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Abstract 

 
This paper extends the evolution equation of Patton (2006) for the time 

variation of the copula parameters by specifying an autoregressive fractionally 

integrated term.  For any copula parameter there is a suitable one-to-one 

transformation so that the maximum likelihood estimation method may be 

employed.  It is suggested an exploratory tool based on the copula data cross-

products for detecting the presence of long range dependence on the copula 

level of real data.   We simulate from copula models possessing long range 

dependence and work out two examples using real data.  Modeling long range 

dependence on the level of dynamic copulas has the potential for providing 

improved forecasts and are useful for financial and economic applications.   
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1 – Introduction : Condition dependence 

 

The study of dependence in the context of time series is an exciting 

area of research which has continuously posed new challenges for 

econometricians, statisticians and probabilists during the last century. Taking 

care of dependencies becomes important in order to extend standard models 

towards more efficient ones.  

In the  univariate setting, modeling short and long range serial  

dependence in the first and second moments  of a time series may be 

successfully accomplished through  ARIMA (Box and Jenkins, 1976),  

ARFIMA (Granger and Joyeux (1980), Hosking (1981)), GARCH (Engle 

(1982), Bollerslev  (1986)), FIGARCH (Baillie, Bollerslev and Mikkelsen 

(1996), Bollerslev and Mikkelsen (1996)), and FISV (Breidt et al.,  1998) 

models.  All these processes rely on the behavior of the autocovariance 

function and have their statistical properties well established. In addition, 

computer packages are avaliable for practitioners. 

In the multivariate setting just a few complex conditional models exist 

to take care of the dynamics in the moments of the marginal distributions as 

well as in the covariance matrix.   The most popular are the multivariate 

GARCH models combined with a conditional specification for the mean.  

However they suffer from the so called curse of dimensionality, and are hard 

to estimate in large dimensions.  Lately, the approach via dynamic copulas 

and pair-copulas has gained increasing popularity. 

Attempts to model the time-varying behavior of copula dependence 

parameters are only a few (Patton (2006), Rockinger and Jondeau (2005), van 

den Goorbergh,  Genest, and Werker (2005), Fantazzini (2007),  Pelletier 

(2006),  Hafner and Reznikova (2009), Garcia and Tsafack (2008), and 

Chollete et al. (2008) among others).    Recently, this topic had attracted the 

attention of researchers in the context of Markov processes (Ibragimov 

(2005), Beare (2010),   Mendes and  Aiube (2010)).   However, in all these 

works just short memory was considered, and it is just natural to assume that 

long memory may also exist on the level of copulas.   Modeling long range 

dependence on the level of dynamic copulas has the potential for providing 

improved forecasts   and are useful for financial and economic applications.    

To the best of our knowledge, no model has been proposed so far 

modeling long range dependence in the dynamic evolution of copula 

parameters.  Accordingly, in this paper we formally define long range 

dependence on the level of copulas, and   extend the evolution equation of 

Patton (2006) by specifying an autoregressive fractionally integrated term for 

the time variation of the copula parameters.  It is suggested an exploratory 



 

 

tool based on the copula data cross-products for detecting the presence of long 

range dependence on the copula level of real data.   We simulate from copula 

models possessing long range dependence and empirically show that long 

memory may exist in the sequence of copula dependence parameters, 

independently of the dynamics existing in the marginal processes. Full 

maximum likelihood estimation may be a difficult computationally expensive 

problem, and we leave this as a challenge for future research. 

The remaining of the paper is as follows.   In Section 2 we review the 

definitions of copulas, of dynamic copulas, of long memory processes, define 

long memory on the level of copulas,  and discuss  estimation and exploratory 

tools for detecting long memory on the level of copulas.  In Section 3 we 

work out two examples with real data on log-returns and realized volatilities. 

The analyzes show that the   dependence parameter indexing the copula 

associated with the standardized residuals from the ARFIMA and   FIGARCH 

models fitted to the margins may still change with time and show a high 

degree of persistence   coherent with the presence of long range dependence, 

which might have been generated by the aggregation of common micro units 

when composing the prices series. We summarize our results in Section 4. 

 

 

2 - Dynamic copulas and long memory 

 

2.1 Copulas in finance 
In the last decade copulas have gained popularity in the areas of 

finance and insurance because of the flexibility they offer when dealing with 

multivariate problems.  Curiously, the most important theorem in copula 

theory dates back to the fifties (Sklar, 1959).  It states that any multivariate 

distribution can be expressed by its copula function evaluated at its marginal 

distribution functions.    

