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Abstract

The problem of tuning an estimator by selecting bandwidth or truncation values
is at the core of most semiparametric estimation procedures. This paper investi-
gates the trade-o® bias-variance implied by the tuning constant ®, which governs
the number of frequencies m used by the regression based estimates of the frac-
tional parameter d. We apply classical least squares and robust methodologies to
well known semiparametric estimators and assess their performance as ® ranges in
[0:50; 0:86]. We consider models with long-range dependence in mean and in volatil-
ity, and show that short-range dependence structure may a®ect the estimates and
thus the optimal value for the bandwidth m. Whenever there is no information
about the data generating process, the simulation experiments suggest that we
should select the Bartlett or the GPHT estimator, either based on all frequencies
and robust LTS-estimation, or based on ® = 0:50 and robust MM -estimation.

Key words: Long memory; FIGARCHmodels; Stochastic volatility models; Semi-
parametric estimation; Robust estimation.

1 Introduction

Models for long memory in mean were ¯rst introduced by Granger and Joyeux
(1980) and Hosking (1981), following the seminal work of Hurst (1951). The im-
portant characteristic of an Autoregressive Fractionally Integrated Moving Average
(ARFIMA) process is its autocorrelation function decay rate. In an ARFIMA pro-
cess, the autocorrelation function exhibits a hyperbolic decay rate, di®erently from
an ARMA model which presents a geometric rate. Long memory in mean has
been observed in data from areas such as meteorology, astronomy, hydrology, and
economics, as reported in Beran (1994).

The ARFIMA framework was naturally extended towards volatility models.
The Fractionally Integrated Generalized Autoregressive Conditionally Heteroskedas-
tic (FIGARCH) models were introduced by Baillie, Bollerslev and Mikkelsen (1996)
and Bollerslev and Mikkelsen (1996), motivated by the fact that autocorrelation
function of the squared, log-squared, or the absolute value series of an asset return
decays slowly, even when the return series has no serial correlation. Also aiming



to model long memory in the second moment, Breidt et al. (1998) introduced the
Fractionally Integrated Stochastic Volatility (FISV) model.

Models for heteroskedastic time series with long memory are of great interest
in econometrics and ¯nance, where empirical facts about asset returns have mo-
tivated the several extensions of GARCH type models (FIGARCH, FIEGARCH,
TGARCH, SW-ARCH, LM-ARCH, among many others). Many empirical papers
have detected the presence of long memory in the volatility of risky assets, mar-
ket indexes and exchange rates. As the number of models available increases, it
becomes of interest a simple, fast, and accurate estimation procedure for the frac-
tional parameter d, independent of the speci¯cation of a parametric model. The
regression based semiparametric (semiparametric in the sense that a full paramet-
ric model is not speci¯ed for the spectral density of the process) estimators seem to
be the natural candidates. However, their asymptotic statistical properties, besides
depending on their de¯nition and estimation method, are also heavily dependent
on the number of frequencies m used for the regression. In addition, their perfor-
mances are also a®ected by other structures in the data. In this paper we put some
light on this issue, by considering several long memory models and 5 regression
type estimators. To specify the bandwidth m we consider the tuning constant ®,
by setting m = n®, where n is the sample size.

The regression method was introduced in the pioneer work of Geweke and
Porter-Hudak (1983), giving rise to several other proposals. Hurvich and Ray
(1995) introduced a cosine-bell function as a spectral window, to reduce bias in
the periodogram function. They found that data tapering and the elimination
of the ¯rst periodogram ordinate in the regression equation, could increase the
estimator accuracy. However, smaller bias was obtained at the cost of a larger
variance. Reisen (1994) and Velasco (1999a) considered smoothed versions of the
periodogram function. Velasco (1999b) proved consistency and asymptotic nor-
mality of the regression estimators for any d, considering non-stationary and non-
invertible processes. Reisen et al. (2001) carried out an extensive simulation study
comparing both the semiparametric and parametric approaches in ARFIMA pro-
cesses. Monte Carlo methods were also used by Lopes et al. (2004) in the case of
non-stationary ARFIMA processes.

Despite the large number of regression type estimators available, a compre-
hensive evaluation of their performances in models for long memory in volatility,
addressing the trade o® bias-variance resulting from the choices of the tuning con-
stant ® is still missing. By considering 20 values for ® in the range [0:50; 0:86], in
this paper we evaluate the performance of 5 semiparametric regression estimates
of the fractional parameter in ARFIMA, FIGARCH, and FISV models. Besides
the classical least squares method, robust estimation procedures are applied and
also tuned with the constant ®. We use the e±cient 0.50 breakdown point robust
estimates Least Trimmed Squares (LTS, Rousseeuw, 1984) and theMM -estimates
(Yohai, 1987). A total of 15 estimates are implemented in a Monte Carlo study. Our
initial motivation was the possibility that the robust estimators would naturally
downweight undesirable frequencies and would not need the trimming constant ®.

Two related works are Taqqu and Teverovsky (1996) and Henry (2001). By not-
ing that high frequencies tend to bias the estimates, and using only low frequencies
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eliminates the bias but increases the variance, Taqqu and Teverovsky (1996) sug-
gest plotting the estimates as a function of m and the series length n, which would
balance bias versus variance. Henry (2001) develops formulae and approximations
for an optimal (that is, smaller mean squared error) bandwidth m when estimating
long memory in the series level, considering conditionally heteroskedastic errors
speci¯cations.

Applications where the only parameter of interest is d may be found in many
areas. In ¯nance, for example, where a huge variety of conditionally heteroskedastic
models are available, one may ¯rst remove the long-range dependence of return se-
ries, and then ¯t to the residuals some GARCH type model accounting for leverage
terms, regime switching, di®erent conditional distributions, and so on.

We carried out several simulation experiments to identify the optimal band-
width value, and considered two criteria for choosing the best estimator. The
mean squared error criterion, denoted by C1, and the proportion of times within
the total number of simulations, the estimates 90% con¯dence interval did not
capture the true parameter value, denoted by C2.

A result from the simulations is that the best number m of frequencies to be
used (or best ® value) is completely dependent on the data generating process. For
the same FIGARCH speci¯cation, di®erent models for the conditional mean will
lead to a di®erent tuning choice. Another conclusion is that the range [0:50; 0:86]
for specifying ® seems to be adequate.

For models possessing long memory in volatility and no other form of short
memory, both criteria selected the GPHT:LS based on small ®-values as the best
estimator. It seems that short memory may act as contaminations for these models,
since when we include short memory in the mean of the volatility models, we get
as winners either the robust BA:LTS or BA:MM . When it comes to ARFIMA
models, and classical estimation, one should use just few frequencies, setting ®
between 0:50 and 0:60. Then either the GPHT or the BA estimator may be used.
Under criterion C2 we are able to select an overall winner for the ARFIMA models,
the GPHT:MM based on ® = 0:50. The vast majority of the winners under C2
(83%) are robust estimators. In summary, whenever no other information about
the data generating process is available, we would select the BA or the GPHT
estimator, either based on all frequencies and LTS-estimation, or based on ® = 0:50
and MM -estimation.

