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Śılvia R.C. Lopes and Guilherme Pumi

Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
Corresponding author: S.R.C. Lopes (silvia.lopes@ufrgs.br)

Abstract

In this work we investigate the finite sample performance of a certain class of Gaussian Semiparametric

Estimators (GSE) for the memory parameter in long-range dependent multivariate time series. The class

of models considered here satisfies simple conditions on the spectral density function, restricted to a small

neighborhood of the zero frequency. This includes, but is not limited to, the class of VARFIMA models. We

present a simulation study to assess the finite sample properties of the proposed estimator in the context

of bivariate VARFIMA(0,d, 0) processes for which the innovation’s joint distribution is Gaussian, but the

marginals are not. Marginal distributions considered here present heavier tails than the standard Gaussian

distribution and include the Student’s t, the Logistic and the hyperbolic-Secant distributions.
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1 Introduction

The estimation of the memory parameter in long-range dependent multivariate time
series has a long history. On the parametric case, Sowell (1989) introduced the
maximum likelihood approach for the class of VARFIMA processes, later rigorously
developed by Hosoya (1997) in a more general context. The method is computa-
tionally intensive, especially considering the limited power of the computers in late
1980’s and early 1990’s. Later Luceño (1996) and, more recently, Tsay (2010) con-
sidered computationally cheaper approximations to the exact maximum likelihood.
Although the parametric approach does present good properties like n1/2-consistency
and asymptotic normality, the theory heavily relies on the Gaussianity assumption
on the process, requires strong distributional and regularity conditions and it is very
sensible regarding misspecifications on the parametric structure of the process.

The class of the so-called Gaussian Semiparametric Estimators (abbreviated
GSE) of the memory parameter in long-range dependent processes comprehend esti-
mators based on approximations of the spectral density in the vicinities of the zero
frequency. The class of GSE estimators present several advantages over the para-
metric approach including less distributional assumptions and being more efficient
and robust regarding to the short term dependency structure of the process. Al-
though the name, it is important to notice that Gaussianity is nowhere required in
the asymptotic theory. It was first introduced in Künsch (1987), but the rigorous
asymptotic theory of a GSE type estimator was developed several years later in the
seminal papers Robinson (1995a) and Robinson (1995b).

In Lobato (1999) the author introduces a two-step GSE which is n1/2-consistent
and asymptotically normally distributed under some mild conditions. Closely related
to Lobato’s two-step GSE is the estimator introduced in Shimotsu (2007) where the
author introduces a GSE based on a different approximation for the spectral density
function for a large class of processes. The GSE of Shimotsu is also n1/2-consistent
and asymptotically normally distributed. In Nielsen (2011) the work of Shimotsu is
extended to cover non-stationary time series and recently, Pumi and Lopes (2012)



and Pumi and Lopes (2013) introduce a generalization of Lobato’s and Shimotsu’s
GSE, respectively.

In this paper we analyze the finite sample performance of the class of estimators
introduced in Pumi and Lopes (2012) in the context of bivariate VARFIMA(0,d, 0)
processes. We consider the case where the bivariate distribution of the innovation
process is multivariate Gaussian, but its marginals present heavier tails than the
Gaussian distribution. In order to obtain such prescribed structure, we apply some
tools from the theory of copulas as in Lopes et al. (2013). The paper is divided as
follows. In the next section we introduce the necessary tools and framework for the
work. In section 3 detailed description of the Monte Carlo study proposed in this
paper and the data generating process is presented, as well as the simulation results.
Section 4 concludes the paper.

