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Abstract

In this paper we present a class of continuous-time processes arising from the
solution of the generalized Langevin equation and show some of its properties. We
define the theoretical and empirical codifference as a measure of dependence for
stochastic processes. As an alternative dependence measure we also consider the
spectral covariance. These dependence measures replace the autocovariance func-
tion when it is not well defined. Results for the theoretical codifference and theoreti-
cal spectral covariance functions for the mentioned process are presented. The max-
imum likelihood estimation procedure is proposed to estimate the parameters of the
process arising from the classical Langevin equation, i.e., the Ornstein-Uhlenbeck
process, and of the so-called Cosine process. We also present a simulation study
for particular processes arising from this class showing the generation, and the
theoretical and empirical counterpart for both codifference and spectral covariance
measures.

Keywords: Generalized Langevin Equation; Codifference and Spectral Covariance;
Stable Processes; Maximum Likelihood Estimation Method.

1 Introduction

The classical Langevin equation defines a continuous stochastic process. It was introduced
by Langevin (1908) to model the motion dynamics of a particle immersed in a fluid
medium. It is given by {

d V (t) = −θV (t)dt+ dL(t)

V (0) = V0,
(1.1)

where θ > 0 is a constant of friction and {L(t)}t≥0 is a noise process, representing a
random force.

‡Corresponding author. E-mail: silvia.lopes@ufrgs.br



2 Continuous Processes Derived from GLE Solution

This equation can be solved by applying the Laplace transform methods (or Ito’s
formula). From this perspective, the solution of (1.1) is given by

V (t) = V0e
−θt +

∫ t

0

e−θ(t−s) dL(s). (1.2)

The stochastic process solution {V (t)}t≥0, given in (1.2), is called the Ornstein-
Uhlenbeck (OU) process. It is widely used for modeling financial time series, such as
interest and exchange rates, as well as other applications. For more details regarding the
OU process, see Barndorff-Nielsen and Shephard (2003), Barndorff-Nielsen and Shephard
(2001), Barndorff-Nielsen and Shephard (2000), Jongbloed et. al. (2005), and Zhang and
Zhang (2013).

In 1965 Hazime Mori proposed a generalization of the classical Langevin equation.
Another generalization was proposed by Ryogo Kubo in 1966, which became known as
the generalized Langevin equation (GLE). This equation is given by{

d V (t) = −
∫ t
0
γ(t− s)V (s) ds dt+ dL(t)

V (0) = V0,
(1.3)

where {L(t)}t≥0 is a noise process, V0 is a random variable independent of L(·) and γ(·)
is the memory function. Assuming that all processes are second order moments, that is,
they have finite quadratic mean, Kannan (1977) studied the solution of GLE. The author
showed that any mean square solution {V (t)}t≥0 process of the GLE has the form

V (t) = V0ρ(t) +

∫ t

0

ρ(t− s) dL(s),

where V0 is a random variable such that V0 = V (0), {L(t)}t≥0 is the noise process and
ρ(·) is a deterministic function satisfying the Volterra integro-differential equation, given
by {

ρ′(t) = −
∫ t
0
γ(t− s)ρ(s) ds

ρ(0) = 1.
(1.4)

The subject of this paper is to study a continuous process derived from the GLE
solution, considering the Lévy process as the noise process. In order to generalize the
solution class of the GLE, we should modify the function ρ(·). Instead of (1.4), we
consider another integro-differential equation that is given in Definition 3.1. This idea
extends the previous work done by Medino et al. (2012). Another goal is to investigate
the dependence structure of the process, since the autocovariance function is not well
defined in the case of infinite second moment processes. We propose to use the so-called
codifference as a dependence measure and analyze the properties of its estimator. The
codifference function was introduced by Astrauskas (1983) and has been studied by many
authors. We also investigate an alternative dependence measure, the so-called spectral
covariance, introduced by Paulauskas (1976) and we consider its estimator. Besides, we
are interested in studying the parameter estimation of these processes. In this work we
present the estimation procedure based on the maximum likelihood for two processes: the
OU process and the so-called Cosine process.

The paper is organized as follows: Section 2 presents the codifference and spectral
covariance dependence measures and their estimators. Section 3 presents the generaliza-
tion of expression (1.4) and the class of processes obtained from this equation. Section 4
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presents examples of this class. In special, a recurrence formula is derived for particular
cases of the general process. Simulated time series are generated using this recurrence
formula and we present their theoretical and empirical counterpart for both codifference
and spectral covariance measures. Section 5 presents a Monte Carlo simulation study
for the maximum likelihood estimation of the process arising from the classical Langevin
equation (Ornstein-Uhlenbeck process) and of the so-called Cosine process. Section 6
concludes the paper.

2 Dependence Measures: Codifference and Spectral Covariance

In this section we present two dependence measures: the codifference and the spectral
covariance. The theoretical codifference and its empirical counterpart are defined in
Subsection 2.1. We prove the estimator consistency for stationary symmetric α-stable
processes that satisfy a mild condition. The spectral covariance is defined in Subsection
2.2 together with an estimator for it based on the spectral measure estimation.

2.1 Codifference Function

In this subsection we want to define a dependence measure for any process. Let X1 and
X2 be two random variables. The codifference of X1 and X2 is defined as

τ(X1, X2) = ln {E [exp (i(X1 −X2))]} − ln {E [exp (i(X1))]}
− ln {E [exp (−i(X2))]}. (2.1)

The codifference function, defined in (2.1), is related to the function considered by
Astrauskas (1983). This measure was used again in Astrauskas et al. (1991).

Remark 2.1. (a) If X1 and X2 are independent random variables, then τ(X1, X2) = 0.
(b) If X1 and X2 are Gaussian random variables, then τ(X1, X2) = Cov(X1, X2).
(c) The codifference function is well defined even when the process does not have finite
mean. The codifference function given in (2.1) was proposed by Kokoszka and Taqqu
(1995).

If {X(t)}t≥0 is any process, then the codifference function is given by

τX(k, t) = τ(X(k), X(t)), (2.2)

for k, t ≥ 0. For more details, we refer the reader to Samorodnitsky and Taqqu (1994).
There is an even more general definition for the codifference, similar to the one pro-

posed in Kokoszka and Taqqu (1994), given by

τX(s; k, t) = ln {E [exp (is(X(t+ k)−X(t)))]} − ln {E [exp (is(X(t+ k)))]}
− ln {E [exp (−is(X(t)))]}, (2.3)

where s ∈ R, k ≥ 0 and t ≥ 0. When s = 1, expression (2.3) reduces to (2.1).

Remark 2.2. If {X(t)}t≥0 is any stationary process, then expression (2.3) does not
depend on t. In this situation, expression (2.3) will be denoted by τX(s; k).
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We will consider the codifference function estimator proposed in Rosadi and Deistler
(2009), for ARMA processes. In this work we want to consider any stationary process with
symmetric α-stable finite-dimensional distributions and prove the estimator consistency.
Let {X(t)}t≥0 be any stationary process and let {Xi}Ni=1 be a sample of size N derived
from this process. As the codifference function is defined via characteristic functions, it
can be estimated by empirical characteristic functions. The estimator for the codifference
function at k, proposed by Rosadi and Deistler (2009), is given by

τ̂X(s; k) =

√
N − k
N

[
ln

(
1

N − k

N−k∑
t=1

eis(Xt+k−Xt)

)
− ln

(
1

N − k

N−k∑
t=1

eisXt+k

)

− ln

(
1

N − k

N−k∑
t=1

e−isXt

)]
, (2.4)

for any k ∈ {0, · · · , N}. For more details on the estimator given in (2.4), we refer the
reader to Rosadi and Deistler (2009).