Consider a continuous random vector (X1, X2) with cumulative 

distribution function (cdf) F and marginal cdfs F1 and F2. Sklar's theorem 

ensures that there exists a unique copula C: [0, 1]
2
 → [0, 1] such that  
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Let ���, ��  represent the joint density, and, ��, � � 1,2,  be the 

marginal densities. When C is absolutely continuous, taking partial 

derivatives of (1) one obtains 

 



 

 

���, ��  �   ���
���, ������ �
��� �����                            (2) 

 

Where c represents the copula density. This expression will prove 

useful later for parameter estimation. (2) allows for tailored  dynamic 

marginal modeling considering  all   characteristics of each ��, including the  

mean, standard deviation, skewness, kurtosis and any type of  short and long 

memory serial dependence, plus a search for the best fit for the dependence 

structure   through a large number of copula families that may be considered. 

This results in flexible multivariate distributions with any choice of  margin 

distributions. An important example is the family of the meta-elliptical 

distributions (Fang, Fang and Kotz, 2002, 2005) which, unlike the family of 

elliptical distributions, do not impose any constraints on their margins. This 

flexibility have motivated applications of copulas in finance.   They  include  

asset allocation, credit scoring, default risk modeling, derivative pricing, and 

risk management, see Bouyè, Durrleman, Bikeghbali, Riboulet, and Roncalli 

(2000), Li (2000), Costinot, et al. (2000), McNeil, Frey e Embrechts (2005), 

Cherubini and Luciano (2002), Hu (2002), Embrechts, Lindskog, and McNeil 

(2003),  Cherubini, Luciano, and Vecchiato (2004), among many others. 

Copulas can be employed in probability theory to characterize other 

types of associations (Nelsen (1999), Joe (1997)). The copula based 

dependence measures (for example, Kendall's �,  Spearman's ��, and the tail 

dependence coefficients)   are invariant to any increasing transformation of 

individual series.  

 

2.2 Copulas with time varying parameters 
Most of the above mentioned applications deal with unconditional 

copulas. In practice, conditional distributions with respect to past observations 

are more powerful when describing the underlying model.  This is also true 

for copulas, which may efficiently fit static and dynamic forms of 

dependence.   Patton (2006) extended Sklar's theorem and    introduced the 

conditional copula in the bivariate case.   

Consider a stationary continuous process ��
,� , ��,� ���� . Let, 

�� , �
,�,  and ��,� represent their joint and marginal cdfs at time t.   In the case 

the copula of ��
,� , ��,� � is independent of t, the dependence structure  of  

��
 , ���  is   given by its constant copula C  (see (1)). In the time series 

context, the Sklar's theorem (Sklar, 1959) may be extended: 
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where ��  is a copula at times t, and  
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represents the �-algebra generated by all past joint information up to 

time t provided by  the sample  ��
,
, ��,
�,… , ��
,# , ��,#�.  The same 

conditioning set for each marginal and for the conditional copula guarantees 

that we have indeed a copula (not a pseudo-copula), and each transformed 

variable (standard uniform) is independent of the information in the 

conditioning set of its marginal distribution. Theoretical details may be found 

in Fermanian and Wegkamp (2004), where the concept of pseudo-copulas was 

introduced and previous attempts in the direction of modeling time varying 

dependence structures using copulas were unified. As specified, the common 

�-algebra may take into account several lagged values.   Therefore there is a 

sequence of conditional copula functions,   which   depend on some index t 

and on the past values $��
,� 
  , ��,� 
 �, . . . % of the random vector. 

Previous works on dynamic copula modeling include Rockinger and 

Jondeau (2001), where a parametric copula conditional to the position of past 

joint observations in the unit square is combined with previous marginal 

estimation of GARCH-type models with time varying skewness and kurtosis. 

Van den  Goorbergh, Genest and Werker (2005) studied the behavior of 

bivariate option prices when the dependence structure of the underlying 

financial assets follows a dynamic copula model, using rolling windows to 

estimate the copula parameter.  In addition, trends were detected as functions 

of past volatilities.   Semiparametric dynamic copula modeling strategy was 

proposed by Hafner and Reznikova (2009) where the copula parameter was 

considered as being a smooth function of time. A similar idea was proposed 

by   Mendes and Melo (2010), where the full dynamic dependence structure 

existing among assets was assessed by applying local maximum likelihood 

estimation to copula parameters using the estimated GARCH volatilities as 

regressors.  The regime switching copula of Pelletier (2006), Garcia and 

Tsafack (2008), and Chollete et al. (2008) allows for two regimes, 

characterized by different levels of dependence. 

