ν = nβ , 0 < β < 1.

The regression estimator R, proposed by Robinson (1995), is a modified version of the
estimator GPH where the number of regressors g(n) starts from l > 1. The trimming
value l tends to infinity more slowly than g(n). The regression estimator SR is obtained
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similarly to the R method, where now the spectral density function is estimated by its
smoothed version with Parzen lag window (see Robinson, 1995).

The GPHTa method, also used in the works by Hurvich and Ray (1995), and Velasco
(1999) is the fifth semiparametric approach considered here. In this method the modified
periodogram function is given by

I(wj) =
1

n−1∑

t=0

h(t)2

∣∣∣∣∣

n−1∑

t=0

h(t)Xte
−iwj t

∣∣∣∣∣

2

,

where the tapered data is obtained from the cosine-bell function h(t)= 1
2

[
1− cos

(
2π(t+0.5)

n

)]
.

The estimator is then obtained similarly to the GPH method.
The parametric approximated maximum likelihood estimator, proposed by Whittle

(1953), involves the function

Q(η) =

∫ π

−π

I(w)

fX(w; η)
dw,

where fX(· ; η) is the spectral density function of a SARFIMA(0, D, 0)s process and η
denotes the vector of unknown parameters. The W estimator is the value of η which
minimizes the function Q(·). Since σ2

ε is setting equal to 1.0, in this case the vector η is
given only by the parameter D. More details of this estimator can be found in Whittle
(1953) and Fox and Taqqu (1986).

4 FORECASTING ANALYSIS

Let {Xt}t∈Z be a SARFIMA(0, D, 0)s process with D ∈ (−0.5, 0.5), given by the
expression (2.2). Suppose one wants to forecast the value Xt+h for h-step ahead. The
minimum mean squared error forecasting value is given by

X̂t(h) ≡ E (Xt+h |Xℓ , ℓ 6 t). (4.1)

It minimizes the mean squared error of forecasting E(Xt+h −X̂t(h)). In this case, the
forecasting error is given by

et(h) = Xt+h − X̂t(h). (4.2)

To calculate the forecasting values one uses the following facts

(a) E(Xt+h|Xℓ , ℓ 6 t) =

{
Xt+h, if h 6 0,

X̂t(h), if h > 0,

(b) E(εt+h|Xℓ , ℓ 6 t) =

{
εt+h, if h 6 0,
0, if h > 0.

Therefore, to calculate the forecasting values one

(a) substitutes the past expectations (h 6 0) for known values, Xt+h and εt+h;

(b) substitutes the future expectations (h > 0) for forecasting values X̂t(h) and 0.

The following theorem presents some results for forecasting a future value of a SAR-
FIMA(0, D, 0)s process, given by the expression (2.2).

Theorem 4.1: Let {Xt}t∈Z be a SARFIMA(0, D, 0)s process, with zero mean and sea-
sonality s ∈ N, given in expression (2.2). Consider D > −0.5. Then, for all h ∈ N,
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(i) the minimum mean squared error forecasting value is given by

X̂n(h) = −
∑

k>1

πk X̂n(h− sk), (4.3)

where πk is given in expression (2.3);

(ii) the forecasting error is given by en(h) =

⌈h
s ⌉−1∑

k=0

ψk εn+h−sk, where ψk is given by (2.4)

and ⌈x⌉ is the smallest integer greater or equal to x;

(iii) the theoretical and sample variances of the forecast error are given, respectively, by

V ar(en(h)) = σ2
ε

⌈h
s ⌉−1∑

k=0

ψ2
k, and V̂ ar(en(h)) = σ̂2

ε

⌈h
s ⌉−1∑

k=0

ψ̂2
k,

where ψ̂k is given by (2.4) when D is replaced by one of its estimated value, through
some of the estimation procedures proposed in Section 3;

(iv) the bias and the percentage bias to estimate the theoretical variance of the forecasting
error are given by

bias(h) = V̂ ar(en(h)) − V ar(en(h))
and

perbias(h) =
|V̂ ar(en(h)) − V ar(en(h))|

V ar(en(h))
× 100 %;

(v) the mean squared error of forecasting is given by msefn =
1

h

h∑

k=1

(en(k))2.