The consistency property of the empirical codifference is given in Theorem 2.1. We
need to consider the following condition to derive this consistency property:

Condition A: τX(s; k)→ 0, when k →∞, for all s ∈ R.

Notice that Condition A is not so strong, since at least stationary stable processes that
present the mixing property must satisfy this condition (see Gross, 1994).

Let us defined the k-th difference of the {X(t)}t≥0 process by

W (t) = X(t+ k)−X(t). (2.5)

Theorem 2.1. Let {X(t)}t≥0 be any stationary symmetric α-stable process, 0 < α ≤ 2,
satisfying Condition A. Let {W (t)}t≥0 be the process defined in (2.5) and assume it also
satisfies Condition A, for any fixed k. For s ∈ R and k ∈ N ∪ {0}, the sample codif-
ference τ̂X(s; k), defined in expression (2.4), is a consistent estimator for the theoretical
codifference τX(s; k), when N →∞.

To show the consistency property of the codifference estimator, first it is necessary to
prove the following two lemmas.

Lemma 2.1. Let {X(t)}t≥0 be any stationary symmetric α-stable process, 0 < α ≤ 2,
satisfying Condition A, and denote by ΦX(s) = E(eisX(t)) its characteristic function. For
s ∈ R and k ∈ N ∪ {0},

ln(φ̂(s; k)) := ln

(
1

N − k

N−k∑
t=1

eisXt

)

is a consistent estimator for ln(ΦX(s)), when N →∞.

Proof: Let Ys(t) := eisX(t). Notice that the process {Ys(t)}t≥0 is stationary. For

simplicity, instead of working with φ̂(s; k), we first show the consistency property for
φ̂∗(s) := 1

N

∑N
t=1 e

isXt .

Here, φ̂∗(s) is an unbiased estimator for ΦX(s) = E(Ys(t)). To show the weak con-
sistency for this estimator, we show that Ys(t) is a mean ergodic process. A sufficient
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condition for Ys(t) to be a mean ergodic process, i.e. φ̂∗(s)→ ΦX(s) in the mean square
sense, is that its covariance function tends to zero when k tends to infinity (see theo-
rem 7.1.1 in Brockwell and Davis, 1987). The covariance function of Ys(t) at k can be
expressed as

CYs(k) = Cov(Ys(t+ k), Ys(t)) = E(Ys(t+ k)Ys(t))− E(Ys(t+ k))E(Ys(t))

= E(eisX(t+k)e−isX(t))− |ΦX(s)|2 = |ΦX(s)|2
(

E(eis(X(t+k)−X(t)))

E(eisX(t+k))E(e−isX(t))
− 1

)
.

(2.6)

Notice that

exp(τX(s; k)) =
E(eis(X(t+k)−X(t)))

E(eisX(t+k))E(e−isX(t))
.

Then, we have
CYs(k) = |ΦX(s)|2 (exp(τX(s; k))− 1) .

From Condition A, CYs(k) → 0, when k → ∞. As mean square convergence entails

convergence in probability, we have φ̂∗(s)
P→ ΦX(s), for all s ∈ R. Moreover, ΦX(·) is

a positive real-valued function, since we are considering symmetric α-stable processes.

Therefore, we can conclude that Re (φ̂∗(s))
P→ Re (ΦX(s)) = ΦX(s) and Im (φ̂∗(s))

P→
Im (ΦX(s)) = 0, where Re (z) and Im (z) are the real and imaginary parts of z ∈ C.

By taking the principal value of the ln(·) function in the complex domain, this function
will be continuous and well-defined on C minus the negative real line. It is possible to
see that Re (ΦX(s)) = ΦX(s) > 0, but Re (φ̂∗(s)) can be less than or equal to zero.
Therefore, without loss of generality, we restrict the definition of the real and imaginary
parts of ln(φ̂∗(s)) only on the right half plane where Re (φ̂∗(s)) is greater than zero, and
equal to zero, otherwise. From this consideration, given that ln(z) = ln |z|+ i arg(z), it is
possible to obtain

Re [ln(φ̂∗(s))] = ln{[Re (φ̂∗(s))]2 + [Im (φ̂∗(s))]2}
1
2

=
1

2
ln{[Re (φ̂∗(s))]2 + [Im (φ̂∗(s))]2}

and

Im [ln(φ̂∗(s))] = arctan

[
Im (φ̂∗(s))

Re (φ̂∗(s))

]
.

From the continuity of the logarithm function in the considered domain, we have

Re [ln(φ̂∗(s))]
P→ Re [ln(ΦX(s))] = ln(ΦX(s)) and Im [ln(φ̂∗(s))] = arg(φ̂∗(s))

P→ 0, when

N → ∞. In other words, ln(φ̂∗(s))
P→ ln(ΦX(s)). To complete the proof, it is sufficient

to show that φ̂∗(s)− φ̂(s; k)
P→ 0. We can see that

E|φ̂∗(s)− φ̂(s; k)| = E

∣∣∣∣∣ 1

N

N∑
t=1

eisXt − 1

N − k

N−k∑
t=1

eisXt

∣∣∣∣∣
= E

∣∣∣∣∣
(

1

N
− 1

N − k

)N−k∑
t=1

eisXt +
1

N

N∑
t=N−k+1

eisXt

∣∣∣∣∣
≤
∣∣∣∣ 1

N
− 1

N − k

∣∣∣∣N−k∑
t=1

|eisXt |+ 1

N

N∑
t=N−k+1

|eisXt | =
(

1

N − k
− 1

N

)
(N − k) +

k

N
=

2k

N
.
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Thus, when N →∞, φ̂∗(s)− φ̂(s; k)→ 0 in mean, and it also converges in probability.
�

Remark 2.3. If X is an α-stable random variable denoted by X ∼ Sα(σ, β, µ), then
Y = eisX is not an α-stable random variable, for every fixed s ∈ R. Indeed, the variance
of Y is finite. Thus, the expression (2.6) is well defined.

Corollary 2.1. Let {X(t)}t≥0 be any stationary symmetric α-stable process, 0 < α ≤ 2.
Let Ys(t) = eisX(t). Suppose that the autocovariance function of the process {Ys(t)}t≥0,
denoted by CYs(·), is such that CYs(k)→ 0, when k →∞. Then, the codifference function
τX(s; k), defined in expression (2.3), is asymptotically zero, when k →∞.

Proof: From the expression (2.6), we have

CYs(k) = |ΦX(s)|2
(

E(eis(X(t+k)−X(t)))

E(eisX(t+k))E(e−isX(t))
− 1

)
→ 0,

when k →∞. Then,

E(eis(X(t+k)−X(t)))

E(eisX(t+k))E(e−isX(t))
− 1→ 0⇐⇒ E(eis(X(t+k)−X(t)))

E(eisX(t+k))E(e−isX(t))
→ 1

⇐⇒ ln

(
E(eis(X(t+k)−X(t)))

E(eisX(t+k))E(e−isX(t))

)
→ 0. (2.7)

Notice that the left-hand side term of (2.7) is τX(s; k). Hence, τX(s; k) → 0, when
k →∞.