2 Framework and Preliminaries

Let us briefly review the class of GSE introduced in Pumi and Lopes (2012). Let
{Xt}∞t=0 be a weakly stationary q-dimensional process and let f denote the spectral
density matrix function of Xt. Assume that f satisfies the following local approxi-
mation

f(λ) ∼ diag{λ−diei(π−λ)di/2} G0 diag{λ−diei(π−λ)di/2}, as λ→ 0+, (2.1)

where di ∈ (−0.5, 0.5), i = 1, · · · , q and G0 is a symmetric positive definite real
matrix. Processes satisfying (2.1) include several fractionally integrated processes,
such as the class of VARFIMA processes. Each coordinate of a process {Xt}∞t=0
satisfying (2.1) with di > 0 exhibit long-range dependence in the sense that the
respective marginal spectral density function satisfies f(λ) ∼ Mλ−2di , as λ → 0+,
for some constant M > 0 and i ∈ {1, · · · , q}. Hence, the parameter d := (d1, · · · , dq)
ultimately determines the long run dependence structure of the process.

Let fn denote an arbitrary estimator of f based on a set of observations X1, · · · ,Xn
from {Xt}∞t=0. Consider the objective function

S(d) := log
(

det
{
Ĝ(d)

})
− 2

q∑
k=1

dk
1

m

m∑
j=1

log(λj), (2.2)

with

Ĝ(d) :=
1

m

m∑
j=1

Re

[
diag{λ−dij }fn(λj) diag{λ−dij }

]
, (2.3)

where λj := 2πj/n, for j = 1, · · · ,m and m = o(n). The estimator of d is then
defined as

d̂ := arg min
d∈Θ

{S(d)}, (2.4)

where Θ denotes the space of admissible estimates, a subset of (−0.5, 0.5)q.
In Pumi and Lopes (2012) the authors derive conditions on fn in order to obtain

(2.4) a consistent and asymptotically normally distributed estimator. It is satisfied
by general VARFIMA processes. Now let

wn(λ) :=
1√
2πn

n∑
t=1

Xte
itλ and In(λ) := wn(λ)wn(λ)

′

be the discrete Fourier transform and the periodogram of Xt at λ, respectively, where

A
′

denotes the conjugate transpose of a complex matrix A.



Let Wn(·) :=
(
W ij
n (·)

)q
i,j=1

be an array of functions (called weight functions) and

{`(k)}k∈N be an increasing sequence of positive integers. For a Fourier frequency λj ,
we define the smoothed periodogram of Xt by

fn(λj) :=
∑
|k|≤`(n)

Wn(k)� wn(λj+k)wn(λj+k)
′
, (2.5)

where � denotes the Hadamard product.
For i ∈ {1, · · · , q}, let hi : [0, 1] → R be a collection of functions. Consider the

vector of functions Ln(·) :=
(
Lin(·)

)q
i=1

defined as Lin(λ) := hi
(
λ/n

)
and let

Sn(λ) :=

(
Lin(λ)√∑n
t=1 L

i
n(t)2

)q
i=1

.

The tapered periodogram IT (λ;n) of {Xt}nt=1 is then defined by setting

IT (λ;n) := wT (λ;n)wT (λ;n)
′
, where wT (λ;n) :=

1√
2π

n∑
t=1

Sn(t)�Xte
−itλ. (2.6)

For a complete discussion on the properties of the ordinary, tapered and smoothed
periodogram, we refer the reader to Priestley (1981) while a discussion on their
properties under long-range dependence can be found in Hurvich and Beltrão (1993).

In this work, we consider fn in (2.3) as the ordinary periodogram (which leads
to the single-step version of Lobato, 1999’s estimator as considered in Shimotsu,
2007 and Pumi and Lopes, 2012) the smoothed periodogram and the tapered peri-
odogram. Under some mild conditions when fn is the ordinary periodogram or the
tapered periodogram, the estimator (2.4) is n1/2-consistent and asymptotically nor-
mally distributed (Lobato, 1999, Shimotsu, 2007 and Pumi and Lopes, 2012), while
when fn is the smoothed periodogram, the result is conjectured to be true and there
is empirical evidence supporting the claim (see Pumi and Lopes, 2012).