Patton (2001, 2006) specified the time variation of the copula 

parameters by defining an evolution equation based on lagged past 

observations (forcing variables) and an autoregressive term.  This evolution 

equation may be written as follows. Let �� be some parametric copula family 

parameterized by &�, and let Θ represent the parameter space.  Then 



 

 

&� � Λ �) * +Λ 
�&� 
� *  , 1- .  
/01

/0

� 2� / 34� / �� 

 

(4) 

where Λ 5  6 7  Θ  is an strictly increasing function   designed to 

keep the parameter estimates within their boundaries, and Λ 
 represents its 

inverse.   For example, when &� is the linear correlation coefficient 8� or the 

Kendall's �, Λ may be  the modified logistic transformation 

 

Λ ��� �  1 3 9
3�

1 * 93�  
 

and Λ 
 �8� � log =
>?
 ?@. In the case &� is the (upper or lower) tail dependence 

coefficient,  the logistic transformation Λ ��� � �1 * 93��31  may be used. 

A similar evolution equation  was used in Dias and Embrechts (2004), 

Cherubini, Luciano, and Vecchiato (2004), and  Fantazzini (2007). In all these 

papers some member of the large family of  GARCH models was used to 

model the margins and some elliptical copula with  time  varying parameters 

was taken to model  the dependence structure. Estimates were obtained by 

maximizing the log-likelihood, which allows for constructing a model 

selection criterion. 

Other references  in time-varying copulas modeling in finance include  

Hafner and Manner (2008)  where the parameters vary according to an 

independent latent random process and are estimated using efficient 

importance sampling.  Giacomini, Härdle, Spokoiny (2009) where  adaptive 

estimation is based on the assumption of local homogeneity for modelling the 

distribution of  returns. 

Note that all above cited papers just considered short memory on the 

copula level.  

 

2.3 Long range dependence 

Models for  long memory in mean were first introduced in the  

univariate setting  by Granger and Joyeux (1980) and Hosking (1981), 

following the seminal work of Hurst (1951), and in econometrics by Granger 

(1980). The important characteristic of an Autoregressive Fractionally 

Integrated  Moving Average  (ARFIMA) process is its autocorrelation 

function (acf) decay rate. In an ARFIMA process, the  acf exhibits a 

hyperbolic decay rate, differently from an ARMA process  which presents a 

geometric decay rate. Long memory in mean has been observed in data from 



 

 

areas such as meteorology, astronomy, hydrology, and  economics, as 

reported in Beran (1994). 

There does not exist a unique definition of  long range dependence, 

and the  most commonly used  employ the standard autocovariance or 

autocorrelation functions  taking their slow decay to characterize long-

memory processes. Let  $��% #
�0
  be a weakly stationary process and let 

 AB � �CD��� , ��>B�  and    �B � �C88��� , ��>B� represent, respectively, its 

autocovariance and autocorrelation of lag E.  We say that  $��% #
�0
  exhibits 

long range dependence if    ∑ |AB|HB0 H �  ∞.               
 If   $��% #

�0
  follows an    ARFIMA (p, d, q) process, then  

 

  J �K��1 3 K�L�� �  &�K�M�                                   (6) 

 

where B is the backshift operator, that is,  KB�� � �� B,J �K� � 1 3
 J
K 3N JOKP  and &�K� � 1 3 &
K 3N3 &QKQ  represent the ordinary 

autoregressive and moving average components; M�  is a white noise process 

with zero mean and unit variance.  When -0.5 < d < 0.5, the ARFIMA (p, d, 
q) process is stationary and has autocorrelation function of lag k,  as E 7  ∞,  

equal to 
� L�!
�L 
�!E�L 
 .  $��%  is covariance stationary for S T 1/2  and 

invertible for S V  31/2 .  The so called anti-persistence case, S T  0 , 

describes the behavior of overdifferenced series. Proper long range 

dependence occurrs when S V  0 and if  0 T  S T 0.5 the process presents 

long-memory behavior.  

