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Abstract
In this work we study some computational aspects for the Bayesian analysis involving stable

distributions. It is well known that, in general, there is no closed form for the probability
density function of stable distributions. However, the use of a latent or auxiliary random
variable facilitates to obtain any posterior distribution when related to stable distributions. To
show the usefulness of the computational aspects, the methodology is applied to two examples:
one is related to daily price returns of Abbey National shares, considered in [1], and the
other is the length distribution analysis of coding and non-coding regions in a Homo sapiens
chromosome DNA sequence, considered in [2]. Posterior summaries of interest are obtained
using the OpenBUGS software.

Keywords: Stable Laws; Bayesian Analysis; DNA Sequences; MCMC Methods; OpenBUGS
Software.

1 Introduction

A wide class of distributions that encompasses the Gaussian one is given by the class of stable dis-
tributions. This larger class defines location-scale families that are closed under convolution. The
Gaussian distribution is a special case of this distribution family (see for instance, [1]), described
by four parameters α, β, δ and σ. The α ∈ (0, 2] parameter defines the “fatness of the tails”,
and when α = 2 this class reduces to Gaussian distributions. The β ∈ [−1, 1] is the skewness
parameter and for β = 0 one has symmetric distributions. The location and scale parameters are,
respectively, δ ∈ (−∞,∞) and σ ∈ (0,∞) (see [3]).

Stable distributions are usually denoted by Sα(β, δ, σ). If a random variable X ∼ Sα(β, δ, σ),
then Z = X−δ

σ ∼ Sα(β, 0, 1) (see [4] and [5]).
The difficulty associated to stable distributions Sα(β, δ, σ), is that in general there is no simple

closed form for their probability density functions. However, it is known the probability density
functions of stable distributions are continuous ([6]; [7]) and unimodal ([8]; [9]). Also the support
of all stable distributions is given in (−∞,∞), except for α < 1 and |β| = 1 when the support is
(−∞, 0) for β = 1 and (0,∞) for β = −1 (see [10]).

The characteristic function Φ (·) of a stable distribution is given by

log [Φ (t)] =

{
iδt− | σt |α

[
1− iβsign (t) tan

(
πα
2

)]
, for α 6= 1

iδt− | σt |α
[
1− iβsign (t)

(
2
π

)]
, for α = 1

(1.1)

where i =
√
−1 and the sign (·) function is given by

sign (x) =

 −1, if x < 0
0, if x = 0
1, if x > 0.

(1.2)
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Although a good class for data modeling in different areas, one has difficulties to obtain es-
timates under a classical inference approach due to the lack of closed form expressions for their
probability density functions. An alternative is the use of Bayesian methods. However, the com-
putational cost can be further exacerbated in assessing posterior summaries of interest.

A Bayesian analysis of stable distributions is introduced by Buckle (1995) using Markov Chain
Monte Carlo (MCMC) methods. The use of Bayesian methods with MCMC simulation can have
great flexibility by considering latent variables (see, for instance, [11] and [12]), where samples of
latent variables are simulated in each step of the Gibbs or Metropolis-Hastings algorithms.

Considering a latent or an auxiliary variable, [1] proved a theorem that is useful to simulate
samples of the joint posterior distribution for the parameters α, β, δ and σ. This theorem es-
tablishes that a stable distribution for a random variable Z defined in (−∞,∞) is obtained as
the marginal of a bivariate distribution for the random variable Z itself and an auxiliary random
variable Y . This variable Y is defined in the interval (−0.5, aα,β), when Z ∈ (−∞, 0), and in
(aα,β , 0.5), when Z ∈ (0,∞). The quantity aα,β is given by

aα,β = −bα,β
απ

, (1.3)

where bα,β = β min{α, 2− α}π2 .
The joint probability density function for random variables Z and Y is given by

f(z, y|α, β) =
α

|α− 1|
exp

{
−
∣∣∣∣ z

tα,β(y)

∣∣∣∣θ
}∣∣∣∣ z

tα,β(y)

∣∣∣∣θ 1

|z|
, (1.4)

where θ = α
α−1 ,

tα,β(y) =

(
sin(π α y + bα,β)

cos(π y)

)(
cos(π y)

cos(π(α− 1)y + bα,β)

) 1
θ

(1.5)

and Z = X−δ
σ , for σ 6= 0.

From the bivariate density (1.4), [1] shows the marginal distribution for the random variable Z
is stable Sα(β, 0, 1) distributed. Usually, the computational costs to obtain posterior summaries of
interest using MCMC methods is high for this class of models, which could give some limitations
for practical applications. One problem can be the simulation algorithm convergence. In this
paper, we propose the use of a popular free available software to obtain the posterior summaries
of interest: the OpenBUGS software.