�

Lemma 2.2. Let {X(t)}t≥0 be any stationary symmetric α-stable process satisfying Con-
dition A. Let {W (t)}t≥0 be the process defined in (2.5) and assume it also satisfies Con-
dition A, for any fixed k. Let ΦW (s; k) = E(eis(X(t+k)−X(t))) denote the characteristic
function of {W (t)}t≥0. For k ∈ N ∪ {0} and s ∈ R

ln(φ̂(s; k))
P→ ln(ΦW (s; k)),

when N →∞, where φ̂(s; k) is given by

φ̂(s; k) :=
1

N − k

N−k∑
t=1

eis(Xt+k−Xt).

Proof: For the proof, we can proceed in a similar way as in Lemma 2.1. Firstly we show

the consistency property for φ̂∗(s; k) := 1
N

N∑
t=1

eis(Xt+k−Xt). Define Z(t) := Ys(t+ k)Ys(t) =

eis(X(t+k)−X(t)), for fixed k. It is easy to see that {Z(t)}t≥0 is a stationary process, that is

Z(t+ l)
d
= Z(t). We shall show that Z(·) is a mean ergodic process. A sufficient condition

for Z(·) to be a mean ergodic process is that its covariance function tends to zero. The
covariance function of Z(·) at lag l can be given as

CZ(l) = Cov(Z(t+ l), Z(t)) = E(Z(t+ l)Z(t))− E(Z(t+ l))E(Z(t))

= E(eis(X(t+l+k)−X(t+l)−X(t+k)+X(t)))− |ΦW (s; k)|2

= E(eis((X(t)−X(t+k))−(X(t+l)−X(t+l+k)))− |ΦW (s; k)|2. (2.8)
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Then, we need to show that E(Z(t + l)Z(t)) = E(eis((X(t)−X(t+k))−(X(t+l)−X(t+l+k))) →
|ΦW (s; k)|2, when l→∞. Notice that

E(Z(t+ l)Z(t)) = |ΦW (s; k)|2
(
E(eis((X(t)−X(t+k))−(X(t+l)−X(t+l+k)))

|ΦW (s; k)|2

)
= |ΦW (s; k)|2

(
E(eis((X(t)−X(t+k))−(X(t+l)−X(t+l+k)))

E(eis(X(t+l+k)−X(t+l)))E(e−is(X(t+k)−X(t)))

)
= |ΦW (s; k)|2 exp(τW (s; l)), (2.9)

where τW (s; l) = ln
(

E(eis((X(t)−X(t+k))−(X(t+l)−X(t+l+k)))

E(eis(X(t+l+k)−X(t+l)))E(e−is(X(t+k)−X(t)))

)
is the codifference function of

W (·), for fixed k and t. By hypothesis, we have τW (s; l) → 0 when l → ∞. Hence
exp(τW (s; l)) → 1. In other words, E(eis((X(t)−X(t+k))−(Xt+l−Xt+l+k)) → |ΦW (s; k)|2 when

l→∞, and therefore φ̂∗(s; k) converges in mean square to ΦW (s; k). Therefore, φ̂∗(s; k)
P→

ΦW (s; k). For the remaining of this proof, we can proceed similarly to the proof of Lemma
2.1. �

Corollary 2.2. Let {X(t)}t≥0 be any stationary symmetric α-stable process, 0 < α ≤
2. Let Z(t) := eis(X(t+k)−X(t)), for fixed k. Suppose that the autocovariance function
of the process {Z(t)}t≥0, denoted by CZ(·), is such that CZ(l) → 0, when l → ∞. Let
{W (t)}t≥0 be the process defined in (2.5). Then, the codifference function τW (s; l), defined
in expression (2.3), is asymptotically zero when l→∞.

Proof: From the expression (2.8), we have

CZ(l) = E(eis((X(t)−X(t+k))−(X(t+l)−X(t+l+k)))− |ΦW (s; k)|2 → 0,

when l→∞. Hence,

E(eis((X(t)−X(t+k))−(X(t+l)−X(t+l+k)))→ |ΦW (s; k)|2.

From the expression (2.9),

|ΦW (s; k)|2 E(eis((X(t)−X(t+k))−(X(t+l)−X(t+l+k)))

E(eis(X(t)−X(t+k)))E(eis(X(t+l+k)−X(t+l)))
→ |ΦW (s; k)|2

⇐⇒ ln

[
E(eis((X(t)−X(t+k))−(X(t+l)−X(t+l+k)))

E(eis(X(t)−X(t+k)))E(eis(X(t+l+k)−X(t+l)))

]
→ 0. (2.10)

Notice that the left-hand side term in (2.10) is τW (s; l), where W (·) is defined by (2.5),
for fixed k. Therefore, τW (s; l)→ 0 when l→∞.

�
Proof of Theorem 2.1: For fixed k and N → ∞, we have

√
N−k
N
→ 1. From Lemmas

2.1 and 2.2, it is true that

τ̂X(s; k)
P→ ln[ΦW (s; k)]− ln[ΦX(s)]− ln[ΦX(−s)] = τX(s; k),

for s ∈ R, when N →∞.
�
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2.2 Spectral Covariance

As an alternative dependence measure for random variables with infinite variance, we
can also consider the spectral covariance. This dependence measure was introduced by
Paulauskas (1976) and it was revisited in Damarackas and Paulauskas (2014).

Given an α-stable random vector (X1, X2), with 0 < α < 2, α 6= 1, we define the
spectral covariance as

%(X1, X2) =

∫
S2

s1 s2 Γ(ds), (2.11)

where Γ is the spectral measure on S2 = {x = (x1, x2) ∈ R2 : x21+x22 = 1}. The advantage
of using the spectral covariance is its definition based only on the spectral measure, not
on the characteristic function. Damarackas and Paulauskas (2014) provided an analysis,
based on some examples, for the best α parameter dependence of the spectral covariance.

Consider an α-stable stochastic process given in the integral form as follows

X(t) =

∫
E

ft(s)dL(s), (2.12)

where E ⊆ R is a set, {L(t)}t≥0 is the α-stable Lévy process and {ft(·)}t≥0 is such that∫
E
|ft(s)|αds < ∞. In this case, Damarackas and Paulauskas (2014) showed that the

spectral covariance can be written as

%(X(t), X(t+ k)) =

∫
E

ft(s)ft+k(s)‖f̄(s)‖α−2 ds, (2.13)

where ‖f̄(s)‖2 = f 2
t (s) + f 2

t+k(s).
For estimation purposes, we will consider the estimator proposed in Kodia and Garel

(2014), where for any fixed t ≥ 0, we have

%̂(X(t), X(t+ k)) =
m∑
j=1

σ̂j,k cos

(
2π(j − 1)

m

)
sin

(
2π(j − 1)

m

)
, (2.14)

where σ̂k = (σ̂j,k)
m
j=1 such that σ̂k = minσ≥0 ‖Îk − Ψ̂σ‖. To estimate the weights σ̂k con-

sider Ψ̂ an m×m matrix defined by Ψ̂ = (ψ̂α(〈tj, sl〉))mj,l=1 such that ψ̂α(〈tj, sl〉) = |tj1sl1+

tj2sl2|α̂, where α̂ is some estimate for α and tj = sj =
(

cos
(

2π(j−1)
m

)
, sin

(
2π(j−1)

m

))
. In

this work we use four estimators for α: the maximum likelihood (denoted by α̂mle), the
regression-type estimator proposed by Koutrouvelis (1980) (denoted by α̂kou), the quantile
based estimator of McCulloch (1986) (denoted by α̂mc) and the regression-type estimator
proposed by Press (1972) (denoted by α̂pr). The estimator defined in expression (2.14)
requires an i.i.d. sample Xk

(1), · · · ,Xk
(re) of (X(t), X(t+ k)), where re is the number of

replications. Let Îk = (Îk,re(tj))
m
j=1 and Îk,re(tj) = − ln(φ̂k,re(tj)), where φ̂k,re(tj) is the

empirical characteristic function given by φ̂k,re(tj) = 1
re

re∑
j=1

ei〈tj,Xk
(j)〉. For more details on

the empirical spectral covariance, we refer the reader to Kodia and Garel (2014).