Persistence and long memory are interesting features found when 

analyzing long-term patterns of rivers'  flows (Hurst, 1951), prices 

fluctuations, stocks' trading volumes, and so on.  It is an intermediate state 

between two well known situations, namely, the purely random sequence of 

variables (stationarity, d = 0), and the deterministic trend (unit root, d =1). 

The ARFIMA framework was naturally extended towards volatility 

models. The Fractionally Integrated Generalized Autoregressive 

Conditionally Heteroskedastic (FIGARCH) models were introduced by 

Baillie, Bollerslev and Mikkelsen (1996) and Bollerslev and Mikkelsen 

(1996), motivated by the fact that the acf of the squared, log-squared, or the 

absolute value series of an asset return decays slowly, even when the return 

series has no serial correlation.   Also aiming to model long memory in the 

second moment, Breidt et al. (1998) introduced the Fractionally Integrated 

Stochastic Volatility (FISV)  model. 



 

 

Models for heteroskedastic time series with long memory are of great 

interest in econometrics and finance, and empirical facts about asset returns 

have motivated the several extensions of GARCH type models (FIGARCH, 

FIEGARCH, TGARCH, SW-ARCH, LM-ARCH, among many others).  

Many applied works have detected the presence of long memory in the mean 

and in the  volatility of  risky assets, market indexes and exchange rates   (for 

example, Crato (1994), Saqdique and Silvapulle (2001), Lobato and Savin 

(1998)). 

 

 

2.4 Long range dependence on the copula level 
We now extend the ARFIMA framework  towards copula models.   

Let �Y  be a parametric copula with  & Z Θ . Consider a one-to-one 

transformation Λ 5  6 7  Θ. In order to model the dynamic behavior of &, it is 

supposed that the copula of ��
,� , ��,� �  is �Y[ , where &� �  Λ ����  and 

�
, … , �# are realizations of an ARFIMA model. 

In other words, to capture the long range time variation in the 

conditional copula we extend the Patton (2001) evolution equation (4) to:   

 

�1 3 K�L&� � Λ �) * +Λ 
��1 3 K�L&� 
� *  , 1- .  
/0\

/0
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(7) 

where �1 3 K�L   is the fractional difference operator, defined by a 

binomial series 
 

    �1 3 K�L � .]SE^
H

B0_
�3K�B � 1 3 SK 3 12  S�1 3 S��2 3 S�K

` 3 … 

 

(8) 

2.5 Estimation of  long memory  on the level of copulas 

Let �&�, a
,�, a�,�� represent the vector of all parameters indexing a 

bivariate distribution �� at time t, where  &� is the copula vector parameter, 

and a
,�, � � 1,2 represent the marginal  parameters.   The conditional joint 

density may be written as 

 
 

�	�
,� , ��,�; &� , a
,� , a�,���� � �� �c� , D�; &�|��� �
,� 	�
,�; a
,���� ��,� 	��,�; a�,�  ���  
 

(9) 

 



 

 

  where, at each time t,  ��  is the copula density function,   c� �
�
,� 	�
,�; a
,� ��� and  D� � ��,� 	��,�; a�,� ���, and  ��,� � 	��,�; a�,�  ��� 
is the conditional density of each marginal distribution, � � 1,2. We assume 

that the functional form of the copula remains fixed over the sample, although 

this could   be relaxed. 

The fully efficient maximum likelihood estimates of are obtained by 

maximizing (9). However, parametric estimation of bivariate data under the 

long-memory copula approach may be accomplished in two steps, the so 

called IFM method, see Joe (1997).  In the first step univariate marginal 

models are fitted and the estimated cdf    �d�,� , � � 1,2,  , are used to compute 

the probability integral transformed data.  In the second step the copula 

parameters are estimated.  As pointed out by a referee, under the true 

distribution, e� � �
,� 	�
,� is uniformly distributed on [0,1], but this may 

not be true  under the estimated marginal distribution, e� � �
,� f 	�
,�. When 

applying the IFM method (Joe, 1997, 2005) it is crucial that the estimated 

marginal distributions are indistinguishable from the true marginal 

distributions. Marginal fits should be carefully checked since a poor fit will 

result in probability integral transforms not being standard uniform or  i.i.d.. 