The remainder of this paper is as follows. In Section 2 we de¯ne the ARFIMA,
FIGARCH and FISV models. In Section 3 we brie°y review the semiparametric
estimators used and give their robust versions. In Section 4 we carry on several
simulation experiments according to 35 di®erent data generating processes, and
evaluate the performance of the estimators considering the trade-o® bias-variance
implied by the choice of ®. In Section 5 we illustrate using a real data set and in
Section 6 we summarize the results.

2 Long-Memory Models

In this section we de¯ne the ARFIMA, FIGARCH and FISV models.

3



2.1 ARFIMA Models

Let fXtgt2Z be an ARFIMA(p; d; q) process given by
©(L)(1¡L)dXt = £(L)²t; d 2 R; (2.1)

where L is the backward-shift operator, that is, LkXt = Xt¡k. The polynomials
©(L) =Pp

i=0(¡Ái)Li and £(L) =
Pq
j=0(¡µj)Lj have degree p and q, respectively,

with Á0 = ¡1 = µ0. The process f²tgt2Z is white noise with zero mean and ¯nite
variance ¾2² . The term (1¡ L)d is the binomial, or Maclaurin, series expansion in
L.

The process fXtgt2Z, given by expression (2.1), is called a general fractional
di®erenced zero mean process, where d is the fractional di®erencing parameter .
This process is both stationary and invertible if the roots of ©(¢) and £(¢) are
outside of the unit circle and jdj < 0:5. Its spectral density function, fX(¢), is given
by

fX(w) = fU (w)
³
2 sin(

w

2
)
´¡2d

; w 2 [¡¼; ¼]; (2.2)

where fU (¢) is the spectral density function of an ARMA(p; q) process. One observes
that fX(w) ' w¡2d, when w ! 0.

The ARFIMA(p; d; q) process exhibits long memory when d 2 (0:0; 0:5), inter-
mediate memory when d 2 (¡0:5; 0:0) and short memory when d = 0.

2.2 FIGARCH Models

Denote by Ft the ¾-¯eld of events generated by fXs; s · tg and assume that
E(XtjFt¡1) = 0 a:s:. Following Engle (1982), and Bollerslev (1986) we specify a
GARCH(r; s) model by

Xt = ¾tZt; (2.3)

where Zt is an independent identically distributed (i:i:d:) random variable with
zero mean and unit variance such that XtjFt¡1 are independent random variables
with zero mean and conditional variance de¯ned by

¾2t = ! + ®(L)X2
t + ¯(L)¾2t ; (2.4)

where ! > 0 is a real constant, ®(L) = Pr
i=1 ®iLi and ¯(L) =

Ps
j=1 ¯jLj . For

a FIGARCH process (see Baillie et el., 1996, and Bollerslev and Mikkelsen, 1996)
the ¾t, in expression (2.3), is de¯ned as

¾2t = ! (1¡ ¯(L))¡1 + f1¡ (1¡ ¯(L))¡1[1¡ ®(L)¡ ¯(L)](1¡L)dgX2
t

= ! (1¡ ¯(L))¡1 + f1¡ (1¡ ¯(L))¡1Á(L)(1¡L)dgX2
t

= ! (1¡ ¯(L))¡1 + ¸(L)X2
t ; (2.5)

where

¸(L) =
1X
k=0

¸kLk = 1¡ (1¡ ¯(L))¡1Á(L)(1¡L)d; (2.6)
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Á(L) = 1¡ ®(L)¡ ¯(L)), and the binomial series expansion in L is given by

(1¡L)d = 1 +
1X
k=1

¡(k ¡ d)
¡(k + 1)¡(¡d)L

k = 1¡ d
1X
k=1

¡(k ¡ d)
¡(k + 1)¡(1¡ d)L

k

= 1¡ dL¡ d

2!
(1¡ d)L2 ¡ d

3!
(1¡ d)(2¡ d)L3 ¡ ¢ ¢ ¢

= 1¡
1X
k=1

±d;k Lk = 1¡ ±d(L): (2.7)

The coe±cients ±d;k = d
¡(k¡d)

¡(k+1)¡(1¡d) , in expression (2.7), are such that

±d;k = ±d;k¡1
µ
k ¡ 1¡ d

k

¶
; (2.8)

for all k ¸ 1, where ±d;0 ´ 1.
The following proposition totally characterizes any FIGARCH(r; d; s) process

and also gives a recurrent formula for the coe±cients ¸k's given in expression (2.6).

Proposition 2.1: Let fXtgt2Z be any FIGARCH(r; d; s) process, for d 2 [0; 1],
de¯ned by expressions (2.3) and (2.5). Then, the coe±cients ¸k, for k 2 N, in
expression (2.6), are given by

¸0 = 0

¸n =
rX
i=1

¯i¸n¡i + ®n + ±d;n ¡
maxfr;sgX
j=1

°j±d;n¡j ; if 1 · n · r

¸n =
sX
i=1

¯i¸n¡i + ±d;n ¡
maxfr;sgX
j=1

°j±d;n¡j ; if n > r; (2.9)

where

°j =

8<:
®j ; if r > s;
®j + ¯j ; if r = s;
¯j ; if r < s:

(2.10)

Proof: The proof is straightforward if one compares the coe±cients of Ln in both
sides of the following expression

[1¡ ¯(L)]¸(L) = 1¡ ¯(L)¡ Á(L)(1¡L)d
= 1¡ ¯(L)¡ [1¡ ®(L)¡ ¯(L)] (1¡ ±d(L))
= ®(L) + Á(L)±d(L): (2.11)

For any FIGARCH(1; d; 1) process the parameters have to ful¯ll some restric-
tions to ensure positivity of the conditional variance ¾2t . Besides of ! > 0, the
parameters ®1 and ¯1 must satisfy
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² ¯1 ¡ d · Á1 · 2¡d
3

² d(Á1 ¡ 1¡d
2 ) · ¯1(d+ ®1), where Á1 = ®1 + ¯1.

In a FIGARCH(1; d; 0) process, ¯1 = 0, and in a FIGARCH(0; d; 1), ®1 = 0. For
any FIGARCH(0; d; 0) there are no further restrictions besides ! being positive.