(vi) Moreover, if the process {εt}t∈Z is such that εt ∼ N (0, σ2
ε), for any t ∈ Z, then the

100γ% confidence interval for Xn+h is given by

X̂n(h) − zγ
2
σ̂ε




⌈h

s ⌉−1∑

k=0

ψ̂2
k





1
2

6 Xn+h 6 X̂n(h) + zγ
2
σ̂ε




⌈h

s ⌉−1∑

k=0

ψ̂2
k





1
2

,

where z γ
2

is the value such that P(Z > zγ
2
) = γ

2 , with Z ∼ N (0, 1), and ψ̂k is given

by the above (iii) item.

Proof:

(i) From Theorem 2.1 items (i) and (ii), a SARFIMA(0, D, 0)s process can be written
as an infinite autoregressive, and infinite moving-average representation. Rewriting
these infinite representations for lag t+ h one has

εt+h =
∑

k>0

πk Xt+h−sk, (4.4)

Xt+h =
∑

k>0

ψk εt+h−sk, (4.5)

where πk and ψk are given in the equations (2.3) and (2.4). Since we are interested
in the h-step ahead forecasting, from equations (4.4) we have
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εt+h = Xt+h +
∑

k>1

πkXt+h−sk.

Considering t = n and applying the equality (4.1) in the above equation, and using
the conditional expectation properties, one has for all h > 1

X̂n(h) ≡ E(Xn+h |Xℓ , ℓ 6 n) = E(εn+h −
∑

k>1

πk Xn+h−sk|Xℓ , ℓ 6 n)

= E (εn+h |Xℓ , ℓ 6 n) −
∑

k>1

πk E(Xn+h−sk|Xℓ , ℓ 6 n)

= −
∑

k>1

πk X̂n(h− sk),

since E(εn+h|Xℓ , ℓ 6 n) = E(εn+h) = 0 and X̂n(j) = Xn+j , for j 6 0.

(ii) To obtain the forecasting error en(h) one considers the infinite moving-average rep-
resentation for SARFIMA(0, D, 0)s processes. Applying the equality (4.1) into the
equation (4.5) one obtains, for all h > 1,

X̂n(h) = E(Xn+h |Xℓ , ℓ 6 n) =
∑

k>0

ψk E(εn+h−sk|Xℓ , ℓ 6 n)

=
∑

k>0

ψk ε̂n(h− sk) =
∑

k>⌈h
s ⌉

ψk εn+h−sk,

since E(εn+h−sk|Xℓ, ℓ 6 n) = E(εn+h−sk) = 0 because εn+h−sk is independent of
Xℓ, for ℓ 6 n, for all h > 1, and k ∈ {0, 1, · · · ,

⌈
h
s

⌉
−1}, where ε̂n(j) = 0, for

j > 1, ε̂n(j) = εn+j , for j 6 0, and ⌈x⌉ is the smallest integer greater or equal to x.
Therefore, the forecasting error at the origin n for h > 1 steps ahead, is given by

en(h) = Xn+h − X̂n(h) =
∑

k>0

ψkεn+h−sk −
∞∑

k=⌈h
s ⌉

ψkεn+h−sk =

⌈h
s ⌉−1∑

k=0

ψk εn+h−sk.

(iii) The theoretical variance of the forecasting error is given by

V ar(en(h))=V ar




⌈h

s ⌉−1∑

k=0

ψk εn+h−sk



=

⌈h
s ⌉−1∑

k=0

ψ2
kV ar(εn+h−sk) = σ2

ε

⌈h
s ⌉−1∑

k=0

ψ2
k.

To obtain the theoretical variance of the forecasting error, denoted by V ar(en(h)),
one assumes that all parameters in the model are known. In practical situations
one uses the estimated model for forecasting. In this case, the sample variance of
the forecasting error, denoted by V̂ ar(en(h)), is obtained by replacing σ2

ε , and ψk,
respectively, for their estimators σ̂2

ε , and ψ̂k. That is,

V̂ ar(en(h)) = σ̂2
ε

⌈h
s ⌉−1∑

k=0

ψ̂2
k, for all h > 1,

where ψ̂k is given by (2.4) when D is replaced by one of its estimated value.
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(iv) The biasn(h) and perbiasn(h) follow immediately from item (iii). The perbiasn(h)
determines the percentage bias due to the estimation of the theoretical variance of
the forecasting h-step ahead.

(v) the mean squared error of forecasting at the origin n, denoted by msefn, is obtained
through the arithmetic average of the h forecasting squared error. That is,

msefn =
1

h

h∑

k=1

(en(k))2 =
1

h

h∑

k=1




⌈h

s ⌉−1∑

ℓ=0

ψℓ εn+h−sℓ





2

.