As a consequence, any copula model will be mis-specified.  Evaluation 

whether the transformed series are i.i.d. may be accomplished by visual 

assessment using the autocorrelation function.   Diebold et al. (1998) suggest 

that the autocorrelations should be computed and inspected for the first four 

moments.  Patton (2006) suggests to carry on a formal test by regressing each 

centered series (up to the fourth power) on their lagged values.  The 

hypothesis that the transformed series are standard uniform may be tested  via 

the Kolmogorov-Smirnov test.  

Assuming that the marginal distributions are known or have been 

accurately estimated, so  that   a sample  �	c�,D�", g � 1,… , h is available,   

and assuming  that the  copula parameters vary according to  some evolution 

equation similar to  (7), the copula parameters &�  may be obtained by 

numerically maximizing  the pseudo log-likelihood  function 

 

i�&�; 	c�,D�, … , �c# , D#� |��� �  ∑ log �� �c� , Dj ; &�  |���#�0
    (10) 

  

which will give (under weak regularity conditions)  consistent and 

efficient estimates whose covariance matrix is given by the inverse of the 

Fisher  information matrix. However, estimation may be numerically difficult 

and computationally very expensive, and needs to be evaluated with a 

truncated infinite sum in (8).  Some well known algorithms previously applied 



 

 

to other long-memory models, such as   the  Durbin-Levinson-Whittle 

sequences, see  Whittle (1963), Shaman (2008),  Shaman (2010),  and the 

pioneer work of Sowell (1992), may be considered here. 

 

2.6 Identification and simulation of long range dependence on the level of 

copulas 
We now describe a simulation experiment to illustrate how long 

memory on the level of copulas may be detected and estimated.  We do not 

implement the maximum likelihood method but instead we provide  a very 

simple and intuitive estimation procedure which could be good starting points 

when computing the   maximum likelihood estimates. 

We simulate   $�
,��,… , �#%    from an ARFIMA �0, S, 0�  process   

with S � 0.35, and obtain �8
,8�,… , 8#" �  $Λ��
�, Λ����, … , Λ��#�% where Λ 

is given by  (5). The transformed series may be considered a path of linear 

correlation coefficients. The simulated path {8#} is then used to simulate the 

copula data  $	c
,D
, 	c�,D�,… , �c#,D#�%    from a Gaussian copula where, 

at each time g, g � 1,2 … , h, the copula is indexed by 8�. The experiment is 

repeated 500 times
3
. 

We are looking for some proxy, a series obtained from the copula data 

which may be used to identify the presence of long memory on the copula 

level.  We inspect the following simulated series:    $cD% #
�0
  and     $c *

D% #
�0
. The  Lo's  modified rescaled adjusted range test,   R/S test (Lo, 1991)   

for  long range dependence was computed for these series and an estimate for 

d was computed according to the periodogram based Whittle's method (Taqqu 

et al., 1995).
4
 We found presence of long memory for the series {u v} in  

65.80 % of the 500 repetitions of the experiment, providing an  average d 

                                                           
3 A concern about this simulation experiment is that for each 8�,  just  one pair of values is 

generated to represent the copula at time t, and this is of course  a  source of large variability. 

There is no way to check if data generated reflects the true 8�. To overcome this problem we set 

T large, h � 10000.  We note that the large sample will  also  increase the power of the R/S 

test to be applied later on.  
4 The Hurst rescaled range (R/S) analysis was introduced in Mandelbrot and Walis(1969) and 

used in Mandelbrot (1971)  to detect LM in asset prices.  We applied the Lo's  modified 

rescaled adjusted range test (R/S test) (Lo, 1991),  and computed an   approximate maximum 

likelihood estimator, the  Whittle's  estimator, implemented in S-Plus  based on the algorithm of 

Haslett and Raftery (1989).  All the existing tests and estimators for long range dependence are 

very tricky to use, heavily dependent on arguments. To get around this problem in the 

simulation experiments we rejected the null only when it was rejected by the  R/S test and the 

Whittle estimator was statistically significant at the  5\% level. 

 



 

 

estimate of  0.123.  The tentative proxy $c * D%  was not able to indicate 

presence of long memory, being successful in only in 4% of the cases. As 

expected, both marginal series   $c% #
�0
  and $D% #

�0
  did not rejected the null 

of no long range dependence in 94.80% and 94.52% of the repetitions. Thus, 

long range dependence was detected only on the cross-products, and this long 

term behavior was not carried out to the marginal processes. 