3 Processes Derived from the GLE Solution

We introduce in this section our procedure to study the Generalized Langevin Equation or
the GLE, for short, and present what we call the Generalized Langevin Process. Such way
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to consider this equation is specially useful in cases where the noise has infinite second
moment, but it also can be applied in the finite second moment situations. The main
element in our method is Definition 3.1, where we consider GLE driven by Lévy processes.
For the background noise process, we assume stochastic processes L = {L(t)}t≥0 satisfying
the following conditions:

B1: L(0) ≡ 0 with probability 1.
B2: L has independent increments, i.e., L(t0), L(t1) − L(t0), · · · , L(tn) − L(tn−1) are
independent random variables for every 0 < t0 < t1 < · · · < tn−1 < tn for all positive
integer n.
B3: L has stationary increments, i.e., for all t ≥ 0, L(t+ h) − L(t) has the same distri-
bution as L(h), for all h > 0.
B4: L is continuous in probability, that is, given t ≥ 0 and δ > 0, we have

lim
h→0

P(|L(t+ h)− L(t)| > δ) = 0.

For a treatment on Lévy processes suitable for the scope of this paper, we refer the
reader to Applebaum (2009) or Schoutens (2003). We recall that the only Lévy process
that has finite second moment is the standard Brownian motion, also known as the Wiener
process, and that the random variable L(1) has infinitely divisible distribution whose
characteristic function is given by

ϕL(x) = e−ψ(x),

where ψ : R→ C is the characteristic exponent of L(1).

Remark 3.1. If {L(t)}t≥0 is the symmetric α-stable Lévy process, then the characteristic
exponent of L(1) is given by ψ(x) = |x|α.

Definition 3.1. Let V = {V (t)}t≥0 be a stochastic process and ρ = {ρ(t)}t≥0 be a
deterministic function. We say that the pair (V, ρ) represents a solution to the GLE if V
is given by

V (t) = V0ρ(t) +

∫ t

0

ρ(t− s) dL(s) (3.1)

and the function ρ satisfies the following integro-differential equation{
ρ′(t) = −

∫ t
0
ρ(s) dµt(s),

ρ(0) = 1,
(3.2)

where {µt}t≥0 is a family of signed measures and L = {L(t)}t≥0 is a Lévy process. The
stochastic process V = {V (t)}t≥0 will be called the Generalized Langevin Process.

Under the conditions in Definition 3.1, the stochastic integral in (3.1) can be taken in
the sense of convergence in probability if ρ(·) is continuous (Lukacs, 1975) or, in the general
setting, considering stochastic integration with respect to semimartingale (Applebaum,
2009). Integro-differential equations as in (3.2) are well studied in Mingarelli (1983).

The following proposition gives a characterization of the discrete form of the process
in (3.1) and will be useful for numerical, simulation and estimation purposes.
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Proposition 3.1. Under the conditions in Definition 3.1 and if {L(t)}t≥0 is a standard
α-stable Lévy motion, the process given by (3.1) has the following discrete form

V (n+ 1)− V (n)
d
= V0 (ρ(n+ 1)− ρ(n)) + ξn, (3.3)

where
d
= means equality in distribution and ξn ∼ Sα(σn, 0, 0), such that σn is given by

σαn =

∫ n

0

|ρ(n+ 1− s)− ρ(n− s)|α ds+

∫ n+1

n

|ρ(n+ 1− s)|α ds. (3.4)

Proof: From the expression (3.1) one has

V (n+ 1)− V (n) = V0 (ρ(n+ 1)− ρ(n)) + ξn,

where ξn =
∫ n+1

0
ρ(n+ 1− s) dL(s)−

∫ n
0
ρ(n− s) dL(s). We can rewrite ξn as follows

ξn =

∫ n

0

[ρ(n+ 1− s)− ρ(n− s)] dL(s) +

∫ n+1

n

ρ(n+ 1− s) dL(s) = An +Bn, (3.5)

where An =
∫ n
0

[ρ(n + 1 − s) − ρ(n − s)] dL(s) and Bn =
∫ n+1

n
ρ(n + 1 − s) dL(s), such

that An and Bn are independent. In addition, by Proposition 3.4.1 in Samorodnitsky and
Taqqu (1994), An ∼ Sα(σAn , 0, 0) and Bn ∼ Sα(σBn , 0, 0), where

σαAn =

∫ n

0

|ρ(n+ 1− s)− ρ(n− s)|α ds, (3.6)

σαBn =

∫ n+1

n

|ρ(n+ 1− s)|α ds. (3.7)

By Property 1.2.1 in Samorodnitsky and Taqqu (1994), we have ξn ∼ Sα(σn, 0, 0), where
σn is given by (3.4).

�

Let {Iρ(t)}t≥0 be the stochastic process given by Iρ(t) =
∫ t
0
ρ(t−x)dL(x) with τIρ(s; k, t)

as its codifference function. The proposition A.1 in Medino et. al. (2012) says that char-
acteristic functions of stochastic integrals are given in terms of the integrand function and
the characteristic exponent of L(1). Then, from Remark 3.1, τIρ(s; k) can be rewriting as

τIρ(s; k) = ln

[
E(eis

∫ t
0 (ρ(t+k−x)−ρ(t−x))dL(x))E(eis

∫ t+k
t ρ(t+k−x)dL(x))

E(eis
∫ t+k
0 ρ(t+k−x)dL(x))E(e−is

∫ t
0 ρ(t−x)dL(x))

]

= ln

[
e−|s|

α(
∫ t
0 |ρ(t+k−x)−ρ(t−x)|

αdx+
∫ t+k
t |ρ(t+k−x)|αdx)

e−|s|
α(

∫ t+k
0 |ρ(t+k−x)|αdx+

∫ t
0 |ρ(t−x)|αdx)

]

= |s|α
∫ t

0

(|ρ(t+ k − x)|α + |ρ(t− x)|α − |ρ(t+ k − x)− ρ(t− x)|α) dx. (3.8)

The next proposition gives the general formula for the codifference function of the stochas-
tic process defined by (3.1).

Proposition 3.2. Let {V (t)}t≥0 be the stochastic process defined in the expression (3.1).
Then the following statements hold.
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(i) The codifference function of {V (t)}t≥0 is given by

τV (s; k, t) = ln

[
ϕV0(s(ρ(t+ k)− ρ(t)))

ϕV0(sρ(t+ k))ϕV0(−sρ(t))

]
+ τIρ(s; k, t),

where ϕV0(·) is the characteristic function of the random variable V0 ≡ V (0).

(ii) If {V (t)}t≥0 is stationary, then its codifference function reduces to

τV (s; k) = ln

[
ϕV0(s(ρ(k)− 1))

ϕV0(sρ(k))ϕV0(−s)

]
,

where ϕV0(·) is the characteristic function of the random variable V0 ≡ V (0).