2.3 FISV Models

Let fYtgnt=1 be such that

Yt = g(Xt)¾""t; (2.12)

where Xt is a long-memory in mean time series, g(¢) is a continuous function and
"t is an i:i:d: time series with zero mean and unit variance. Since V ar(YtjXt) =
g(Xt)

2¾2" , for certain functions g(¢) model (2.12) may be described as a long-
memory stochastic volatility process (see Robinson, 1999). This large class of
volatility models include the long-memory nonlinear moving average models of
Robinson and Za®aroni (1998) and Za®aroni (1999), and the FISV process intro-
duced by Breidt et al. (1998).

In a FISV(p; d; q; ¾") process fYtgt2Z, the function g(¢) in (2.12) is given by

g(Xt) = exp

µ
Xt
2

¶
; (2.13)

where fXtgt2Z is an ARFIMA(p; d; q) process given by (2.1), and "t and ²t are i:i:d:
standard normal, and mutually independent. One observes that V ar(YtjXt) =
exp(Xt)¾

2
" . In particular, squaring both sides of equation (2.12) and taking loga-

rithms,

ln(Y 2t ) = ¹» +Xt + »t; (2.14)

where ¹» = ln(¾2") + E[ln("2t )], and »t = ln("2t ) ¡ E[ln("2t )]. Hence, ln(Y 2t ) is the
sum of a Gaussian ARFIMA process and independent non-Gaussian noise with
zero mean. Consequently, the autocovariance function of the process ln(Y 2t ), when
d 2 (¡0:5; 0:5), is such that

°ln(Y 2t )(k) » k
2d¡1; (2.15)

when k !1, while its spectral density function has the property that

fln(Y 2t )(¸) » ¸
¡2d; (2.16)

when the frequency ¸ ! 0. For d 2 (0:0; 0:5), the spectral density function in ex-
pression (2.16) is unbounded when ¸! 0. This forms the basis for the application
of the traditional log-periodogram estimation procedures, given in the next section.
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3 Classical and Robust Estimation Procedures

In the literature of the stochastic ARFIMA processes, there exist several estimation
procedures for the fractional parameter d. In this section we recall some well known
regression estimation methods based on the periodogram function and propose new
ones.

Let fXtgt2Z be an ARFIMA(p; d; q) process with d 2 (¡0:5; 0:5), given by (2.1).
Consider the set of harmonic frequencies wi =

2¼i
n , i = 0; 1; ¢ ¢ ¢ ; [n=2], where n is

the sample size, and [x] means the integer part of x. By taking the logarithm of the
spectral density function fX(¢) given by (2.2), and adding ln(fU (0)), and ln(I(wi))
to both sides of this expression we obtain

ln(I(wi)) = ln(fU (0))¡ d ln
µ³
2 sin

³wi
2

´´2¶
+ ln

µ
fU (wi)

fU (0)

¶
+ ln

µ
I(wi)

fX(wi)

¶
;(3.1)

where I(¢) is the periodogram function given by

I(w) =
1

2¼

Ã
°̂X(0) + 2

n¡1X
l=1

°̂X(l) cos(l w)

!
; (3.2)

where °̂X(k) =
1
n

Pn¡k
i=1 (xi ¡ ¹x)(xi+k ¡ ¹x), for k 2 f0; 1; ¢ ¢ ¢ ; n¡ 1g, is the sample

autocovariance function of the process Xt in (2.1).

When considering only the frequencies close to zero, the term ln
³
fU (wi)
fU (0)

´
may

be discarded. Then, we may rewrite (3.1) in the context of a simple linear regression
model:

yi = a¡ d zi + ei ; i = 1; ¢ ¢ ¢ ;m (3.3)

where m = [n=2], (a;¡d) are the regression coe±cients, a = ln(fU (0)), yi =

ln(I(wi)), zi = ln((2 sin(wi=2))
2), and the errors ei = ln(

I(wi)
fX(wi)

) are noncorrelated
random variables centered at zero with constant variance.

We recall that when Yt follows a FISV process with d 2 (¡0:5; 0:5), ln(Y 2t ) is the
sum of a zero mean Gaussian ARFIMA process and independent non-Gaussian in-
novation process. Also, the FIGARCH(r; d; s) process, d 2 (0; 1), has been de¯ned
in expression (8) of Baillie et al. (1996) as an ARFIMA process on the squared
data with a more complicated error structure. Thus, the regression based method
also applies to these processes.

A semiparametric regression estimator may be obtained by minimizing some
loss function of the residuals ri = yi¡a+d zi. We will consider three di®erent loss
functions. They give rise to the classical Ordinary Least Squares method (OLS),
and two high breakdown point robust methods, the Least Trimmed Squares method
(LTS), and the MM -estimation method.

The OLS estimators are the values (â;¡d̂) which minimize the loss function

L1(m) =
mX
i=1

(ri)
2; (3.4)
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where ri = yi ¡ a+ d zi is the residual related to the regression (3.3).
Whenever the errors ei follow a normal distribution, the OLS estimates have

the minimum variance among all unbiased estimates (see Rao, 1973). If the errors
follow another distribution (as in the cases considered here), non-linear estimates
may possess better statistical properties. In fact, it is well known (see Huber,
1981) that regression outliers, leverage points, and gross errors are responsible for
considerable bias and ine±ciency (even in the Gaussian environment) in the OLS
estimates.

How biased an estimate can become at the presence of outliers and leverage
points can be measured by the value of its breakdown point. Loosely speaking,
the breakdown point of an estimator represents the smallest proportion of atypi-
cal points in the sample that makes the estimates meaningless, that is, estimates
providing distorted information about the parameters being estimated. The OLS
estimator has zero breakdown point, meaning that just one spurious observation is
able to completely distort the OLS estimator.

Robust alternatives to OLS may be obtained by minimizing a robust version
of the dispersion of the residuals. The Least Trimmed Squares (LTS) estimates of
Rousseeuw (1984) minimize the loss function

L2(m) =
m¤X
i=1

(r2)i:m ; (3.5)

where (r2)i:m are the squared and then ordered residuals, that is, (r2)1:m · ::: ·
(r2)m:m, and m

¤ is the number of points used in the optimization procedure. The
constantm¤ is responsible both for the breakdown point value and e±ciency. When
m¤ is approximately m=2 the breakdown point is approximately 50%. The LTS
estimates have been previously used by Taqqu, Teverovsky, and Willinger (1995)
for the estimation of the long range parameter in ARFIMA models.

The MM -estimates (see Yohai, 1987) may possess simultaneously high break-
down point and high e±ciency. They are de¯ned as the solution (â;¡d̂) which
minimizes the loss function

L3(m) =
mX
i=1

½2

³ri
s

´2
; (3.6)

subject to the constraint

1

m

mX
i=1

½1(
ri
s
) · b ; (3.7)

where ½2 and ½1 are symmetric, bounded, nondecreasing on [0;1) with ½i(0) = 0
and limu!1 ½i(u) = 1, i = 1; 2, s is a scale parameter, and b is a tuning constant.
The breakdown point of the MM -estimator only depends on ½1 and it is given by
min(b; 1¡ b).