Figure1 shows the acfs computed for the $�% #
�0
  ARFIMA series, for 

the transformed correlation coefficient path {8� }
#
�0
 , for the dependence 

proxies $cD% #
�0
 and $c * D% #

�0
, and for the marginal processes  $c% #
�0
 and  

$D% #
�0
. For this particular simulated data, the R/S statistics were   3.6853 (d = 

0.1253) and 2.1417, significant at the 1% and 5% levels, respectively for the 

$cD% and the $c * D%  series. 

 
Figure 1: The acfs of the simulated data: the ARFIMA series, the correlation 
coefficient path, the proxies, and the marginal processes. 

 

This simple experiment confirms that  long memory may exist only 

on the dependence level, while  the marginal processes possess just short 

memory or no temporal structure at all.  In the case  $�
,�, ��,�% do have short 

and/or long memory, they would be implied by their marginal data generating 
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processes, and not by the copula.   In summary, we have now a tool for 

detecting  long memory in copula parameters for real data
5
 

For real data analysis we suggest to estimate the time-varying copula 

parameters through the specification  of an evolution equation such as (7) for 

each copula parameter (or alternatively for a copula-based measure such as 

the tail dependence or the Kendall's � coefficients),  and the maximization of 

the  log-likelihood (10).  Note that this allows for each copula parameter to be 

driven by a different ARFIMA process.  Thus the degree of persistence may 

vary among dependence measures.  

However, for elliptical copulas for which the linear correlation 

coefficient is the canonical measure of dependence, we  propose to use the  

cross-product data $	c
,D
,… , �c#,D#�% as a proxy for identifying and 

estimating  long range dependence on the copula level using the following ad 
hoc procedure. Fit by maximum likelihood an ARFIMA (p,d,q) model (note 

we are allowing also for short memory) to the proxy data  �Λ 
�c�,D��" #
�0
 

and obtain the fitted values  �l�, which are noise free. Then form the path of 

time-varying correlations {8̂�} #
�0
 where   8̂� � Λ ��l�� .   The method yields an 

estimate for d and  the  ARFIMA k-steps ahead  forecasts of the copula 

parameter.  In addition, the  correlation coefficient path may be used as 

starting values when optimizing  (10). 

Following a suggestion from a referee, we now carry on a large 

number of simulations intended to assess the accuracy of the estimation 

method.   Since empirical works have shown that typically financial returns 

have a dependence structure best modeled by the t-copula (termed by Paul 

Embrechts as the “desert island copula”, see Köck, Schlüter,  Weigert, 2008),  

to mimic a real life situation  we simulate from the  elliptical  t-copula.   We 

run the simulation scheme described in (2.6) and apply the estimation method 

described in (2.5).    

Four values for the long range parameter d and two values for the 

degrees of freedom v were considered: d = 0.05,0.10,0.20,0.25, and  v = 5 and 

10.  The number of repetitions of each experiment was 500 and the series 

length was 3000.  Table 1 summarizes the results for v = 5 (the results for v = 

10 are similar).  We report the average estimate and the standard error, along 

                                                           
5 We wonder if long range dependence could exist only in some  specific dependence parameter 

and not in the others. For example, just during stressful times, at high quantiles, and therefore 

in the tail dependence coefficient, but not during low volatility days. Then we would need 

another exploratory tool.}.  Simulations from different long memory processes, and different 

copula families indexed by  real valued parameters, were carried out and confirmed the good 

performance of the exploratory tool. 



 

 

with the MSE. The bivariate trajectories were obtained through the 

conditional copula and, as already commented, this is a key step. As a 

consequence, the d estimates show a downward bias since some of the long 

memory property is lost during the copula data generating process.  

 
Table 1: Average estimate (standard error)  from the 500 simulations of models. 

 

MODELS Dl �n. 9. ;  opq� Sr �n. 9. ;  opq) 

t-copulas v = 5, d = 0.05 5.022 (0.828;0.678) 0.018 (0.002;0.001) 

t-copulas v = 5, d = 0.10 4.992 (0.724;0.526) 0.034(0.007;0.004) 

t-copulas v = 5, d = 0.20 5.176 (0.752;0.610) 0.076(0.010;0.015) 

t-copulas v = 5, d = 0.25 5.362(0.732;0.692) 0.092(0.009;0.025) 

 

 

3 - Real data analyzes 

 

We provide two examples using real data from a developed and an 

emerging market. 