3 Monte Carlo Study

In this section we present the results of a Monte Carlo study conducted to assess the
robustness of the estimator (2.4) against heavy tailed marginals. In Pumi and Lopes
(2012) the authors present a Monte Carlo study based on bidimensional Gaussian
VARFIMA(0,d, 0). In this work, we consider VARFIMA(0,d, 0) process for which
the bivariate distribution on the innovation process is bivariate Gaussian, but the
marginals are not. We consider the traditional Student’s t distribution with 3 and
7 degrees of freedom (denoted by t3 and t7, respectively) the Standard Logistic dis-
tribution (denoted by Logistic(0,1)) and the hyperbolic-secant distribution (denoted
by Hyp(1)) (with densities respectively given by

f(x) =
1

4
sech

(x
2

)2

and g(x) =
1

2
sech

(πx
2

)
,

for x ∈ R) as marginals. These distributions present heavier tails than the standard
Normal distribution, with excess of kurtosis∞ for the t3, 2 for t7 and Hyp(1) and 6/5
for the Logistic(0,1). In order to couple the bidimensional and marginal requirements
we apply some tools from copulas (as in Lopes et al., 2013). We briefly explain
the idea of the method. Let Φ and Φ−1 denote the distribution and the quantile
function of a Standard Normal random variable, respectively. Also let Φρ denote
the distribution function of a bivariate normal distribution with mean (0, 0)′ and



variance-covariance matrix given by Ωρ :=
( 1 ρ
ρ 1

)
. The so-called Gaussian family of

copulas comprehend the copulas given by

Cρ(u, v) = Φρ
(
Φ−1(u),Φ−1(v)

)
,

for ρ ∈ [−1, 1] and (u, v) ∈ [0, 1]2. Now suppose we want to generate a sample of
size n, say {(x1, y1), · · · , (xn, yn)}, from a bivariate random vector (X,Y ) in such
a way that the joint distribution function of X and Y is the bivariate Gaussian
distribution with variance-covariance matrix Ωρ and the marginals of X and Y are
two prescribed distributions, say F1 and G1, respectively. In order to accomplish the
joint and marginal prescription, the following steps are applied:

1. Generate a random sample {(u1, v1), · · · , (un, vn)} from Cρ.

2. The desired sample is obtained by setting xi = F−1
1 (ui) and yi = G−1

1 (vi),
i = 1, · · · , n.

To obtain another sample from (X,Y ) with different marginals F2 and G2, one can
use the same sample {(u1, v1), · · · , (un, vn)} from Cρ and substitute F1 and G1 in
step 2 by F2 and G2, respectively. The two samples obtained this way have the same
joint dependence but different marginal distributions. This method allows one to
study how the marginal behavior affects some quantity of interest by keeping the
joint behavior of the sample (determined by the copula) fixed and introducing the
features of interest directly into the marginals.

The goal of the conducted Monte Carlo study is to analyze the robustness of the
estimator (2.4) regarding the marginal specification of the process. The time series
are generated from bivariate VARFIMA(0,d, 0) processes with memory parameter
d ∈ {(0.1, 0.3), (0.2, 0.4), (0.1, 0.4)} by using the MA(∞) representation of the pro-
cess (truncated at 50,000 coefficients). The sample size is held fixed in 1,000 and
1,000 replications of each experiment are performed. The innovation processes are
generated by using the methodology above described. The joint distribution of the
innovation process is held fixed as bivariate Gaussian with variance-covariance matrix
Ωρ, for ρ ∈ {0.2, 0.4, 0.7} in each experiment. The marginal distributions are held
fixed as t3, t7, Logistic(0, 1) and Hyp(1) for both components in each experiment.

We consider 3 different estimators of the memory parameter d, all of them are

variations of (2.4). We denote by d̂op the estimator (2.4) with fn taken as the ordi-
nary periodogram. The estimator based on the tapered periodogram is denoted by

d̂tp, while the estimator based on the smoothed periodogram is denoted by d̂sp. For
the tapered periodogram we apply the so-called cosine-bell tapering function and for
the smoothed periodogram, we apply the so-called Bartlett’s weights (see Hurvich
and Beltrão, 1993, Priestley, 1981 and Pumi and Lopes, 2012). The smoothed peri-
odogram is truncated at bn0.9c = 501 while the cut-off point of the estimator (2.4)
is m = bn0.85c = 354. These are the values suggested in Pumi and Lopes (2012).