(iii) Let {L(t)}t≥0 be a symmetric α-stable Lévy process and V0 ∼ Sα(σ, 0, 0). Then the
codifference function of {V (t)}t≥0 is given by

τV (s; k, t) = |s|ασα [|ρ(t+ k)|α + |ρ(t)|α − |ρ(t+ k)− ρ(t)|α]

+|s|α
∫ t

0

(|ρ(t+ k − x)|α + |ρ(t− x)|α − |ρ(t+ k − x)− ρ(t− x)|α) dx. (3.9)

(iv) Let {L(t)}t≥0 be a symmetric α-stable Lévy process and V0 ∼ Sα(σ, 0, 0). If {V (t)}t≥0
is a stationary process, then

τV (s; k) = |s|ασα [1 + |ρ(k)|α − |ρ(t+ k)− 1|α] .

Proof: (i) From (2.3) we have

τV (s; k, t) = ln

[
E(eis(V (t+k)−V (t)))

E(eisV (t+k))E(e−isV (t))

]
. (3.10)

From expression (3.1) and due the independence between {L(t)}t≥0 and V0

τV (s; k, t) = ln

[
E(eisV0(ρ(t+k)−ρ(t)))E(eis(Iρ(t+k)−Iρ(t)))

E(eisV0ρ(t+k))E(eisIρ(t+k))E(e−isV0ρ(t))E(e−isIρ(t))

]
= ln

[
ϕV0(s(ρ(t+ k)− ρ(t)))

ϕV0(sρ(t+ k))ϕV0(−sρ(t))

]
+ τIρ(s; k, t), (3.11)

and this completes the proof.
(ii) From the stationarity property, the value t can be taken equal to zero. Then, from

the item (i)

τV (s; k) = ln

[
ϕV0(s(ρ(k)− 1))

ϕV0(sρ(k))ϕV0(−s)

]
+ τIρ(s; k).

Notice that

τIρ(s; k) = τ(Iρ(k), Iρ(0)) = ln

(
E(eis

∫ t
0 ρ(t−x)dL(x))

E(eis
∫ t
0 ρ(t−x)dL(x))

)
= 0,

and this completes the proof.
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(iii) From the characteristic function of V0 ∼ Sα(σ, 0, 0) and from item (i), the expres-
sion of τV (s; k, t) is given by

τV (s; k, t) = ln

[
e−σ

α|s(ρ(t+k)−ρ(t))|α

e−σα|sρ(t+k)|αe−σα|−sρ(t)|α

]
+ τIρ(s; k)

= |s|ασα [|ρ(t+ k)|α + |ρ(t)|α − |ρ(t+ k)− ρ(t)|α] + τIρ(s; k). (3.12)

From (3.8) and (3.12), we obtain the expression for the codifference function (3.9).
(iv) From the stationarity property, the value t can be taken equal to zero. Then,

from items (ii) and (iii)

τV (s; k) = |s|ασα [1 + |ρ(k)|α − |ρ(k)− 1|α] .

�
Observe that the codifference function of any stationary process of the form (3.1) only

depends on its characteristic function at time zero and on the memory function ρ(·).
The next proposition gives the general formula for the spectral covariance of a stochastic
process defined in (3.1).

Proposition 3.3. Let {L(t)}t≥0 be a symmetric α-stable Lévy process and V0 ≡ 0. Then
the spectral covariance of {V (t)}t≥0 defined in expression (3.1) is given by

%(V (t), V (t+ k)) =

∫ t

0

ρ(t− s)ρ(t+ k − s)
[
ρ2(t− s) + ρ2(t+ k − s)

]α−2
2 ds. (3.13)

If the process {V (t)}t≥0 is stationary, then the expression (3.13) will depend only on k
and t can be considered a fixed value.

Proof: By equation (3.1) with V0 ≡ 0, we have

V (t) =

∫ ∞
0

I[0,t](s)ρ(t− s) dL(s). (3.14)

Then equation (2.13) gives

%(V (t), V (t+ k)) =

∫ ∞
0

I[0,t](s)ρ(t− s)I[0,t+k](s)ρ(t+ k − s)
[
I[0,t](s)2ρ2(t− s)

+I[0,t+k](s)2ρ2(t+ k − s)
]α−2

2 ds

=

∫ t

0

ρ(t− s)ρ(t+ k − s)
[
ρ2(t− s) + ρ2(t+ k − s)

]α−2
2 ds. (3.15)

�
To end this section, we observe the if θ > 0 and µt(E) = θ IE(t), where IE(·) is the

indicator function of the set E, then {µt}t≥0 is a family of Dirac measures each of them
assigning mass θ > 0 to the point t ≥ 0. From the expression (3.2), we have ρ(t) = e−θt,
and the resulting process is the well-known Ornstein-Uhlenbeck process.

Also, notice that if µt = µ for all t ≥ 0 in Definition 3.1 and µ is absolutely continuous
with respect to the Lebesgue measure λ, that is, d µt(s) = d µ(s) = f(s) ds, for all t, s ≥ 0,
where

f(s) =
d µ

d λ
(s)
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is the Radon-Nikodym derivative of µ with respect to λ, then expression (3.2) reduces to{
ρ′′(t) + ρ(t) f(t) = 0

ρ′(0) = 0, ρ(0) = 1.
(3.16)

In the general situation, d µt(s) = γ(t − s) ds will depend on t ≥ 0 and we recover
expression (1.4). This is not the main focus of this manuscript and we will discuss it in a
future work.

We want to emphasize that the processes arising from Definition 3.1 are not necessarily
Markov. In fact, only the OU process is Markov. But this feature does not hinder to study
problems involving this type of process (see Fleming et al., 2014). In the next sections,
for some particular functions f(·), we solve the second order initial value problem given
in (3.16) and perform some numerical simulation and estimation studies of the resulting
Generalized Langevin Processes.

4 Examples

In this section we present examples of processes defined in (3.1) for different functions ρ(·)
satisfying expression (3.16). For all examples we consider that {L(t)}t≥0 is the symmetric
α-stable Lévy process, which satisfies Conditions B1-B4.

Example 4.1. Ornstein-Uhlenbeck Process
The process given in (1.2) is called the Ornstein-Uhlenbeck (OU), where function ρ(·)

is given by e−θt, θ > 0. For generating and simulating purposes, a discrete form will be
given. Assume that the OU process is observed at discrete times {tk = kh; k = 0, 1, 2, · · · },
where h is the discretization step size. We can obtain a discretization form of the process
by using the additivity property with respect to the integration interval, that is,

V (kh) = e−θhV ((k − 1)h) + Zk,h, (4.1)

where Zk,h =
∫ kh
(k−1)h e

θ(s−kh)dL(s) and V ((k − 1)h) = e−θ(k−1)hV0+
∫ (k−1)h
0

eθ(s−(k−1)h)dL(s).