The two robust methods chosen possess appealing de¯nitions, well established
asymptotic properties, and can be rapidly computed using the SPlus software. The
only references we are aware of on robust estimation of the long memory parameter
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are Beran (1994), Agostinelli and Bisaglia (2004), and the already cited Taqqu,
Teverovsky, and Willinger (1995). All of them considered just ARFIMA processes.
Agostinelli and Bisaglia (2004) approach di®ers from ours since they propose a
robusti¯cation of the maximum likelihood functions. Figure 1 illustrates the role
of a robust estimate and the data type we are dealing with.
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Figure 1: OLS (black) and LTS (blue) estimates based on periodogram (3.2). The regres-
sion (a) at the left hand side uses all [n=2] = 500 frequencies and provided OLS and LTS
d estimates equal to 0:14 and 0:13, respectively. The regression (b) at the right hand side
uses m = (1000)0:59 = 60 frequencies and provided OLS and LTS d estimates equal to
0:10 and 0:22, respectively. Data simulated from a FISV model with true d value equal to
0:30.

The regression data (yi; zi), i = 1; :::;m, used in Figure 1 are derived from 1000
observations simulated from a FISV process with d = 0:30. The regression (a) at
the left hand side uses all [n=2] frequencies, that is, m = 500. The data pattern
depicted in graph (a) is typical: log-periodogram data contains a considerable
amount of large zi values. These are the values related to frequencies away from
zero and, therefore, those less relevant in the estimation process. However, as graph
(a) illustrates, they may have a large in°uence on the ¯ts. The classical OLS (in
black) and the robust LTS (in blue) slope estimates of (3.3), both based on (3.2),
provided bd equal to 0:14 and 0:13, respectively.

According to the theory, the most in°uent points should be those associated to
smaller zi values. This suggests trimming the points associated to large frequencies,
technique implemented at the right hand side of Figure 1. The regression (b) uses
m = (1000)0:59 = 60 frequencies and provided OLS and LTS estimates bd equal to
0:10 and 0:22, respectively. The robust LTS procedure provides now an estimate
closer to the true value. However, some points still tilt the classical OLS regression
line, distorting the slope estimate, resulting in an under-estimation of d.

Thus, a critical issue is how many (m) frequencies should be used by the re-
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gression type estimators. The choice of m a®ects the estimators properties, such
as unbiasedness and e±ciency. We address this issue in Section 4. By considering
variations of (3.2), periodogram based methodologies have been proposed. In the
following subsections we summarize the most important ones.

3.1 Classical and robust GPH estimators

The ¯rst estimation method based on the periodogram function was proposed by
Geweke and Porter-Hudak (1983). To obtain an estimate for d, these authors
proposed applying the Ordinary Least Squares method in (3.3) based on (3.2),
which we denote by GPH-LS. The number of frequencies m used in (3.3) depends
on a trimming constant 0 < ® < 1. Lopes et al. (2004) considered ® in the interval
[0:55; 0:65], and Porter-Hudak (1990) considered ® 2 f0:62; 0:75g for the case of
seasonal fractionally integrated time series data.

Robinson (1995) established consistency properties of semiparametric estima-
tors of the long memory parameter, including the GPH, within the context of
ARFIMA models. He also provided an asymptotic distribution theory for any
value of d under mild conditions.

To obtain the robust versions of the GPH estimator we just apply the LTS
and the MM methodologies to the regression model (3.3) with m = n®, based on
(3.2). This gives rise to the GPH-LTS and the GPH-MM estimators. For the
GPH and all other regression based estimators that follow, we will investigate the
e®ect of ® 2 [0:50; 0:86] on the estimates bias and variance.

3.2 Classical and robust SPR estimators

As shown in Brockwell and Davis (1991), the periodogram function is not a con-
sistent estimator of the spectral density function. Reisen (1994) proposed using
a consistent estimator which is a smoothed version of the periodogram function
(3.2), the SPR estimator.

More speci¯cally, the regression estimator SPR is obtained by replacing the
spectral density function in the expression (2.2), by the smoothed periodogram
function, denoted by Is(¢), given by

Is(w) =
1

2¼

ºX
j=¡º

·

µ
j

º

¶
°̂X(j) cos(jw); (3.8)

where ·(¢) is the Parzen lag window given by

·(u) =

8>>>><>>>>:
1¡ 6u2 + 6juj3; if juj · 1

2 ;

2(1¡ juj)3; if 12 < juj · 1;

0; otherwise.

(3.9)

The SPR estimator proposed by Reisen (1994) is obtained by applying the
OLS procedure to the regression model (3.3) based on (3.8) and (3.9). We call
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these estimates the SPR-LS. The truncation point in the Parzen lag window is
de¯ned by º = n¯, 0 < ¯ < 1. Here, we consider ¯ = 0:9 (see Reisen, 1994 for
a discussion on the value of ¯). The robust versions are obtained by applying the
LTS and the MM methodologies to (3.3) based on (3.8) and (3.9), producing the
SPR-LTS and the SPR-MM .

3.3 Classical and robust BA estimators

By considering the Bartlett lag window, another consistent estimator for the spec-
tral density function may be obtained. This spectral window will provide a smoothed
version of the periodogram function (3.8), where now the function ·(¢) is de¯ned
as

·(x) =

½
1¡ jxj; if jxj · 1
0; otherwise:

(3.10)

The classical and robust versions are obtained by applying the OLS, the LTS
and theMM methodologies to the regression model (3.3) based on (3.8) and (3.10),
producing the BA-LS, the BA-LTS, and the BA-MM estimators. The value of
m in (3.3) is again given by n®, and the truncation point º is set equal to 30 (see
Bollerslev and Wright, 2000).

3.4 Classical and robust R estimators

The regression estimator R, proposed by Robinson (1995) is obtained by applying
the Ordinary Least Squares method in (3.3) based on (3.2), but considering only
the frequencies wi, for i 2 fl; l + 1; ¢ ¢ ¢ ;mg, where l > 1 is a trimming value that
tends to in¯nity more slowly than m.

It would be interesting to compare the R and the LTS concepts. The R concept
trims the extreme zi values associated with the frequencies close to zero, which
we know are the important ones. On the other hand, the LTS concept trims the
extreme ordered residuals which may or may not be associated to small frequencies,
but certainly are associated to leverage points. In other words, the LTS procedure
can identify which data points associated with small frequencies are outliers and, if
they exist, excludes them from the calculations. The R-LTS and R-MM versions
are obtained by applying the robust methodologies, as previously.