The paper is organized as follows: in Section 2 we introduce a special case of the stable distri-
butions, namely, the Lévy distribution. In Section 3 we introduce a Bayesian analysis for stable
distributions. Two applications are presented in Section 4. Section 5 is devoted to some concluding
remarks.

2 A Special Case of Stable Distributions: Lévy Distribution

Some special cases of stable distributions are given for specified values of α and β. If α = 2 and
β = 0 one has the Gaussian distribution with δ mean and variance equals to 2σ2. If α = 0.5 and
β = 1 one has a Lévy distribution with probability density function given by

f(x | δ, σ) =
( σ

2π

) 1
2

(x− δ)−
3
2 exp

(
− 0.5σ

x− δ

)
, (2.1)

for δ < x <∞. Figure 1 presents Lévy probability density functions for δ = 0 and different values
of the σ scale parameter.
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Figure 1: Lévy density function for δ = 0 and different values for the σ scale parameter.

The probability distribution function of the random variable X with a Lévy distribution defined
in (2.1) is given by

F (x | δ, σ) = P (X ≤ x) = erfc

(
− 0.5σ

x− δ

) 1
2

, (2.2)

where erfc (x) = 1−erf (x) is the complementary error function with the error function erf (·) given
by

erf (x) =
2√
π

∫ x

0

e−t
2

dt. (2.3)

The Lévy distribution with probability density function (2.1) has undefined mean and undefined
variance but its median is given by

Median = δ +
σ

2
[
erfc−1

(
1
2

)]2 , (2.4)

where the inverse complementary error function is

erfc−1 (1− x) = erf−1 (x) .

To obtain the probability density function or the median of a random variable X with a Lévy
density function different approximations for the complementary error function are introduced in
the literature (see [13]). Some special cases are presented below.

1.

erf (x) ≈ 1− 1

(1 + a1x+ a2x2 + a3x3 + a4x4)
4 , (2.5)

where the maximum error is 5× 10−4 and a1 = 0.278393, a2 = 0.230389, a3 = 0.000972 and
a4 = 0.078108;

2.

erf (x) ≈ 1− 1

(1 + a1x+ . . .+ a6x6)
16 , (2.6)

where the maximum error is 3 × 10−7, a1 = 0.0705230784, a2 = 0.0422820123, a3 =
0.0092705272, a4 = 0.0001520143, a5 = 0.0002765672 and a6 = 0.0000430638;
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3.

erf (x) ≈ sign (x)

√
1− exp

(
−x2

4
π + ax2

1 + ax2

)
, (2.7)

where a = 8(π−3)
3π(4−π) ≈ 0.140012 and sign(·) is given by (1.2).

4. An approximation for the inverse error function is given by

erf (x)−1 = sign (x)

√√√√√( 2

πa
− log (1− x2)

2

)2

− log (1− x2)

a
−
(

2

πa
− log (1− x2)

2

)
, (2.8)

where the constant a and the sign (·) are given in (2.7).

Assuming a random sample of size n with a Lévy distribution with probability density as (2.2),
the likelihood function for δ and σ is given by

L (δ, σ) =
( σ

2π

)n
2

n∏
i=1

(xi − δ)−
3
2 exp

[
− σ

2 (xi − δ)

] n∏
i=1

I (xi > δ) , (2.9)

where I (A) denotes the indicator function of set A.
Inferences for δ and σ parameters in the case of Lévy distribution are obtained using standard

Markov Chain Monte Carlo methods (see [14,15]).

3 A Bayesian Analysis for General Stable Distributions

Let us assume that xi, for i = 1, . . . , n, is a random sample of size n, where Xi ∼ Sα(β, δ, σ),
that is, Zi = Xi−δ

σ ∼ Sα(β, 0, 1). Assuming a joint prior distribution for α, β, δ and σ, given by
π0(α, β, δ, σ), [1] shows that the joint posterior distribution for parameters α, β, δ and σ is given
by

π(α, β, δ, σ|x) ∝
∫ (

α

|α− 1|σ

)n
× exp

{
−

n∑
i=1

∣∣∣∣ zi
tα,β(yi)

∣∣∣∣θ
}

n∏
i=1

∣∣∣∣ zi
tα,β(yi)

∣∣∣∣θ 1

|zi|

× π0(α, β, δ, σ)dy, (3.1)

where θ = α
α−1 , zi = xi−δ

σ , for i = 1, · · · , n, α ∈ (0, 2], β ∈ [−1, 1], δ ∈ (−∞,∞) and σ ∈ (0,∞);
x = (x1, x2, · · · , xn) and y = (y1, y2, · · · , yn) are respectively, the observed and non-observed data
vectors. Notice that the bivariate distribution in expression (3.1) is given in terms of xi and the
latent variables yi, and not in terms of zi and yi (there is the Jacobian σ−1 multiplied by the
right-hand-side of expression (1.4)).