Furthermore, by using equality of characteristic functions, we can show that

Zk,h
d
=

(
1− e−θαh

θα

)1/α

Sk, (4.2)

where
d
= denotes equality in distribution and {Sk}k∈N is an independent identically dis-

tributed (iid) sequence of symmetric α-stable random variables with scale parameter σ.
To calculate the codifference function we need the V0 distribution. If {L(t)}t≥0 is the

standard α-stable Lévy motion, which satisfies conditions B1-B3, then the distribution
of V0 can be easily obtained. In Applebaum (2009), the expression (1.2) is rewritten as

V (t) =

∫ t

−∞
e−θ(t−s)dL(s), (4.3)

where the integral is defined by taking {L(t)}t<0 to be an independent copy of {−L(t)}t≥0.
From expression (4.3) it follows that V0 =

∫ 0

−∞ e
θsdL(s). Applying proposition 3.4.1 in

Samorodnitsky and Taqqu (1994), one has V0 ∼ Sα(σ̃, 0, 0), where σ̃ =
(

1
θα

)1/α
. Notice
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that, with these parameters for V0, the OU process is stationary; however, it is not
stationary when V0 is a constant random variable. The theoretical codifference function
of the OU process is given by the following expression (see example 4.7.1 in Samorodnitsky
and Taqqu, 1994).

τV (s; k) =
|s|α

θα

(
1 + e−αθk − (1− e−θk)α

)
. (4.4)

Our simulation study for the empirical codifference of the OU process suggests small
values for s and hereafter we shall consider s = 0.01. Figure 4.1 presents simulated time
series and theoretical and empirical codifference functions for the OU process. Notice
that when the θ value increases, the theoretical codifference function decreases to zero
very fast. Furthermore, when θ = 1 the empirical codifference function better approaches
to its theoretical counterpart.

(a) (b) (c)

(d) (e) (f)

Figure 4.1: Simulated time series, theoretical and empirical codifference functions of the pro-
cess given in (1.2) when α = 1.5, h = 0.5, n = 1000 and s = 0.01. (a), (b) and (c): θ = 0.5
(σ̃ = 1.5396); (d), (e) and (f): θ = 1 (σ̃ = 0.5443).

The theoretical spectral covariance of the OU process can be calculated using expres-
sion (4.3). It is given by the following expression (see proposition 2 in Damarackas and
Paulauskas, 2014)

%(V (t), V (t+ k)) =
1

αθ(1 + e−2θk)(2−α)/2
e−θk, k ≥ 0. (4.5)

Figure 4.2 presents the theoretical and empirical spectral covariance for the OU pro-
cess. These graphs present the four different estimators for α, described in Subsection
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2.2. We note there is no significant difference in the empirical spectral covariance when
the α estimator changes. This is due to the fact that all α estimates are very accurate.

(a) (b) α̂mle
∼= 1.5000 (c) α̂mc

∼= 1.5059 (d) α̂kou
∼= 1.4985 (e) α̂pr

∼= 1.5001

(f) (g) α̂mle
∼= 1.5001 (h) α̂mc

∼= 1.5043 (i) α̂kou
∼= 1.5040 (j) α̂pr

∼= 1.5066

Figure 4.2: Theoretical (panels (a) and (f)) and empirical spectral covariance of the OU process
given in (1.2) when α = 1.5, σ = 1, h = 0.5, n = 1000, re = 1000 and t = 0. (a)-(e): θ = 0.5;
(f)-(j): θ = 1.

Example 4.2. Cosine Process
Consider f(t) = a2, for a > 0. By solving the differential equation in (3.16) we find

ρ(t) = cos(at) and the resulting process is given by

V (t) = V0 cos(at) +

∫ t

0

cos(a(t− s)) dL(s). (4.6)

Hereafter, we shall call it as the Cosine Process.
The discrete form of this process is given in Proposition 4.1 below.

Proposition 4.1. Consider the process given in (4.6). One discretization form of this
process is given by

V ((k + 1)h) = 2 cos(ah)V (kh)− V ((k − 1)h) + εk,h, (4.7)

where h is the discretization step size and εk,h is Sα(σε, 0, 0) random variable, where

σαε = 2

∫ h

0

| cos(as)|αds. (4.8)

Proof: From the expression (4.6), we have

V ((k + 1)h) =V0 cos(a(k + 1)h) +

∫ (k+1)h

0

cos[a((k + 1)h− s)] dL(s)

=V0[cos(akh) cos(ah)− sin(akh) sin(ah)]

+

∫ (k+1)h

0

cos(a(kh− s)) cos(ah)− sin(a(kh− s)) sin(ah) dL(s)
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= cos(ah)V (kh)− V0 sin(akh) sin(ah)− sin(ah)

∫ (k+1)h

0

sin(a(kh− s)) dL(s)

+ cos(ah)

∫ (k+1)h

kh

cos(a(kh− s)) dL(s).

By using trigonometric properties based on the cosine function and multiplying the
resulting expression by two, we obtain

V ((k + 1)h) = 2 cos(ah)V (kh)− cos(a(k − 1)h)V0 −
∫ (k−1)h

0

cos(a((k − 1)h− s)) dL(s)

−
∫ (k+1)h

(k−1)h
cos(a((k − 1)h− s)) dL(s) + 2 cos(ah)

∫ (k+1)h

kh

cos(a(kh− s)) dL(s)

= 2 cos(ah)V (kh)− V ((k − 1)h) + εk,h,

where εk,h = −
∫ (k+1)h

(k−1)h cos(a((k− 1)h− s)) dL(s) + 2 cos(ah)
∫ (k+1)h

kh
cos(a(kh− s)) dL(s).

We can rewrite εk,h as

εk,h = −
∫ kh

(k−1)h
cos(a((k − 1)h− s)) dL(s)

+

∫ (k+1)h

kh

[2 cos(ah) cos(a(kh− s))− cos(a((k − 1)h− s))] dL(s) = A+B,

where A = −
∫ kh
(k−1)h cos(a((k − 1)h − s)) dL(s) and B =

∫ (k+1)h

kh
[2 cos(ah) cos(a(kh −

s))− cos(a((k− 1)h− s))] dL(s). Notice that A and B are independent random variables

such that A ∼ Sα(σA, 0, 0), with σαA =
∫ h
0
| cos(as)|α ds, and B ∼ Sα(σB, 0, 0), with

σαB =
∫ h
0
|2 cos(ah) cos(as) − cos(a(s + h))|α ds. Using trigonometric properties, we have

σαB =
∫ h
0
| cos(a(s−h))|α ds. Then, by property 1.2.1 in Samorodnitsky and Taqqu (1994),

we obtain εk,h ∼ Sα(σε, 0, 0), with

σαε =

∫ h

0

| cos(as)|αds+

∫ h

0

| cos(a(s− h))|αds = 2

∫ h

0

| cos(as)|αds, (4.9)

where the above second equality can be obtained by changing variables.
�

To calculate the codifference function we consider that V0 is a random variable with
symmetric α-stable distribution, denoted by Sα(σ, 0, 0). The Cosine process is non-
stationary, because there is at least one unit root in the discrete form given in Proposition
4.1. Thus, we can use Proposition 3.2(iii) to calculate its theoretical codifference, which
is given in Corollary 4.1 below.

Corollary 4.1. Let {V (t)}t≥0 be the process given in (4.6). Then its theoretical codiffer-
ence function is given by

τV (s; k, t) =|s|ασα [| cos(a(t+ k))|α + | cos(at)|α − | cos(a(t+ k))− cos(at)|α]

+ |s|α
∫ t

0

(| cos(a(t+ k − x))|α + | cos(a(t− x))|α

− | cos(a(t+ k − x))− cos(a(t− x))|α)dx. (4.10)
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Proof: From Proposition 3.2(iii), since ρ(t) = cos(at), we obtain expression (4.10).
�

Our simulation study for the Cosine process also suggests small values for s and
hereafter we shall consider s = 0.01. Figure 4.3 presents the simulated time series and
theoretical and empirical codifference functions of the process given in (4.6). Notice
that when the value of a increases, the theoretical codifference function presents large
variability, but preserves the same characteristic. Furthermore, the empirical codifference
function does not converge to zero. This was expected, since its theoretical counterpart
does not converge to zero either.