3.5 Classical and robust GPHT estimators

The GPHT method (see Hurvich and Ray (1995) and Velasco (1999b)) uses a
modi¯ed periodogram function given by

I(wi) =
1

n¡1X
t=0

g(t)2

¯̄̄̄
¯
n¡1X
t=0

g(t)Xte
¡iwi t

¯̄̄̄
¯
2

; (3.11)
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where the tapered data is obtained from the cosine-bell function

g(t) =
1

2

·
1¡ cos

µ
2¼(t+ 0:5)

n

¶¸
: (3.12)

We obtain the classical GPHT -LS and the robust versions GPHT -LTS and
GPHT -MM by applying the classical and the robust methodologies to model (3.3)
based on (3.11) and (3.12), and setting m = n®.

4 Assessing the Estimators Performances

In this section we carry on a large simulation study to compare the ¯ve semi-
parametric (classical) estimators and their robust versions1 when estimating the
fractional parameter d in 35 data generating processes (DGP).

The notations and detailed speci¯cations of all DGP's considered are given in
Table 1. ModelsM1 toM22 possess long memory in volatility and short memory in
mean, being combinations of ARMA(p; q) and FIGARCH(r; d; s) processes. Models
M23 to M28 are FISV(p; d; q; ¾") processes, and models M29 to M35 possess just
long memory in the mean, being ARFIMA(p; d; q) processes. The notation t4 means
a t-student distribution with 4 degrees of freedom. Á and µ are the autoregressive
and moving average parameters in the ARFIMA model. ®1 and ¯1 correspond
to the autoregressive and moving average parameters in the FIGARCH process.
The processes f²tgt2Z in the ARFIMA and FISV models (M23 through M35) are
Gaussian.

To simulate the data and to compute the estimates we used the S language and
SPlus programs. We hold ¯xed the following speci¯cations:

² For each model considered the number of replications S is 300. All series
have length n = 1000.

² In all FIGARCH models considered ! = 0:10.
² The trimming constant l in the R estimator is ¯xed equal to 3.
² The constant º = n¯ for the SPR estimators is found by putting ¯ = 0:90.
Since n = 1000, º = 501:19.

² Both loss functions ½i, i = 1; 2, for the MM -estimator are chosen as the
Tukey Biweighted function (see Yohai, 1987). They are tuned such that the
resulting estimates possess 0.50 breakdown point and an e±ciency of 85% at
the normal model.

For each of the three versions of the semiparametric estimators GPH, SPR,
BA, R and GPHT , we considered 19 possibilities for the trimming constant ®.
Speci¯cally, we set ® 2 f0:50; 0:52; :::; 0:84; 0:86g. The version not tuned by ®,

1In a previous version of the paper we had considered the parametric Whittle estimator (Whit-
tle, 1953). The simulation results concerning this estimator were withdrawn from the present paper
since we now focus on bandwidth selection of semiparametric estimators. The results, however,
are avaliable upon request from the authors.
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that is, based on the [n=2] data points is also computed, and it is equivalent to set
® = 0:8997. Thus m varies through a fairly wide range, between 31:6 and 500.

Table 1: Notations and speci¯cations of all data generating processes considered in simu-
lations.

ARFIMA FIGARCH FISV Distr. Distr.
Model Á d µ ®1 d ¯1 Á d µ ¾" Zt "t

M1 || 0:00 0.50 0:00 || N(0; 1) ||
M2 || 0:00 0.50 0:00 || t4(0; 1) ||
M3 0.50 0:00 0:00 0:00 0.50 0:00 || N(0; 1) ||
M4 0.50 0:00 0:00 0:00 0.50 0:00 || t4(0; 1) ||
M5 || ¡0:20 0.50 0:00 || N(0; 1) ||
M6 || ¡0:20 0.50 0:00 || t4(0; 1) ||
M7 0:00 0:00 0.50 ¡0:20 0.50 0:00 || N(0; 1) ||
M8 0:00 0:00 0.50 ¡0:20 0.50 0:00 || t4(0; 1) ||
M9 0:50 0:00 0.00 0:00 0.25 0:20 || N(0; 1) ||
M10 0:50 0:00 0.00 0:00 0.25 0:20 || t4(0; 1) ||
M11 0:00 0:00 0.50 0:00 0.25 0:20 || N(0; 1) ||
M12 0:00 0:00 0.50 0:00 0.25 0:20 || t4(0; 1) ||
M13 0.20 0:00 0.20 ¡0:20 0.75 0.20 || N(0; 1) ||
M14 0.20 0:00 0.20 ¡0:20 0.75 0.20 || t4(0; 1) ||
M15 0.20 0:00 0.20 ¡0:20 0.50 0.20 || N(0; 1) ||
M16 0.20 0:00 0.20 ¡0:20 0.50 0.20 || t4(0; 1) ||
M17 0.20 0:00 0.20 ¡0:20 0.25 0.20 || N(0; 1) ||
M18 0.20 0:00 0.20 ¡0:20 0.25 0.20 || t4(0; 1) ||
M19 || 0.15 0:00 0.80 || N(0; 1) ||
M20 || 0.15 0:00 0.80 || t4(0; 1) ||
M21 0.50 0:00 ¡0:50 0.15 0:00 0.80 || N(0; 1) ||
M22 0.50 0:00 ¡0:50 0.15 0:00 0.80 || t4(0; 1) ||

M23 || || 0.60 0.30 0:00 0.30 N(0; 1)
M24 || || 0.60 0.30 0:00 0.30 t4(0; 1)
M25 || || 0:00 0.30 0.70 0.30 N(0; 1)
M26 || || 0:00 0.30 0.70 0.30 t4(0; 1)
M27 || || 0.60 0.30 0.70 0.30 N(0; 1)
M28 || || 0.60 0.30 0.70 0.30 t4(0; 1)

M29 0.60 0.45 0:00 || ||
M30 0.60 0.30 0:00 || ||
M31 0:00 0.45 0.90 || ||
M32 0:00 0.30 0.90 || ||
M33 0.60 0.45 0.70 || ||
M34 0.60 0.30 0.70 || ||
M35 0.60 0:00 0.70 || ||

When estimating d in volatility models, some authors had used the absolute, the
log-squared, or squared data (see Bollerslev and Wright, 2000) as volatility mea-
sures. Ding and Granger (1996) de¯ne the long memory property of ARCH models
as the limiting case of a model with N volatility components, a GARCH(N;N)
model, as N ! 1. This model displays the long range memory in powers of the
absolute data. Based on these considerations, we use here the absolute data to
estimate d in the FIGARCH processes. To estimate d in the FISV processes we
used the log squared data, as in Breidt et al. (1998) and Bollerslev and Wright
(2000). An issue not touched in the present paper is the estimators sensitivity to
series lengths or to the choice of the volatility measure.