In Table 3.1 the mean estimated values along with the mean square error (×100,
given in parenthesis) values are presented. We observe that the overall performance
of all estimators is very good. From the table we observe that in most cases the

estimator based on the smoothed periodogram d̂sp presents the smallest bias and
the smallest mean square error among all estimators. The estimator based on the
tapered periodogram presents uniformly higher mean square error which is coherent
with the results in Pumi and Lopes (2012). Judging by the results obtained, it is clear
that the excess of kurtosis in the marginal distributions considered in this study did
not affect significantly the performance of the estimators. We observe, nevertheless,
that the estimation results for the case where the marginals are t7, Logistic(0, 1)



Table 3.1: Simulation results. Presented are the mean estimated and the mean square error (×100,
given in parenthesis) values.

d d̂ t3 t7 Logistic(0, 1) Hyp(1)

ρ = 0.2

(0
.1
,
0
.3
)

d̂op 0.0962 (0.072) 0.2838 (0.098) 0.0959 (0.075) 0.2841 (0.103) 0.0958 (0.075) 0.2842 (0.103) 0.0959 (0.075) 0.2841 (0.103)

d̂tp 0.1008 (0.211) 0.2919 (0.182) 0.0938 (0.178) 0.2849 (0.197) 0.0937 (0.187) 0.2883 (0.185) 0.0945 (0.228) 0.2857 (0.197)

d̂sp 0.0973 (0.068) 0.2918 (0.079) 0.0971 (0.071) 0.2930 (0.083) 0.0971 (0.071) 0.2931 (0.083) 0.0971 (0.071) 0.2928 (0.083)

(0
.2
,
0
.4
)

d̂op 0.1917 (0.077) 0.3801 (0.113) 0.1913 (0.081) 0.3804 (0.117) 0.1913 (0.081) 0.3804 (0.118) 0.1913 (0.081) 0.3803 (0.117)

d̂tp 0.1932 (0.234) 0.3900 (0.198) 0.1909 (0.190) 0.3869 (0.191) 0.1925 (0.201) 0.3873 (0.192) 0.1921 (0.209) 0.3907 (0.207)

d̂sp 0.1945 (0.070) 0.3969 (0.091) 0.1944 (0.073) 0.3985 (0.095) 0.1944 (0.073) 0.3986 (0.095) 0.1944 (0.074) 0.3983 (0.095)

(0
.1
,
0
.4
)

d̂op 0.0965 (0.072) 0.3804 (0.112) 0.0962 (0.075) 0.3806 (0.116) 0.0962 (0.075) 0.3807 (0.117) 0.0962 (0.075) 0.3806 (0.117)

d̂tp 0.1011 (0.244) 0.3939 (0.190) 0.0907 (0.213) 0.3853 (0.193) 0.0961 (0.160) 0.3912 (0.184) 0.0925 (0.268) 0.3885 (0.203)

d̂sp 0.0975 (0.068) 0.3972 (0.091) 0.0974 (0.071) 0.3989 (0.095) 0.0974 (0.071) 0.3991 (0.096) 0.0974 (0.071) 0.3987 (0.095)

ρ = 0.4

(0
.1
,
0
.3
)

d̂op 0.0969 (0.068) 0.2841 (0.096) 0.0967 (0.070) 0.2848 (0.098) 0.0967 (0.070) 0.2849 (0.098) 0.0967 (0.070) 0.2848 (0.098)

d̂tp 0.0919 (0.204) 0.2868 (0.179) 0.0936 (0.221) 0.2857 (0.209) 0.0920 (0.188) 0.2847 (0.213) 0.0998 (0.240) 0.2935 (0.204)

d̂sp 0.0979 (0.064) 0.2929 (0.077) 0.0979 (0.066) 0.2946 (0.078) 0.0979 (0.066) 0.2948 (0.078) 0.0979 (0.066) 0.2944 (0.079)