(vi) From the additional hypothesis that εt ∼ N (0, σ2
ε), for any t ∈ Z, then the

conditional distribution of Xn+h given Xℓ, for ℓ 6 n, is N (X̂n(h), V ar(en(h))).
Hence, the confidence interval for Xn+h follows immediately, replacing V ar(en(h))
by V̂ ar(en(h)).

5 SIMULATION RESULTS

In this section we analyze the behavior of the estimators, presented in Section 3. The
processes {Xt}t∈Z in equation (2.2) were generated as suggested by Hosking (1984), when
{εt}t∈Z is a Gaussian white noise process with zero mean, and variance σ2

ε = 1.0. The
generating method proposed by Hosking (1984) uses the Durbin-Levinson’s algorithm
that relates the partial autocorrelation and the autocorrelation functions. In Brietzke et
al. (2005) the Durbin-Levinson’s algorithm recurrent expression was fully calculated for
these processes. This closed formula is based on some properties of the hypergeometric
functions and it allows to obtain the partial autocorrelation function of order k for any
SARFIMA(0, D, 0)s process. The innovation process {εt}t∈Z was generated using the
RNNOR subroutine of the IMSL library. The mean µ of the process {Xt}t∈Z was assumed
to be zero.

The estimation results were obtained for time series with small and large sample sizes,
i.e., for n = 300, and 1, 000 respectively, and in both cases the estimators are the average
of 500 replications. This number of replications is already good enough because of the
ergodicity of the process {Xt}t∈Z (see Remark (5) after Theorem 2.1) but we also have
results when 1,000 replications were used. These results are available upon request, and
they did not show a significant improvement for the parameter estimations.

We have considered several values for D in the range (−0.5, 0.5), i.e., antipersistent
processes (D < 0.0), and persistent or long memory processes (D > 0.0), and also several
values for the seasonality period (s > 2). However, we report here only the results for
D = 0.2, 0.4, 0.45, and s = 3, 6, 12 since the pattern is similar for the other cases, and
they are available upon request.

For the semiparametric estimators we consider three different methods to choose the
total number of regressors g(n) = n0.55. They are explained below:

• Method 1: The total number of regressors g(n) is divided among all seasonal fre-
quencies for each value of s. For instance, when s = 2, the number of regressors g(n)
is considered only once in its total value; when s = 12 the number of regressors g(n) is
divided into six equal parts.

• Method 2: The total number of regressors g(n) is considered only at the first seasonal
frequency, independently of the s value.
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• Method 3: The total number of regressors g(n) is considered in the regression range
at each seasonal frequency.

The truncation point in the Parzen lag window, for the SPR and SR methods, is
ν = nβ, with β = 0.9 (see Reisen, 1994 for a discussion on the β value).

All tables include the mean estimated value of the parameter D, depending on the
estimation procedure used, and its mean squared error value (mse). The estimator given
by a number equal to 1, 2 or 3 in parenthesis means its mean estimated value considering
one of the methods, respectively 1, 2 or 3, for the choice of regressor’s number.

Table 5.1: Results for the SARFIMA(0, D, 0)s model when D ∈ {0.2, 0.4, 0.45},
n ∈ {300, 1000} and s = 3.

D = 0.2
n = 300 n = 1, 000

Estimator Method 1 Method 2 Method 3 Method 1 Method 2 Method 3

GPH 0.2087 0.1989 0.1989 0.2040 0.1944 0.1944
mse 0.0639 0.0256 0.0256 0.0300 0.0120 0.0120
SPR 0.1444 0.1618 0.1618 0.1655 0.1764 0.1764
mse 0.0432 0.0193 0.0193 0.0168 0.0082 0.0082

R 0.2108 0.1964 0.1964 0.2099 0.1952 0.1952
mse 0.1155 0.0360 0.0360 0.0422 0.0149 0.0149
SR 0.2030 0.1919 0.1919 0.2043 0.1967 0.1967
mse 0.0573 0.0219 0.0219 0.0200 0.0089 0.0089

GPHTa 0.1900 0.1938 0.1982 0.1626 0.2068 0.1815
mse 0.0610 0.0610 0.0273 0.0129 0.0129 0.0065
W 0.1421 0.1816

mse 0.0132 0.0026

D = 0.4
n = 300 n = 1, 000

Estimator Method 1 Method 2 Method 3 Method 1 Method 2 Method 3

GPH 0.4122 0.4110 0.4110 0.4134 0.4028 0.4028
mse 0.0564 0.0213 0.0213 0.0280 0.0123 0.0123
SPR 0.4231 0.4205 0.4205 0.4070 0.4039 0.4039
mse 0.0290 0.0135 0.0135 0.0168 0.0085 0.0085