Let d0 represent the parameter d true value in each model. For each estima-

tor bdj , j = 1; ¢ ¢ ¢ ; 300, the following statistics were computed to summarize its
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simulated probability distribution:

² The mean bias: for each bdj we compute Bj = 1
S

PS
i=1(

b
dji ¡ d0);

² The median bias: for each bdj we compute BjM = Mediani(
b
dji ¡ d0);

² The sample standard deviation sdj : for each bdj we compute the square root
of V j = 1

S¡1
PS
i=1(

b
dji ¡

¹bdj)2, where ¹bdj is the arithmetic mean of bdj1; bdj2; :::;cdjS;
² The 0.90% percentile con¯dence interval: for each bdj we compute the CIj =
[qj0:05; q

j
0:95], where q

j
p is the empirical p-quantile of estimator bdj .

For each model the following criteria were used to ¯nd out the best estimator:

² C1: Find the bdj for which the value of Bj2 + V j is minimum.
² C1¤: Find the bdj for which the value of jBjM j + jjCIj jj is minimum. Here,
the notation jBjM j means the absolute value of BjM , and jjCIj jj means the
lenght of CIj , that is, qj0:95 ¡ qj0:05.

For a given model and each criterion, the estimators are ranked and the 3 best
ones are recorded. By noting that there is little di®erence among the criteria values
obtained for the three highest ranked competitors, we decided to choose as the
overall winner the one (or the ones) selected by both criteria, despite its position.
In the case of ties, both (or the three) estimators are reported. In addition, in the
case that all six positions are occupied by di®erent estimators, the winners under
C1 and C1¤ are reported. In what follows we summarize the results for each model
considered.

4.1 Simulations results

We provide detailed analysis of the results from models M1 and M2, and then
summarize the results from the other models. In the tables that follow, whenever
the value for ® used is the maximum possible we write [n=2].

Results from model M1: ARFIMA(0; 0; 0) combined with a FIGARCH(0; 0:50; 0)
process with Gaussian conditional distribution. Figure 2 illustrates the trade o®
bias-variance, and how di±cult is choosing an optimality criterion. This ¯gure
shows the simulated distributions of the three best estimators according to the
following set up. In graph (a) we show the distributions of estimators possessing
smaller jBj j, and in graph (b) of those possessing smaller jBjM j. In the second row,
we show the simulated distributions of the estimators possessing smaller standard
deviation sdj in (c), and in (d) of those presenting the smaller con¯dence interval
length. Finally, the third row shows the winners from criteria C1, graph (e), and
C1¤, graph (f). The horizontal dotted line in all graphs corresponds to the true d
value, 0:50.
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As we can see in the second row of Figure 2, the estimators possessing smaller
variability are based on OLS estimation2. However they show unacceptable large
biases. If the primary concern is just bias, we observe that the GPHT estimator
shows up 5 times. When we combine an accuracy measure and a variability mea-
sure, the GPHT shows up 4 times. It seems that to correct the bias of the GPHT
estimator, for this model, one needs small ® values. We decided to choose the
classical GPHT:LS with ® = 0:54, the third place under C1, as the overall winner.
The results for model M1 illustrated in Figure 2 are given in detail in Table 2.

Table 2: Model M1: Three best results under all criteria used, and overall winner.

Criterion 1st. Estimator(®) 2nd. Estimator(®) 3rd. Estimator(®) Winner(®)

GPHT:LS(0:50) BA:MM(0:52) GPHT:LS(0:52) GPHT:LS(0:54)
abs(Bj) 0:0067 0:0129 0:0136 0:0303

GPHT:LS(0:50) GPHT:LS(0:52) GPHT:MM(0:50)

abs(Bj
M) 0:0089 0:0131 0:0140 0:0434

SPR:LS([n/2]) SPR:LS(0:86) BA:LS([n/2])
sdj 0:0518 0:0539 0:0541 0:1333

SPR:LS([n/2]) BA:LS([n/2]) SPR:LS(0:86)
jjCIj jj 0:1650 0:1704 0:1746 0:4304

GPHT:LS(0:58) GPHT:LS(0:56) GPHT:LS(0:54)
C1 0:0179 0:0182 0:0187 0:0187

SPR:LS([n/2]) GPHT:LS([n/2]) BA:LS([n/2])
C1¤ 0:3232 0:3297 0:3306 0:4738

Results from model M2: ARFIMA(0; 0; 0) combined with a FIGARCH(0; 0:50; 0)
process with t4 conditional distribution. The results are summarized in Table 3.
Again, the GPHT:LS estimator comes out as the overall winner, but now based
on a smaller ®-value, probably to improve bias-robustness of the estimates, which
might be a®ected by the heavier tails of the conditional distribution. Even though,
the bias of winner from model M2 is larger than that from model M1.

Table 3: Model M2: Three best results under the all criteria used, and overall winner.

Criterion 1st. Estimator(®) 2nd. Estimator(®) 3rd. Estimator(®) Winner(®)

GPHT:LS(0:50) GPHT:LS(0:52) GPHT:LS(0:54) GPHT:LS(0:50)
abs(Bj) 0:0759 0:0920 0:1040 0:0759

GPHT:LS(0:50) GPHT:LS(0:52) GPHT:LS(0:56)

abs(Bj
M ) 0:0799 0:0954 0:1131 0:0799

BA:LS(0:86) BA:LS(0:84) BA:LS([n/2])
sdj 0:0600 0:0601 0:0606 0:1560

BA:19:LS BA:LS([n=2] SPR:LS([n=2])
jjCIj jj 0:1876 0:1888 0:1899 0:5015

GPHT:LS(0:50) GPHT:LS(0:52) GPHT:LS(0:56)
C1 0:0301 0:0312 0:0316 0:0301

SPR:LS BA:LS GPH:LTS(0:86)
C1¤ 0:3811 0:3913 0:3945 0:5814

2This is somehow expected since we have a Gaussian process with no contaminations.
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Figure 2: The simulated distributions of best estimators from model M1. In the ¯rst row,
we show the estimators possessing smaller jBj j in (a), and those possessing smaller jBjM j
in (b). In the second row, we show the estimators possessing smaller standard deviation
sdj in (c), and those presenting the smaller con¯dence interval length in (d). Finally, the
third row shows the winners from criteria C1, graph (e), and C1¤, graph (f). Horizontal
dotted line corresponds to the true d value, 0:50.