(0
.2
,
0
.4
)

d̂op 0.1924 (0.073) 0.3804 (0.111) 0.1922 (0.075) 0.3811 (0.112) 0.1922 (0.075) 0.3811 (0.112) 0.1922 (0.075) 0.3810 (0.113)

d̂tp 0.1916 (0.246) 0.3895 (0.193) 0.1936 (0.205) 0.3887 (0.212) 0.1935 (0.175) 0.3892 (0.204) 0.1919 (0.240) 0.3911 (0.216)

d̂sp 0.1952 (0.066) 0.3985 (0.092) 0.1953 (0.068) 0.4006 (0.094) 0.1953 (0.068) 0.4008 (0.094) 0.1952 (0.068) 0.4004 (0.094)

(0
.1
,
0
.4
)

d̂op 0.0979 (0.068) 0.3814 (0.108) 0.0981 (0.070) 0.3823 (0.108) 0.0981 (0.070) 0.3824 (0.109) 0.0981 (0.070) 0.3822 (0.109)

d̂tp 0.0979 (0.209) 0.3924 (0.176) 0.0918 (0.178) 0.3841 (0.190) 0.0972 (0.159) 0.3918 (0.184) 0.0974 (0.194) 0.3911 (0.204)

d̂sp 0.0991 (0.064) 0.3997 (0.093) 0.0995 (0.066) 0.4022 (0.096) 0.0996 (0.066) 0.4024 (0.096) 0.0995 (0.066) 0.4019 (0.096)

ρ = 0.7

(0
.1
,
0
.3
)

d̂op 0.1001 (0.058) 0.2878 (0.080) 0.1008 (0.058) 0.2895 (0.077) 0.1008 (0.058) 0.2896 (0.077) 0.1007 (0.059) 0.2893 (0.078)

d̂tp 0.0934 (0.204) 0.2863 (0.199) 0.0923 (0.220) 0.2826 (0.224) 0.0947 (0.165) 0.2862 (0.189) 0.0967 (0.230) 0.2886 (0.226)

d̂sp 0.1018 (0.055) 0.2978 (0.069) 0.1029 (0.057) 0.3007 (0.068) 0.1030 (0.057) 0.3009 (0.068) 0.1028 (0.057) 0.3004 (0.068)

(0
.2
,
0
.4
)

d̂op 0.1955 (0.060) 0.3842 (0.092) 0.1963 (0.060) 0.3857 (0.088) 0.1963 (0.060) 0.3858 (0.088) 0.1962 (0.060) 0.3856 (0.088)

d̂tp 0.1889 (0.195) 0.3878 (0.193) 0.1883 (0.213) 0.3883 (0.191) 0.1917 (0.192) 0.3898 (0.191) 0.1921 (0.214) 0.3897 (0.231)

d̂sp 0.1996 (0.055) 0.4042 (0.092) 0.2010 (0.056) 0.4075 (0.095) 0.2011 (0.056) 0.4077 (0.095) 0.2009 (0.056) 0.4072 (0.095)

(0
.1
,
0
.4
)

d̂op 0.1050 (0.063) 0.3889 (0.082) 0.1069 (0.066) 0.3916 (0.077) 0.1070 (0.066) 0.3918 (0.077) 0.1068 (0.065) 0.3914 (0.078)

d̂tp 0.0938 (0.180) 0.3890 (0.193) 0.0988 (0.249) 0.3907 (0.232) 0.0930 (0.187) 0.3855 (0.186) 0.1007 (0.251) 0.3940 (0.210)

d̂sp 0.1080 (0.065) 0.4093 (0.104) 0.1107 (0.070) 0.4140 (0.114) 0.1108 (0.070) 0.4143 (0.115) 0.1105 (0.070) 0.4136 (0.113)

and Hyp(1) (whose excesses of kurtosis are relatively close) are more alike compared
to each other than when compared to t3 (whose excess of kurtosis is ∞). Still, in
most cases this difference is only on the third decimal place. Also, we observe that
there seems to be an influence of the correlation (ρ) between the components on the
innovation processes on the estimated values. The higher the correlation, the smaller

bias and the mean square error tend to be, except in some cases for d̂tp.