(a) (b) (c)

(d) (e) (f)

Figure 4.3: Simulated time series, theoretical and empirical codifference functions of the pro-
cess given in (4.6) when α = 1.5, σ = 1, h = 0.5, n = 200, s = 0.01 and t = 0. (a), (b) and (c):
a = 0.5; (d), (e) and (f): a = 1.

The spectral covariance of the Cosine process is given in Corollary 4.2 below.

Corollary 4.2. Let {V (t)}t≥0 be the process given in (4.6). Then its spectral covariance
is given by

%(V (t), V (t+ k)) =

∫ t

0

cos(a(t− s)) cos(a(t+ k − s))
[
cos2(a(t− s))

+ cos2(a(t+ k − s))
]α−2

2 ds. (4.11)

Proof: From Proposition 3.3, since ρ(t) = cos(at), we obtain expression (4.11).
�
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Figure 4.4 presents the theoretical and empirical spectral covariance for the Cosine
process. These graphs present the four different estimators for α, described in Subsection
2.2. We note there are differences in the empirical spectral covariance when the α estima-
tor changes. This is due to the fact that each α estimator has different values, especially
the one proposed by Press (1972). In this example, α̂pr has the biggest bias.

(a) (b) α̂mle
∼= 1.4985 (c) α̂mc

∼= 1.5059 (d) α̂kou
∼= 1.5056 (e) α̂pr

∼= 0.0262

(f) (g) α̂mle
∼= 1.4890 (h) α̂mc

∼= 1.4820 (i) α̂kou
∼= 1.4971 (j) α̂pr

∼= 0.0786

Figure 4.4: Theoretical (panels (a) and (f)) and empirical spectral covariance of the Cosine
process given in (4.6) when α = 1.5, σ = 1, h = 0.5, n = 200, re = 1000 and t = h. (a)-(e):
a = 0.5; (f)-(j): a = 1.

Example 4.3. Consider f(t) = 2a(1 − 2at2), for any a > 0. By solving the differential
equation in (3.16) we find ρ(t) = e−at

2
and the resulting process is given by

V (t) = V0e
−at2 +

∫ t

0

e−a(t−s)
2

dL(s). (4.12)

The discrete form of this process is given in Proposition 4.2 below.

Proposition 4.2. Consider the process given in (4.12). One discretization form for this
process is given by

V ((k + 1)h) = e−a(2k+1)h2 V (kh) +Wk,h, (4.13)

where h is the discretization step size and

Wk,h =

∫ kh

0

e−a((kh−s)
2+(2k+1)h2)(e2ash − 1) dL(s) +

∫ (k+1)h

kh

e−a((kh−s)
2−2sh+(2k+1)h2) dL(s).

Moreover, the distribution of Wk,h is Sα(σW , 0, 0) random variable, where

σαW =

∫ kh

0

e−αa((kh−s)
2+(2k+1)h2)(e2ash − 1)α ds+

∫ (k+1)h

kh

e−αa((kh−s)
2−2sh+(2k+1)h2) ds.

(4.14)
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Proof: From expression (4.12), we have

V0e
−a(kh)2 = V (kh)−

∫ kh

0

e−a(kh−s)
2

dL(s). (4.15)

We also have

V ((k + 1)h) = e−a(2k+1)h2

[
V0 e

−a(kh)2 +

∫ (k+1)h

0

e−a((kh)
2−2s(k+1)h+s2) dL(s)

]
.

Thus,

V0e
−a(kh)2 = ea(2k+1)h2V ((k + 1)h)−

∫ (k+1)h

0

e−a((kh)
2−2s(k+1)h+s2) dL(s). (4.16)

From expressions (4.15) and (4.16), we get

V ((k + 1)h) = e−a(2k+1)h2V (kh)−
∫ kh

0

e−a((kh−s)
2+(2k+1)h2) dL(s)

+

∫ (k+1)h

0

e−a((kh)
2−2s(k+1)h+s2+(2k+1)h2) dL(s)

= e−a(2k+1)h2V (kh) +Wk,h,

where

Wk,h =

∫ (k+1)h

0

e−a((kh−s)
2−2sh+(2k+1)h2) dL(s)−

∫ kh

0

e−a((kh−s)
2+(2k+1)h2) dL(s)

=

∫ kh

0

e−a((kh−s)
2+(2k+1)h2)(e2ash − 1) dL(s) +

∫ (k+1)h

kh

e−a((kh−s)
2−2sh+(2k+1)h2) dL(s).

Using propositions 1.2.1 and 3.4.1 in Samorodnitsky and Taqqu (1994), the distribu-
tion of Wk,h is Sα(σW , 0, 0), where σαW is given by expression (4.14).

�
To calculate the codifference function we consider that V0 is a random variable with

symmetric α-stable distribution, denoted by Sα(σ, 0, 0). The theoretical codifference func-
tion of this process is given in Corollary 4.3.

Corollary 4.3. Let {V (t)}t≥0 be the process given in (4.12). Then its theoretical codif-
ference function is given by

τV (s; k, t) =|s|ασα
[
e−aα(t+k)

2

+ e−aαt
2 − (e−at

2 − e−a(t+k)2)α
]

+|s|α
∫ t

0

(e−aα(t+k−x)
2

+ e−aα(t−x)
2 − (e−a(t−x)

2 − e−a(t+k−x)2)α)dx. (4.17)

Proof: From Proposition 3.2(iii), since ρ(t) = e−at
2
, we obtain expression (4.17).

�
The estimation of the theoretical codifference function improves when s = 0.01. Figure

4.5 presents simulated time series and theoretical and empirical codifference functions for
the process given in (4.12). Notice that, when the value a increases, the theoretical and
empirical functions converge quickly to zero. The results are very similar to Example 4.1.

The spectral covariance of the process defined in (4.12) is given in Corollary 4.4 below.
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(a) (b) s = 0.01 (c) s = 0.01

(d) (e) s = 0.01 (f) s = 0.01

Figure 4.5: Simulated time series, theoretical and empirical codifference functions of the pro-
cess given in (4.12) when α = 1.5, σ = 1, h = 0.5, n = 1000, s = 0.01 and t = 0. (a), (b) and
(c): a = 0.5; (d), (e) and (f): a = 1.

Corollary 4.4. Let {V (t)}t≥0 be the process defined in (4.12). Then its spectral covariance
is given by

%(V (t), V (t+ k)) =

∫ t

0

e−a(t−s)
2

e−a(t+k−s)
2
(
e−2a(t−s)

2

+ e−2a(t+k−s)
2
)α−2

2
ds. (4.18)

Proof: From Proposition 3.3, since ρ(t) = e−at
2
, we obtain expression (4.18).

�

Figure 4.6 presents the theoretical and empirical spectral covariance for the process
given in (4.12). These graphs present the four different estimators for α, described in
Subsection 2.2. We note there is no significant difference in the empirical spectral covari-
ance when the α estimator changes. This is due to the fact that all α estimates are very
accurate.