R 0.4009 0.4060 0.4060 0.4179 0.4027 0.4027
mse 0.1117 0.0337 0.0337 0.0463 0.0168 0.0168
SR 0.4524 0.4323 0.4323 0.4343 0.4159 0.4159
mse 0.0517 0.0199 0.0199 0.0246 0.0105 0.0105

GPHTa 0.4352 0.4156 0.4321 0.4136 0.4032 0.4095
mse 0.0562 0.0562 0.0264 0.0102 0.0102 0.0062
W 0.3436 0.3832

mse 0.0106 0.0026

D = 0.45
n = 300 n = 1, 000

Estimator Method 1 Method 2 Method 3 Method 1 Method 2 Method 3

GPH 0.4443 0.4444 0.4444 0.4745 0.4636 0.4636
mse 0.0593 0.0209 0.0209 0.0266 0.0103 0.0103
SPR 0.5713 0.5330 0.5330 0.5537 0.5157 0.5157
mse 0.0463 0.0202 0.0202 0.0259 0.0115 0.0115

R 0.4326 0.4395 0.4395 0.4684 0.4586 0.4586
mse 0.1101 0.0320 0.0320 0.0404 0.0138 0.0138
SR 0.5562 0.5148 0.5148 0.5494 0.5059 0.5059
mse 0.0558 0.0202 0.0202 0.0287 0.0111 0.0111

GPHTa 0.5090 0.4221 0.4758 0.5237 0.4384 0.4964
mse 0.0513 0.0513 0.0225 0.0152 0.0152 0.0073
W 0.3753 0.4317

mse 0.0115 0.0021

Tables 5.1 to 5.3 present the estimation results for the SARFIMA(0, D, 0)s processes
when s ∈ {3, 6, 12}, and α = 0.55. Similar results when α = 0.65 are available upon
request. One observes that the mean squared error values for the estimates of D ∈
(−0.5, 0.5) in SARFIMA(0, D, 0)s processes, with s ∈ {3, 6, 12}, and α = 0.55, decrease
when the sample size increases. For the GPH, SPR, R, SR, and GPHTa estimators, the
mean squared error value decreases whatever is the method considered for determining
the total number of regressors.

For small seasonal period (for instance, when s = 3), the estimator W has the smallest
mean squared error value. Nevertheless, the mean squared error value increases whenever
the seasonality s increases (for instance, when s ∈ {6, 12}), since its bias also increases.

Table 5.3 shows that the W estimator needs larger sample size when the seasonal
period increases, in order to achieve the maximum value of the likelihood function Ln(·).
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When s = 6, n = 300, and D ∈ {0.2, 0.4}, SPR(2), and SPR(3) have both the
smallest mean squared error value. However, when D = 0.45, GPH(2), and GPH(3) are
better in the sense of small mean squared error value for this size of n. When n = 1, 000,
and D ∈ {0.2, 0.45} the W estimator is the best one. When D = 0.4, GPHTa(3) is
outperformed by the others in this sample size case.

Table 5.2: Results for the SARFIMA(0, D, 0)s model when D ∈ {0.2, 0.4, 0.45},
n ∈ {300, 1000} and s = 6.

D = 0.2
n = 300 n = 1, 000

Estimator Method 1 Method 2 Method 3 Method 1 Method 2 Method 3

GPH 0.1868 0.1953 0.1953 0.2266 0.2070 0.2070
mse 0.0884 0.0280 0.0280 0.0483 0.0116 0.0116
SPR 0.1164 0.1644 0.1644 0.1657 0.1851 0.1851
mse 0.0535 0.0219 0.0219 0.0289 0.0080 0.0080

R 0.2271 0.2099 0.2099 0.2250 0.2032 0.2032
mse 0.2129 0.0486 0.0486 0.0804 0.0152 0.0152
SR 0.2043 0.2038 0.2038 0.2173 0.2041 0.2041
mse 0.0865 0.0313 0.0313 0.0418 0.0094 0.0094

GPHTa 0.2130 0.2173 0.2225 0.1680 0.1998 0.1826
mse 0.0819 0.0819 0.0526 0.0121 0.0121 0.0056
W 0.0733 0.1614

mse 0.0396 0.0062

D = 0.4
n = 300 n = 1, 000

Estimator Method 1 Method 2 Method 3 Method 1 Method 2 Method 3

GPH 0.4011 0.3878 0.3878 0.4002 0.4048 0.4048
mse 0.0920 0.0218 0.0218 0.0357 0.0108 0.0108
SPR 0.4513 0.4280 0.4280 0.4213 0.4162 0.4162
mse 0.0369 0.0118 0.0118 0.0194 0.0064 0.0064