In Table 2 as well as in Table 3 we observe that small ® values are related to
smaller biases, and large ® values are related to smaller variability. This trade
o® bias-variance is illustrated in Figure 3. This ¯gure shows the squared bias
and variance of a classical and a robust estimator, as functions of their ® values.
At the left hand side we plot the simulation results for the GPHT:LS, winner
in model M1, and at the right hand side we show the results for the BA:LTS,
winner in model M3. The triangles represent the squared mean bias and the
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diamonds represent the variances from the 300 repetitions of each one. The circles
point out the ¯nal choices, the GPHT:LS with ® = 0:54, and the BA:LTS using
all [n=2] frequencies. We observe that the robust procedure LTS shows better
performance when all [n=2] frequencies are used. This is actually expected since
the LTS procedure already trims the frequencies related to atypical points.
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Figure 3: The trade-o® bias-variance. Figure shows for each ®-value in the x-axis, the
squared bias and variance in the y-axis of the estimators GPHT:LS in modelM1 in the left,
and for the robust BA:LTS in model M3 in the right hand side. Points circled correspond
to the winners for each model.

Summary of results from all models considered. For all models considered we ob-
served an unacceptable large bias for the estimators winning under criterion C1¤.
Based on that we decided to drop this criterion. Instead, following the suggestion
of a referee, we implemented a third criterion for choosing the best estimator. This
criterion, denoted by C2, considers the number of times out of the S simulations,
the estimates 90% con¯dence interval did not capture the true parameter value.
This would measure not only the bias of the estimators, but also the behavior of
the estimator's variance and its asymptotic distribution.

Table 4 summarizes the simulation results for all DGP's considered. For each
model, we report the winners under C1 (column 2) and C2 (column 7). When all
frequencies are used we report [n=2] instead of their ® values. The third to sixth
columns provide the measures of bias and variability for the winner under C1.

The application of criterion C2 resulted in interesting ¯ndings. We ¯rst note
that the vast majority of the winners under C2 (83%) are robust estimators. For
modelsM1 andM2, criterion C2 con¯rmed the GPHT:LS based on small ®-values
as the best estimator. Criterion C2 also indicates that the GPHT:LS could be
the best option whenever just long memory (in volatility) is present and there is
no other form of short memory, either in mean or in volatility. Models falling in
this category are the above cited M1 and M2 and FISV models (see Table 4).
This suggests that short memory may act as contaminations breaking down the
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estimates based on the least squares method.

Table 4: Summary of results from all models.

DGP C1: Winner(®) abs(Bj) abs(BjM ) sdj jjCIj jj C2: Winner(®)

M1 GPHT:LS(0:54) 0.063 0.080 0.119 0.395 GPHT:LS(0:52)
M2 GPHT:LS(0:50) 0.076 0.080 0.156 0.502 GPHT:LS(0:50)
M3 BA:LTS([n=2]) 0.074 0.081 0.080 0.248 BA:MM([n=2])
M4 BA:LTS([n=2]) 0.019 0.035 0.118 0.384 BA:MM(0:84)
M5 GPHT:LS(0:62) 0.071 0.068 0.105 0.343 GPHT:MM(0:50)
M6 GPHT:LS(0:54) 0.065 0.079 0.137 0.449 BA:MM(0:54)
M7 GPHT:LS(0:52) 0.023 0.030 0.143 0.450 BA:MM(0:54)
M8 BA:LTS([n=2]) 0.133 0.142 0.080 0.249 BA:MM(0:54)
M9 BA:LS([n=2]) 0.013 0.011 0.044 0.146 GPHT:LTS(0:84)
M10 BA:LS(0:82) 0.004 0.011 0.055 0.170 GPHT:MM(0:60)
M11 SPR:LS([n=2]) 0.021 0.024 0.037 0.121 SPR:MM(0:54)
M12 SPR:LS(0:86) 0.004 0.011 0.055 0.181 SPR:LTS(0:86)
M13 BA:LTS([n=2]) 0.096 0.112 0.133 0.437 GPHT:LTS(0:84)
M14 BA:LTS([n=2]) 0.030 0.019 0.166 0.518 GPHT:MM(0:60)
M15 SPR:LS([n=2]) 0.040 0.044 0.054 0.182 GPHT:MM([n=2])
M16 SPR:LS([n=2]) 0.004 0.003 0.066 0.201 GPHT:MM(0:86)
M17 BA:LS(0:84) 0.001 0.002 0.035 0.117 BA:MM(0:76)
M18 BA:LS(0:80) 0.005 0.010 0.056 0.182 BA:MM(0:76)
M19 BA:LTS([n=2]) 0.099 0.098 0.066 0.216 BA:MM([n=2])
M20 BA:LTS([n=2]) 0.103 0.102 0.087 0.267 BA:MM([n=2])
M21 BA:LS(0:50) 0.119 0.116 0.052 0.176 SPR:MM(0:50)
M22 BA:LS(0:50) 0.126 0.121 0.061 0.208 SPR:MM(0:50)

M23 SPR:LS(0:86) 0.000 0.001 0.032 0.106 SPR:MM(0:60)
M24 SPR:LS(0:84) 0.004 0.003 0.036 0.117 SPR:MM(0:50)
M25 GPHT:LS(0:58) 0.057 0.059 0.111 0.337 GPHT:LS(0:54)
M26 GPHT:LS(0:58) 0.038 0.023 0.114 0.376 GPHT:LS(0:56)
M27 GPHT:LS(0:60) 0.033 0.035 0.110 0.358 GPHT:LS(0:60)
M28 GPHT:LS(0:60) 0.025 0.030 0.102 0.336 GPHT:LS(0:60)

M29 BA:LS(0:64) 0.008 0.009 0.059 0.189 GPHT:MM(0:50)
M30 BA:LS(0:62) 0.003 0.003 0.055 0.180 GPHT:MM(0:52)
M31 GPHT:LS(0:50) 0.193 0.191 0.171 0.555 GPHT:MM(0:50)
M32 GPHT:LS(0:50) 0.218 0.214 0.166 0.534 GPHT:MM(0:50)
M33 BA:LTS(0:68) 0.040 0.039 0.075 0.252 GPHT:MM(0:52)
M34 BA:LTS(0:64) 0.067 0.069 0.075 0.257 SPR:MM(0:50)
M35 BA:LS(0:50) 0.020 0.021 0.038 0.122 GPHT:MM(0:50)

Actually, by including short memory in the mean of models M1 and M2, what
would give rise to modelsM3 andM4, results as the winner a robust version of the
BA estimator, either the BA:LTS or the BA:MM , with large ®. The results are no
so clear when we add short memory in volatility to modelsM1 andM2 (modelsM5
and M6), when one may apply either a classical or a robust estimation procedure
on the BA or on the GPHT estimator, and choose a small ® value.

Models M7 through M18 are all long memory processes in the volatility, com-
bined with short memory in the mean and in the volatility. For these models,
and according to criterion C2, we would select either the GPHT:LTS based on
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all frequencies, or a robust MM -estimation based semiparametric estimator with
moderate ®, either the GPHT:MM or the BA:MM . We note that in modelsM13
and M14 the true d value is very large, 0:75. For these models the criteria C1 and
C2 agree that a robust estimator is needed.