 Example 1:  Log-returns on U. S. market indexes. A 5-years sample 

composed by 1827 pairs of daily log-returns on the SP500 and Nasdaq,  from 

June 1, 2000 to June 1, 2007 was obtained from Datastream.   Figure 2 shows 

the evolution through time of the log-returns. 

 

 
Figure 2: Time series plot of daily log-returns on the SP500 (top) and Nasdaq (bottom). 
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We apply the two-steps estimation method.  The KPSS statistics for 

testing stationarity accepted the null for both returns series at the 1% level. 

The series show most of the stylized facts found in return series, in particular 

a wide range of significant autocorrelations in the squares and just a few for 

the returns.   Figure 3 shows the acf computed using the SP500 and Nasdaq 

log-returns in the upper panel, and their squares in the lower panel. The 

modified R/S test accepted the null hypothesis of no long-term dependence on 

the return level, but rejected at the 1% confidence level for squared series. 

Thus, ARMA (p,q)-FIEGARCH(r,d,s)  models were fitted to the log-return 

series in order to extract all marginal dynamics. 

 

 
Figure 3:  The acf of SP500 and Nasdaq log-returns (top), and of  their squares 
(bottom). 

 

For both series the best fit was an ARMA (0,1)-FIEGARCH (2,d,1) 

plus leverage term,  with all estimates being highly statistically significant.  

The d estimates were, respectively, S �  0.355 and S �  0.616. The Ljung-

Box test applied to the standardized residuals and their squares accepted the 

null hypotheses of  no autocorrelation, indicating that the residuals are free of 

volatility clusters and temporal dependences. 
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The series of transformed data $c�% #
�0
,  and  $D�% #

�0
  were obtained 

from the empirical distribution   by ranking the standardized residuals
6
. The 

modified R/S test applied to the copula proxy    $c�D�% #
�0
  rejected the null 

hypothesis of no long memory. The test statistic was equal to 1.908 

(d=0.0859),  significant at the 5% level.     It is interesting to report that  the 

modified R/S test for  long range dependence applied to each series of  

standardized residuals   accepted  the null hypothesis of  no long memory, the 

test statistics being, respectively,   1.685 and 1.597. 

An ARFIMA (0,d,0)  was found as the best fit  for  the 

�Λ 
�c�,D��" #
�0
 (Λ-transformed cross-products) series    and  the path of    

estimated correlation coefficients {8̂�} #
�0
 was derived using the fitted values.  

Although the d estimate was very small, S � 0.0109, it was highly significant 

�n. 9. �  0.00283�.  
Figure 4 shows in the first row the {8̂�} #

�0
  series, and in the second 

row its acf.  Assuming a t-copula and fixing the estimated correlations 

sequence, we estimated the (constant) degree of freedom as 11.   The log-

likelihood value for the time varying t-copula model was 1316.55, and for a 

Gaussian copula it was 1304.05.   For the sake of completeness we also fit a 

static t-copula to the data, obtaining the global constant maximum likelihood 

estimates of   �8̂ �  0.8733, Dl � 9� , being the log-likelihood equal to 

1305.99.   

                                                           
6 Another possibility for computing the transformed data is to assume a mixture model for the 

univariate distributions, where the Generalized Pareto distribution  would be used for the 

extreme lower and upper tails and the empirical cdf for the rest of the data. 



 

 

 
Figure  4: The estimated path of the correlation coefficients and its acf. 

 

Usually, the estimation of the time varying dependence and marginal 

dynamics is  not the final objective in a time series application.  Each problem 

will require the forecast of a  different  functional of the joint conditional 

distribution.  For example, estimation of the one-step ahead conditional 

Value-at-Risk  of a  portfolio of assets requires obtaining  the  one-step ahead  

copula and marginal predictive distributions.  This may be accomplished by 

simulating the one-step ahead predictive distribution, based on the ARFIMA 

forecast of the copula parameter and the ARMA-FIEGARCH forecasts of the 

marginal parameters,   to finally compute the desired quantile of some linear 

combination of the composing variables. The simulations also provide   

confidence intervals for any quantity of interest. 