R 0.3848 0.3796 0.3796 0.3946 0.4038 0.4038
mse 0.2111 0.0356 0.0356 0.0624 0.0126 0.0126
SR 0.4703 0.4264 0.4264 0.4422 0.4210 0.4210
mse 0.0835 0.0199 0.0199 0.0341 0.0085 0.0085

GPHTa 0.4143 0.4303 0.4222 0.4316 0.4031 0.4178
mse 0.0649 0.0649 0.0360 0.0091 0.0091 0.0040
W 0.2542 0.3599

mse 0.0412 0.0060

D = 0.45
n = 300 n = 1, 000

Estimator Method 1 Method 2 Method 3 Method 1 Method 2 Method 3

GPH 0.4281 0.4177 0.4177 0.4860 0.4532 0.4532
mse 0.1021 0.0220 0.0220 0.0382 0.0094 0.0094
SPR 0.6891 0.5788 0.5788 0.6310 0.5329 0.5329
mse 0.0856 0.0263 0.0263 0.0497 0.0120 0.0120

R 0.4003 0.4064 0.4064 0.4728 0.4431 0.4431
mse 0.2476 0.0390 0.0390 0.0645 0.0127 0.0127
SR 0.6536 0.5343 0.5343 0.6172 0.5102 0.5102
mse 0.1045 0.0224 0.0224 0.0542 0.0099 0.0099

GPHTa 0.5012 0.5091 0.5063 0.5539 0.4332 0.4992
mse 0.0590 0.0590 0.0327 0.0172 0.0172 0.0057
W 0.2865 0.4067

mse 0.0448 0.0052

For the case when s = 12, the best estimator in the smallest mean squared error sense
is GPHTa(3) except when n = 1, 000, and D = 0.45, where GPH(2), and GPH(3)
outperform the tapering data estimator.

After we estimate the seasonal fractionally differencing parameterD, in order to obtain
the h-step ahead forecasting one needs to proceed as follows. From Theorem 4.1, item
(i), one needs to truncate the expression for the minimum mean squared error forecasting
value, that is,

X̂n(h) = −
k∑

j=1

π̂j X̂n(h− sj) = −
k∑

j=1

π̂j X̂n+h−sj , (5.1)

where k =
⌊

n+h−1
s

⌋
, and π̂j is given by (2.3) when D is replaced by one of its estimated

value, through some of the estimation procedures proposed in Section 3.
The forecasting subroutine also includes the forecasting error, the theoretical, and

sample variances for the error, the bias and percentage bias obtained at step h when one
estimates the theoretical variance h-step ahead, and the mean squared error of forecasting
at step h (see Theorem 4.1).
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Table 5.3: Results for the SARFIMA(0, D, 0)s model when D ∈ {0.2, 0.4, 0.45},
n ∈ {300, 1000} and s = 12.

D = 0.2
n = 300 n = 1, 000

Estimator Method 1 Method 2 Method 3 Method 1 Method 2 Method 3

GPH 0.1914 0.1831 0.1831 0.2111 0.2109 0.2109
mse 0.2563 0.0636 0.0636 0.0989 0.0143 0.0143
SPR 0.0169 0.1427 0.1427 0.1009 0.1802 0.1802
mse 0.1075 0.0512 0.0512 0.0625 0.0102 0.0102

R 0.2147 0.1843 0.1843 0.1844 0.2077 0.2077
mse 1.4583 0.1375 0.1375 0.2493 0.0194 0.0194
SR 0.1281 0.1932 0.1932 0.1576 0.2018 0.2018
mse 0.2005 0.0809 0.0809 0.1006 0.0125 0.0125

GPHTa 0.1796 0.1878 0.1433 0.1428 0.2009 0.1643
mse 0.2270 0.2270 0.0246 0.0217 0.0217 0.0084
W -0.0740 0.1305

mse 0.1248 0.0147

D = 0.4
n = 300 n = 1, 000

Estimator Method 1 Method 2 Method 3 Method 1 Method 2 Method 3

GPH 0.3787 0.3854 0.3854 0.4166 0.4049 0.4049
mse 0.2543 0.0565 0.0565 0.0972 0.0125 0.0125
SPR 0.4751 0.4710 0.4710 0.4600 0.4264 0.4264
mse 0.0417 0.0314 0.0314 0.0328 0.0077 0.0077