5 Monte Carlo Simulations

In this section we present Monte Carlo simulation results for the maximum likelihood
estimation (mle) in both the OU and Cosine processes.
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(a) (b) α̂mle
∼= 1.4974 (c) α̂mc

∼= 1.5026 (d) α̂kou
∼= 1.5001 (e) α̂pr

∼= 1.5015

(f) (g) α̂mle
∼= 1.4980 (h) α̂mc

∼= 1.5064 (i) α̂kou
∼= 1.5046 (j) α̂pr

∼= 1.5050

Figure 4.6: Theoretical (panels (a) and (f)) and empirical spectral covariance of the process
given in (4.12) when α = 1.5, σ = 1, h = 0.5, n = 1000, re = 1000 and t = h. (a)-(e): a = 0.5;
(f)-(j): a = 1.

5.1 Maximum Likelihood in the OU Process

For every function ρ(·) and each noise process L(·), the process given in (3.1) has different
parameters. In this subsection, we estimate the parameters for the case when ρ(t) = e−θ t,
that is, the OU process.

From expression (4.1), notice that we can consider the OU as an AR(1) process. Let
η = (α, σ, θ)′ be the parameter vector to be estimated and let {Vkh}N−1k=0 be a sample of
size N of the process given by (1.2). We have

Zk,h = Vkh − e−θhV(k−1)h.

Notice that, for a fixed h, {Zk,h}k∈N is a sequence of i.i.d. random variables with
symmetric α-stable distribution and scale parameter σ. Hence, the likelihood function is
given by

L(η|Z1,h, · · · , ZN−1,h) =
N−1∏
k=1

f(Zk,h|η),

where f(·|η) is the density distribution function of the α-stable distribution. Recall that
for only three cases of α there exist closed formulae for the distribution and density
functions. The log-likelihood function is given by

`(η|Z1,h, · · · , ZN−1,h) =
N−1∑
k=1

ln(f(Zk,h|η)).

By numerical optimization of function `(·), we obtain the maximum likelihood estima-

tor η̂ = (α̂, σ̂, θ̂)′. In the simulations, the θ parameter is assumed to be in the set {1, 2}.
In this work, the parameters of the α-stable distribution are α ∈ {1.1, 1.5, 2} and σ = 1.
Notice that we are including the Gaussian case (α = 2). The Monte Carlo simulation
study is based on time series of samples of size N = 2000 derived from OU processes. We
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perform 500 replications for each experiment. To generate the time series we apply the
discrete equation given in (4.1) and the discretization step size is considered to be 1.

(a) α̂; α = 1.1 (b) σ̂; α = 1.1 (c) θ̂; α = 1.1

(d) α̂; α = 1.5 (e) σ̂; α = 1.5 (f) θ̂; α = 1.5

(g) α̂; α = 2 (h) σ̂; α = 2 (i) θ̂; α = 2

Figure 5.1: Estimation results for OU processes when h = 1 and N = 2000. Each panel shows
the results for θ ∈ {1, 2}. The black lines are the medians for each experiment, the colored lines
show the true parameter values, and the colored dots are the sample mean values.

Figure 5.1 shows boxplots of the parameter estimation procedure. The boxplots pre-
sent the mean, median, outlier points and an idea of the variability. From these graphs
we conclude that the maximum likelihood estimation performs relatively well. Comparing
all graphs, it is possible to see that the worst performance occurs when α = 1.1. In this
case, there are several outlier points, and the mean estimated values are not so close to
the real parameter values. This result was expected by the fact that the α parameter is
too close to the range where even the first moment of the α-stable process is infinite.

The small bias values presented in Figure 5.1 indicate that, for all parameters, the
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mean estimated value is very close to the true parameter one. As expected, the estimator
performance improves as the α parameter gets closer to α = 2 (Gaussian case). From the
graphs it is also clear that the θ parameter is better estimated than the others. There is
a small difference in the results when a = 1 or a = 2: in the latter case the variability
slightly increases.

From a large Monte Carlo simulation study done before, it is clear that there is no
significant difference in the results for both cases h = 1 and h = 0.1, when we kept fixed
the sample size N . However, when the product Nh increases, the parameter estimation
improves. Another interesting characteristic is that, when the σ parameter value increases,
its estimation degrades by increasing the bias value and its variability. Similar results are
obtained when the θ parameter value increases. We performed an extensive simulation
study and the results are available upon request.

5.2 Maximum Likelihood in the Cosine Process

In this subsection, we estimate the parameters for the case when ρ(t) = cos(at), that is,
the Cosine process, via maximum likelihood procedure. From expression (4.7), notice that
we can consider the Cosine process as a non-stationary AR(2) process. Let η = (α, σε, a)′

be the parameter vector to be estimated and let {Vkh}N−1k=0 be a sample of size N of the
process given by (4.6). The procedure to obtain the likelihood function is very similar to
the case presented in Section 5.1.

In the simulations, the a parameter is assumed to be in the set {1, 2}. In this work,
the α parameter of the α-stable distribution is in the set {1.1, 1.5, 2} and σε depends on
α and a parameters (see expression (4.8)). Notice that we are including the Gaussian
case (α = 2). The Monte Carlo simulation study is based on time series of samples
of size N = 2000 derived from Cosine processes. We perform 500 replications for each
experiment. To generate the time series we apply the discrete equation given in (4.7) with
discretization step size h = 1.

Figure 5.2 presents the results for the mle procedure. We observe that the estimation
of the a parameter is very accurate, but this does not occur for the other parameters.
However, when α = 2 the estimation improves for all parameters. Comparing all graphs,
the worst performance occurs when α = 1.1, since the bias is slightly larger than the other
results. There is no significant difference in the results for both cases a = 1 and a = 2.
The estimation via maximum likelihood for the Cosine process was very satisfactory as
for the OU process.

6 Conclusions

In this work we present the codifference and the spectral covariance functions as two
dependence measures for the studied stochastic processes. These measures replace the
autocovariance function when it is not well defined. The consistency property of the
empirical codifference estimator, proposed in Subsection 2.1, is shown for stationary sym-
metric α-stable processes. Moreover, we present a continuous-time process arising from
the generalized Langevin equation and show some of its properties. Results for the theo-
retical codifference and the spectral covariance functions considering the mentioned pro-
cess are presented. In addition, several particular examples are discussed, showing their
codifference and spectral covariance functions.
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(a) α̂; α = 1.1 (b) σ̂ε; α = 1.1 (c) â; α = 1.1

(d) α̂; α = 1.5 (e) σ̂ε; α = 1.5 (f) â; α = 1.5

(g) α̂; α = 2 (h) σ̂ε; α = 2 (i) â; α = 2

Figure 5.2: Estimation results for Cosine processes when h = 1 and N = 2000. Each panel
shows the results for a ∈ {1, 2}. The black lines are the medians for each experiment, the colored
lines show the true parameter values, and the colored dots are the sample mean values.

Furthermore, we show via Monte Carlo simulation that maximum likelihood estimators
for OU and Cosine processes present features like low bias and low variability. This
simulation study shows that the mle estimation present large variability and some outlier
values when α = 1.1. This is due to the fact that the α parameter is close to the
range where the first moment of the process is infinite (0 < α ≤ 1). The estimator
performance improves when the α parameter gets closer to the Gaussian case (α = 2).
The Monte Carlo simulations also show that the discretization step size h of the process
did not significantly matter for the OU parameters estimation. For future work we shall
investigate the maximum likelihood method for other functions ρ(·) in the process given
by the expression (3.1).
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