In the case of no long memory in the volatility, simple GARCH model (M19
andM20), the winner is a robust version of the BA estimator, either LTS orMM
based on the [n=2] frequencies. However, when the short range e®ects are included
to these GARCH(1,1) processes, giving rise to models M21 and M22, the winner
under C1 becomes the classical BA:LS tuned with the smaller ® value.

When it comes to ARFIMA models (M29 toM35), according to C1, one should
use either the classical GPHT with ® = 0:50, or the BA estimator. The range for
® for the BA:LS is not so clear, and could vary from 0:50 to 0:68. However, for
the ARFIMA models, the C2 criterion was able to select an overall winner, the
GPHT:MM based on ® = 0:50.

None of the experiments resulted in a winner type R-estimator. This is in line
with Deo and Hurvich (2003) remark that when computing the GPH estimator it
is crucial for the ¯nite sample performance of this estimator (which may also be
true for all regression type estimators) that the lowest frequencies not be dropped.

5 Real Data

In this section we provide an illustration using an emerging market returns series.
The data consist of 2608 observations of the Taiwan daily index returns from Jan-
uary 3, 1994 to December 31, 2003. This period includes examples of extreme
market events such as the Asian series of devaluation during 1997. Crises in East
Asian economies usually result in considerable depreciations of national currencies
and have important global repercussions. Taiwan is the largest emerging market,
with a total market capitalization of US$ 379 billion, followed by Korea (US$ 298
billion) and India (US$ 252 billion).

Financial returns typically exhibit short memory in mean and volatility just for
the ¯rst few lags, and weak long memory in volatility. These characteristics would
correspond to speci¯cation of models M17 and M18. Thus, to estimate d without
having ¯tted yet a fully parametric model, we decided to apply the BA:LS(0:82)
estimator, the winner of models M17 and M18, which yielded a d estimate of
0.1706. We also computed the winner for these models under criterion C2, the
BA:MM tuned with ® = 0:76, which yielded the value 0:1630.

As an exploratory analysis, and for the sake of completeness, we examined the
plot suggested in Taqqu and Teverovsky (1996). According to this technique, given
a semiparametric estimator, to choose its best ® value, one could examine the d
estimates as functions of their corresponding ® values. This ¯gure (not shown
here) provided some indication of °atness for ® in [0:64; 0:74]. The Taqqu and
Teverovsky (1996) estimates would be BA:LS(0:70) = 0:2045. We note that any
graphical procedure, though very interesting, is clearly subjective, and are di±cult
to be applied within a more complex decision based procedure.

To complete this analysis, we then ¯tted a fully parameterised model to the
Taiwan daily returns. To model the serial dependence in the mean and variance
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of the daily returns we considered all combinations of ARMA(p; q) and FIGARCH
(r; d; s) processes derived from setting p = 0; 1; 2, q = 0; 1; 2, r = 0; 1; 2, and
s = 0; 1; 2. Models were estimated by maximum likelihood using the SPlus module
FinMetrics, based on Gaussian conditional distribution (the only one available
for estimation of FIGARCH models), and the AIC criterion was used to select
the best model. The best ¯t turned out to be an ARMA(1; 1) combined with a
FIGARCH(1; d; 0) with all parameters estimates highly signi¯cant, see Table 5,
estimating d as 0:2566.

Table 5: ARMA(1; 1)-FIGARCH(1; d; 0) ¯t to daily returns from Taiwan.

Estimate Std.Error t value Pr(> jtj)
Á 0.5835 0.26251 2.223 1.316e-002
µ -0.5446 0.27165 -2.005 2.254e-002
! 0.4721 0.04669 10.111 0.000e+000
®1 -0.1983 0.02487 -7.974 1.110e-015
d 0.2566 0.02062 12.446 0.000e+000

Actually, none of the models used in the simulations possesses the speci¯ca-
tion ARMA(1; 1) combined with FIGARCH(1; d; 0) found for Taiwan. Thus we
carried out another simulation experiment considering this model found by the
fully parametric approach, setting as true parameters values those given in Table
5, i.e., d = 0:26, ®1 = ¡0:20, ! = 0:47, µ = ¡0:54, and Á = 0:58, and Gaussian
innovations. The same estimators were computed, and the winner according to
criterion C1 was the classical BA:LS(0:82) (absolute bias = 0.0107, and standard
error equal to 0.0407).

6 Conclusions

Semiparametric methods seem to be very suitable for empirical analysis of long
memory in volatility processes, specially because the high complexity of fully para-
metric approach based on the joint modeling of volatility and mean. However, care
is needed when using semiparametric regression type estimators, as their statistical
properties also depend on a bandwidth value. Additional complications arise from
the lack of robustness of the least squares estimation methodology. In this paper
we adressed the issue of tuning a selection of semiparametric estimators in order to
balance their bias and variance. We considered models with long memory in mean
(ARFIMA) and in the volatility (FIGARCH and FISV processes), with innovations
following either a Gaussian or a t-student distribution.

We carried out several simulation experiments to identify the optimal band-
width value, and considered two criteria for choosing the best estimator. The
mean squared error criterion, denoted by C1, and the proportion of times within
the total number of simulations, the estimates 90% con¯dence interval did not
capture the true parameter value, denoted by C2.

A result from the simulations is that the best number m of frequencies to be
used (or best ® value) is completely dependent on the data generating process. For
the same FIGARCH speci¯cation, di®erent models for the conditional mean will
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lead to a di®erent tuning choice. Another conclusion is that the range [0:50; 0:86]
for specifying ® seems to be adequate.

For models possessing long memory in volatility and no other form of short
memory, both criteria selected the GPHT:LS based on small ®-values as the best
estimator. Models falling in this category may be FIGARCH and FISV models. It
seems that short memory may act as contaminations for these models, since when
we include short memory in the mean for these models, we get as winners either
the robust BA:LTS or BA:MM .

When it comes to ARFIMA models, and classical estimation, one should use
just few frequencies, setting ® between 0:50 and 0:60. Then either the GPHT or
the BA estimator may be used. Under criterion C2 we are able to select an overall
winner for the ARFIMA models, the GPHT:MM based on ® = 0:50.

The vast majority of the winners under C2 (83%) are robust estimators. The
less convincing results from the robust estimators under C1 may be related to
their speci¯cation, based on a 0:50 breakdown point. More e±cient estimates
mat be obtained if smaller breakdown point versions are speci¯ed. We expect
that under contaminated models the robust estimators will present an even better
performance. We plan to investigate this issue in a future research.

In summary, whenever no other information about the data generating pro-
cess is available, we would select the BA or the GPHT estimator, based on all
frequencies and LTS-estimation, or based on ® = 0:50 and MM -estimation.
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