R 0.3212 0.3822 0.3822 0.4223 0.4032 0.4032
mse 1.2589 0.1270 0.1270 0.2112 0.0175 0.0175
SR 0.5221 0.4761 0.4761 0.5058 0.4257 0.4257
mse 0.1455 0.0590 0.0590 0.0795 0.0113 0.0113

GPHTa 0.3982 0.4358 0.4343 0.4671 0.4295 0.4281
mse 0.1521 0.1521 0.0138 0.0156 0.0156 0.0055
W 0.1204 0.3247

mse 0.1213 0.0152

D = 0.45
n = 300 n = 1, 000

Estimator Method 1 Method 2 Method 3 Method 1 Method 2 Method 3

GPH 0.4615 0.4214 0.4214 0.4542 0.4415 0.4415
mse 0.2611 0.0591 0.0591 0.0925 0.0107 0.0107
SPR 0.8217 0.6796 0.6796 0.7083 0.5489 0.5489
mse 0.1632 0.0699 0.0699 0.0871 0.0147 0.0147

R 0.4810 0.4139 0.4139 0.4687 0.4413 0.4413
mse 1.4100 0.1253 0.1253 0.2333 0.0160 0.0160
SR 0.9084 0.6466 0.6466 0.7155 0.5200 0.5200
mse 0.3012 0.0758 0.0758 0.1206 0.0126 0.0126

GPHTa 0.5006 0.5500 0.5588 0.6006 0.5192 0.5287
mse 0.1383 0.1383 0.0202 0.0302 0.0302 0.0090
W 0.1513 0.3598

mse 0.1358 0.0152

These calculations were done for the total number of replicated time series of size n,
and after that the arithmetic average was calculated for each one of the h-steps. In this
work we are interested in 5-step ahead forecasting. Figures 5.1 to 5.3 present the msefn

when the seasonality s ∈ {3, 6, 12}, respectively, for n = 300 and 1, 000 and D = 0.2. Here
we consider only Methods 1 and 3 since the results when using Method 2 are similar
to Method 3. All three methods were considered only for the estimator GPHTa. We
again report here the results when α = 0.55 for all semiparametric estimators.

Figures 5.1 to 5.3 show the mean squared error value of forecasting at the origin n for
two different sample sizes n (n ∈ {300; 1, 000}) when D = 0.2, and s ∈ {3, 6, 12}. When
s = 12, since the need of more number of regressors is evident, we consider only the case
where n = 1, 000 (see Figure 5.3).

From these figures one observes that the sample forecasting error is close to zero, no
matter what horizon for the forecasting step-ahead one is using and for any estimation
procedure considered in Section 3. Since the theoretical variance for the forecasting error
was set equal to 1.0, we observe that the msefn should also be approximately equal to
1.0. We remark that the value of the mean squared error value of the forecasting, for any
estimation procedure, decreases when the sample size increases.
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Figure 5.1: The graphics (1a), (1b), and (1c) present the msefn of time series with
s = 3, n = 300, and D = 0.2. Graphics (2a), (2b), and (2c) present the
msefn of time series with s = 3, n = 1, 000, and D = 0.2.

Figures 5.1 to 5.3 also show that the msefn for all estimators considered are very
small except for the estimator R(1) where its msefn is superior to 1.0, and it increases
when the value of the seasonality increases. Again for the estimator R(1), the value of
the mean squared error of forecasting is the largest one, independently of the values of s,
n, and α.

We also remark here that the forecasting results have a great improvement when the
value of α increases, i.e., for large values of α, the forecasting error, and the mean squared
error of forecasting decrease. We do not report these results here but they are available
upon request.

We also consider different values of replications. In fact, when one considers 1, 000
replications instead of 500, the results for the msefn do not significantly change.
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Figure 5.2: The graphics (1a), (1b), and (1c) present the msefn of time series with
s = 6, n = 300, and D = 0.2. Graphics (2a), (2b), and (2c) present the
msefn of time series with s = 6, n = 1, 000, and D = 0.2.

Figure 5.3: The graphics (a) and (b) present the msefn of time series with s = 12,
n = 1, 000, and D = 0.2.