4 Conclusions

In this work we compare the finite sample performance among 3 estimators of the
memory parameter in the context of multivariate long-range dependent processes.
These estimators belong to a certain general class of Gaussian Semiparametric Esti-
mators introduced in Pumi and Lopes (2012) generalizing previous work of Lobato
(1999) and Shimotsu (2007). These estimators are based on a certain objective func-
tion which depends on the choice of a spectral density matrix estimator. In this work
we consider 3 estimators based on different spectral density estimators, namely the
ordinary, the tapered and the smoothed periodogram.

A Monte Carlo simulation study based on bivariate VARFIMA(0,d, 0) processes



is conducted to analyze the finite sample performance of the considered estimators.
The innovation process is taken to be jointly Gaussian but coupled with heavy tailed
marginals. Student’s t, Logistic and Hyperbolic-Secant distributions are considered.
To accomplish the prescribed distributional structure, some tools from the theory of
copulas are applied to generate the time series necessary to the study.

The overall performance of the considered estimators are satisfactory, with a
considerable advantage of the estimator based on the smoothed periodogram over
the others. The simulation results also show that the tail thickness in the innovation
processes’ marginals do not considerably affect the performance of the considered
estimators in this study. Our findings also suggest an increase on the performance
of the estimators as the correlation on the innovation process increases.
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[3] Künsch, H. (1987). “Statistical Aspects of Self-Similar Processes”. In Prokhorov, Yu. and
Sazanov, V.V. (Eds.), Proceedings of the First World Congress of the Bernoulli Society. Utrecht:
VNU Science Press, 67-74.

[4] Lobato, I.N. (1999). “A Semiparametric Two-Step Estimator in a Multivariate Long Memory
Model”. Journal of Econometrics, 90, 129-153.

[5] Lopes, S.R.C.; Pumi, G. and Zaniol, K. (2013). “Mallows Distance in VARFIMA(0,d, 0) Pro-
cesses”. Communications in Statistics: Computations and Simulations, 42(1), 24-51.

[6] Luceño, A. (1996). “A Fast Likelihood Approximation for Vector General Linear Processes with
Long Series: Application to Fractional Differencing”. Biometrika, 83(3), 603-614.

[7] Nielsen, F.S. (2011). “Local Whittle Estimation of Multi-Variate Fractionally Integrated Pro-
cesses”. Journal of Time Series Analysis, 32(3), 317-335.

[8] Priestley, M.B. (1981). Spectral Analysis and Time Series. London: Academic Press.

[9] Pumi, G. and Lopes, S.R.C. (2012). “A Semiparametric Estimator for Long-Range Dependent
Multivariate Processes”. Submitted.

[10] Pumi, G. and Lopes, S.R.C. (2013). “A Generalization of a Gaussian Semiparametric Estimatior
on Multivariate Long-Range Dependent Processes”. Submitted.

[11] Robinson, P.M. (1995a). “Log-Periodogram Regression of Time Series with Long Range De-
pendence”. Annals of Statistics, 23(3), 1048-1072.

[12] Robinson, P.M. (1995b). “Gaussian Semiparametric Estimation of Long Range Dependence”.
Annals of Statistics, 23(5), 1630-1661.

[13] Shimotsu, K. (2007). “Gaussian Semiparametric Estimation of Multivariate Fractionally Inte-
grated Processes”. Journal of Econometrics, 137, 277-310.

[14] Sowell, F. (1989). “Maximum Likelihood Estimation of Fractionally Integrated Time Series
Models”. Working Paper, Carnegie-Mellon University.

[15] Tsay, W-J. (2010). “Maximum Likelihood Estimation of Stationary Multivariate ARFIMA
Processes”. Journal of Statistical Computation and Simulation, 80(7-8), 729-745.