Example 2: Daily realized volatilities of Brazilian stocks.   A sample 

composed by pairs of daily realized volatilities of two  of the most traded 

stocks in the Brazilian market, Bradesco (BBDC4)  and Petrobras  (PETR4),  

from January  2, 2001 to April 30, 2009  (8-years),  is   obtained from the 

Bolsa de Valores, Mercadorias e Futuros (Bovespa).  The realized volatilities 

were computed  from the high frequency (5-minutes) returns.  Figure 5 shows 

the evolution through time of the  h � 2063 daily realized volatilities of the 

Brazilian stocks BBDC4 (top) and PETR4 (bottom).    
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Figure 5: Time series plot of  the daily realized volatilities of the Brazilian stocks 

BBDC4 (top) and PETR4 (bottom). 

 

The modified R/S test strongly rejected the null hypothesis of no 

long-term dependence on the mean level, thus we fit an  ARFIMA (p,d,q) 

model to the realized volatilities series. For both series the best fit was an 

ARFIMA (1,d,0) with all estimates being highly statistically significant.  The 

d estimates were, respectively, S �  0.4418  and S � 0.4717 , and the 

modified R/S test accepted null for  both series of residuals.    Having 

extracted the long range dependence of the univariate series of volatilities, we 

inspect the presence of long memory on the copula level using the residuals 

from the fits.  

The  series of transformed data $c�% #
�0
,  and  $D�% #

�0
  were obtained 

from the empirical distribution  by ranking the standardized residuals.    The 

modified R/S test applied to the copula proxies    $cD% #
�0
  and  $c * D% #

�0
,  
strongly  rejected  the null hypothesis of  no long memory. The test statistics 

were respectively equal to 2.8334 (d=0.1667) and 3.1089 (d=0.2365),  both 

significant at the 1% level.  Figure 6 shows the acf of the proxies. As 

expected,  the modified R/S test    for  long range dependence applied to each 

series of  standardized residuals   accepted  the null hypothesis of  no long 

memory. 

Again an ARFIMA (0,d,0)  was found as the best fit  for  the Λ-

transformed cross-products (d = 0.0931 and t-statistic  5.3887)   and  the path 



 

 

of estimated correlation coefficients { 8̂� }
#
�0
   were derived using  the  

maximum likelihood fitted values.  Figure 7  has in the first  row  the  {8̂�} #
�0
  

series, and in the second row its periodogram,  which shows a large 

concentration of power (variance)  in low frequencies.  

 

 
Figure 6: The autocorrelation function of the proxies $U V$ and $U+V$ from the 
realized volatilities series. 

 

Assuming a t-copula and fixing the estimated correlations sequence, 

we computed the maximum likelihood estimate of the constant degree of 

freedom as 5.   The AIC value for the time varying t-copula model was -

466.3.   We note that average of the 8� estimates is 0.2772. A static t-copula is 

also fitted to the data, obtaining the global constant maximum likelihood 

estimates of   �8̂ �  0.3885, Dl � 5�, being the AIC  equal to -445.9. 
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Figure  7: The estimated path of the correlation coefficients and its 
periodogram. 

 

 

4 – Conclusion 

 
In this paper we have studied long range dependence in the copula 

parameters sequence.The definition of copulas possessing long memory is 

quite general and one may assume that each copula parameter is a one-to-one 

transformation of some non-observable long-memory process.  Thus each 

copula parameter may be driven by a different ARFIMA process and 

consequently the degree of persistence may vary among dependence 

measures.  In Finance this is certainly important since dependence during high 

volatility days may be substantially different from that during usual days. 

For real data analysis we suggest to carry on the two-steps maximum 

likelihood estimation method, and in the second step to specify an evolution 

equation for each copula parameter (or alternatively for a copula-based 

measure such as the tail dependence or the Kendall's �  coefficients). For 

dependence structures allowing for types of non-linear dependence, the long 
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memory may manifest itself in some other measure of association, for 

example in the tail dependence coefficient.   

Since  the data cross-products is a simple data transformation  

containing information about the dependence in the data,  we proposed to take 

the copula data  cross-products as proxy for  detecting long range dependence 

on the copula level. The   decay rate of the (linear) autocorrelation function of 

this series was then inspected for long-memory.  This seems natural for 

elliptical copulas for which the linear correlation coefficient is the canonical 

measure of dependence. 

We provided two applications using real data.   The examples showed 

that it is possible for long memory to exist only on the dependence structure 

level, possessing the marginal processes just short memory or no temporal 

structure at all.   We were initially motivated by problems from the area of 

finance, but the methodology may be applied to data from any other 

environment, and we encourage applications in other fields to exploit the 

potentialities of the new model. 
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