6 APPLICATIONS

In this section we analyze an observed time series data, and also a simulated seasonal
fractionally integrated ARMA time series. Our goal is to analyze these two time series in
order to detect whether seasonal long memory is present in the data.
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6.1 Nile River Monthly Flows Data

We consider the time series Nile River monthly flows at Aswan kindly provided by A.
Montanari (for the graphic of the data see Montanari et al., 2000). It consists of 1,466 ob-
servations, from August of 1872 to September of 1994, and it is approximately a Gaussian
time series. Figures 6.1 (a) and (b) present, respectively its sample autocorrelation, and
periodogram functions.

Figures 6.1 (a), and (b) show long memory features for this time series, since its sam-
ple autocorrelation has a slowly hyperbolic decay, and its periodogram function exhibits
periodic pattern caused by an annual cycle. Figure 6.1 (b) shows the peaks on the Fourier
frequencies wj , where j = [n/s] i = [1, 466/12] i = 122i, for i = 0, 1, · · · , 6. These features
are also reported in Montanari et al. (2000).

(a) (b)

Figure 6.1: The graphs are related to the time series Nile River Monthly Flows data at
Aswan: (a) sample autocorrelation function and (b) periodogram function.

The best model fitted for the original data was a SARFIMA(p, d, q)× (P,D,Q)s with
p = q = P = Q = 1, d = 0, D = W and s = 12, where the long memory parameter was
estimated by the maximum likelihood method proposed by Fox and Taqqu (1986) (see
Section 3), with W = 0.1980.

Remark: Even though the best model fitted for the data was a SARFIMA(p, d, q) ×
(P,D,Q)s process, we analised the Nile River monthly flows since it is difficult to find a
time series that is modelled by a SARFIMA(0, D, 0)s process.

Table 6.1: Estimated Values of D for: (a) Nile River Monthly Flows Data and
(b) Simulated Time Series Data.

SARFIMA(0, D, 0)s with s = 12 and α = 0.55
(a) (b)

Nile River Monthly Flows Data Simulated Time Series Data
Estimator Method 1 Method 2 Method 3 Method 1 Method 2 Method 3

GPH 0.2549 0.2399 0.2491 0.4443 0.4219 0.4251
SPR 0.6281 0.3126 0.3234 0.4149 0.4216 0.3911

R 0.2154 0.2381 0.2472 0.4511 0.4398 0.4261
SR 0.5385 0.3046 0.3140 0.4385 0.4071 0.4188

GPHTa 0.5625 0.4196 0.5714 0.4431 0.4185 0.4306
FT 0.1980 0.3834

Table 6.1 (a) gives the estimation results for this time series with seasonality s=12,
since Figures 6.1 (a) and (b) exhibits this periodic pattern. We consider all three methods
to perform the estimation procedures.

Table 6.2 gives the estimators and its standard deviation (denoted by Std. Dev.)
values for the parameters in the SARFIMA(p, d, q) × (P,D,Q)s model, that best fitted
the Nile River monthly flows data at Aswan.

The residual analysis was also performed for the fitted model and it indicates that the
errors are approximately Gaussian white noise.
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Table 6.2: Fitted Model for the Nile River Flows Data.

SARFIMA(p, d, q) × (P,D,Q)s

with p = q = P = Q = 1, D = W and s = 12

φ1 Φ1 D θ1 Θ1

Estimator 0.6147 0.9944 0.1980 -0.2238 0.9207
Std. Dev. 0.0291 0.0295 0.0011 0.0357 0.0145

6.2 Simulated Time Series Data

Since it is difficult to find a time series that is modelled by a pure SARFIMA(0, D, 0)s

process, we consider here a complete estimation, and the forecasting analysis for a simu-
lated seasonal fractionally integrated time series as in expression (2.2), when n = 1, 466,
D = 0.4, and s = 12.

Figures 6.2 (a), and (b) show the sample autocorrelation, and the periodogram func-
tions of this simulated time series. One observes, from these figures, that there exist long
memory characteristics in this time series. Analyzing the periodogram function we also
observe a periodic pattern with seasonality s = 12.

(a) (b)

Figure 6.2: The graphs are related to the simulated time series data: (a) sample autocor-
relation function and (b) periodogram function.

Figure 6.3: Confidence interval at 95% confidence level for the 5-step ahead forecasting
in the simulated time series data.

Table 6.1 (b) gives the estimators for the parameter D considering all three methods,
for a SARFIMA(0, D, 0)s with s = 12, that best fitted the simulated time series.
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The best estimator for the simulated time series is W = 0.3834 ≃ 0.4. In the semi-
parametric class, Method 1 always overestimates the parameter D while Method 3
gives the smallest estimated value for the first three procedures. Method 2 gives the
smallest estimated value only for SR and GPHTa. Observe that SPR(3) = 0.3911 is
also a very good estimator for D.

Figure 6.3 gives the confidence interval at 95% confidence level for the 5-step ahead
forecasting values based on all estimation procedures considered in Section 3 for the
simulated time series data.

7 CONCLUSIONS

In studying SARFIMA(0, D, 0)s processes we emphasize Theorems 2.2 and 4.1. The-
orem 2.2 presents the conditional expectation, and the conditional variance for that
process. This theorem is very important for generating any SARFIMA(0, D, 0)s process.
Theorem 4.1 gives some properties for forecasting the value Xn+h, when h > 1, in
SARFIMA(0, D, 0)s processes.

The performance of five semiparametric and one parametric procedures for estimat-
ing the seasonal fractionally differencing parameter D were investigated. In a SAR-
FIMA(0, D, 0)s model, when D ∈ (−0.5, 0.5), and s > 2 we observe that the estimation
of D can be affected when there exists seasonality present in the model. We also observe
that, for almost all cases considered here, the estimators overestimate the theoretical
variance.

We show here (see also Bisognin, 2003) that the maximum value of the likelihood
function Ln(·) is only achieved in large enough sample sizes whenever the seasonal period
increases. This is a drawback for the W estimator when large seasonal periods are present
in the data.

We observe that when the number of replications is doubled from 500 to 1, 000, the
results do not significantly improve. We also observe that when the value of α increases
(say, from 0.55 to 0.65), the mean squared error values decrease in almost all cases con-
sidered here. This was also reported in Lopes et al. (2004) for the case when s = 1,
where the authors suggest α ∈ {0.6, 0.7, 0.8}. The paper by Porter-Hudak (1990) sug-
gests α ∈ {0.62, 0.75} for the case when s = 12, and n = 352.

Among the different methods considered here for determining the total number of
regressors in the semiparametric class, Method 1, in general, overestimates the true
value of D. Methods 2, and 3 have better behaviour for the GPH, SPR, R, and SR
estimators, in the sense of small mean squared error value. While Method 3 determines
the best total number of regressors for the GPHTa estimator.

We also conclude that when the parameter D is getting close to the non-stationary
region (for instance, when D = 0.45), the estimators SPR, SR, GPHTa, and W have
larger bias compared to the GPH, and R estimators.

Observing the mean value of each estimator we conclude that the GPH procedure has
the tendency of overestimating the true parameter value, except for the case when s = 12,
n = 300, and D ∈ {0.2, 0.4}. The SPR procedure has the tendency of underestimating
the true parameter value except when s ∈ {6, 12}, and D = 0.4. Only Method 3
underestimates the true parameter value when n = 1, 000. The SPR estimator has
always the best performance in the sense of smaller mean squared error value. This was
already expected in comparison with ARFIMA models (when s = 1). We also observe
that the SPR estimation procedure is outperformed by the GPH only when s = 3 for
all three methods considered here and also always when D = 0.2. Generally, Method 2
provides smaller mean squared error values for the estimators while Method 3 provides
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the smallest one when one compares all three methods considered here. All estimators
improve as the sample size increases, as was expected.

When we performed a 5-step ahead forecasting analysis for this process, we observed
that the sample forecasting error is very close to zero and the estimators overestimate
the theoretical variance, independently of the estimation procedure considered here. The
estimator R(1) is the one with larger mean squared error of forecasting, and it increases
with the seasonality. However, the estimator W has the smallest mean squared error of
forecasting, and it remains almost the same no matter how large is the seasonal value.

If one relates the forecasting results with the α value, one observes that when it
increases, the results improve significantly, that is, for large values of α, the forecasting
error decreases, the sample variance of the forecasting error approaches to the theoretical
variance, and, consequently, the bias, and the percentage bias decrease. The mean squared
error of forecasting also decreases. This is also true when the sample size increases.

We applied the methodology to the Nile River monthly flows at Aswan, and observed
that a SARFIMA(p, d, q)×(P,D,Q)s model, with p = q = P = Q = 1, d = 0, D = 0.1980
and s = 12, fitted well the original data.

Since we did not find an observed time series modelled by a SARFIMA(0, D, 0)s

process, we consider a simulated seasonal fractionally integrated one to give a complete
estimation and forecasting analysis.

For future work we want to consider the performance of these estimation procedures,
and also the forecasting analysis when small and large short-run parameters are included
in the process.
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