Observe that when α = 2 one has θ = 2 and bα,β = 0. In this case one has a Gaussian
distribution with δ mean and 2σ2 variance.

For a Bayesian analysis of the proposed model, we assume uniform U(a, b) independent priors
for α, β, δ and σ, where the hyperparameters a and b are assumed to be known in each application
following the restrictions α ∈ (0, 2], β ∈ [−1, 1], δ ∈ (−∞,∞) and σ ∈ (0,∞).

In the simulation algorithm to obtain a Gibbs sample for the random quantities α, β, δ and σ
having the joint posterior distribution (3.1), we assume a uniform U(−0.5, 0.5) prior distribution
for the latent random quantities Yi, for i = 1, · · · , n. Observe that, in this case, we are assuming
aα,β = 0 (bα,β = 0). With this choice of priors, one has the possibility to use standard software
package like OpenBus (see [16]) with great simplification to obtain the simulated Gibbs samples
for the joint posterior distribution.

In this way, one has the following algorithm:
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(i) Start with the initial values α(0), β(0), δ(0), σ(0);

(ii) Simulate a sample y = (y1, . . . , yn) from the conditional distributions
π(yi|α(0), β(0), δ(0), σ(0),x), for i = 1, · · · , n;

(iii) Update α(0), β(0), δ(0), σ(0) by α(1), β(1), δ(1), σ(1) from the conditional distributions
π(α|β(0), δ(0), σ(0),x,y), π(β | α(0), δ(0), σ(0),x,y), π(δ|α(0), β(0), σ(0),x,y) and
π(σ|α(0), β(0), δ(0),x,y);

(iv) Repeat steps (i), (ii) and (iii) until convergence.

From expression (3.1), the joint posterior probability distribution for α, β, δ, σ and
y = (y1, y2, · · · , yn) is given by

π(α, β, δ, σ,y|x) ∝
(

α

|α− 1|σ

)n
exp

{
−

n∑
i=1

∣∣∣∣ zi
tα,β(yi)

∣∣∣∣
}

×
n∏
i=1

∣∣∣∣ zi
tα,β(yi)

∣∣∣∣θ 1

|zi|
×

n∏
i=1

h(yi)π0(α, β, δ, σ), (3.2)

where θ and tα,β(·) are respectively defined in (1.4) and (1.5) and h(yi) is a U(−0.5, 0.5) density
function, for i = 1, · · · , n.

Since we are using the OpenBUGS software to simulate samples for the joint posterior dis-
tribution we do not present here all full conditional distributions needed for the Gibbs sampling
algorithm. This software only requires the data distribution and prior distributions of the inter-
ested random quantities. This gives great computational simplification for determining posterior
summaries of interest as shown in the applications below.

4 Some Applications

4.1 Buckle’s Data

In Table 1, we have a data set introduced by [1]. This is the daily price return data of Abbey
National shares in the period from July 31, 1991 to October 08, 1991.

Table 1: Daily price returns with n = 50.

296 296 300 302 300 304 303 299 293 294

294 293 295 287 288 297 305 307 307 304

303 304 304 309 309 309 307 306 304 300

296 301 298 295 295 293 292 297 294 293

306 303 301 303 308 305 302 301 297 299

Table 2: Returns ρ (t), at time t, for n = 49.

0.0000 0.0135 0.0067 -0.0066 0.0133 -0.0033 -0.0132 -0.0201 0.0034 0.0000

-0.0034 0.0068 -0.0271 0.0035 0.0312 0.0269 0.0066 0.0000 -0.0098 -0.0033

0.0033 0.0000 0.0164 0.0000 0.0000 -0.0065 -0.0033 -0.0065 -0.0132 -0.0133

0.0169 -0.0100 -0.0101 0.0000 -0.0068 -0.0034 0.0171 -0.0101 -0.0034 0.0444

-0.0098 -0.0066 0.0066 0.0165 -0.0097 -0.0098 -0.0033 -0.0133 0.0067 -
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Table 3: Posterior summaries for the Lévy distribution.

Parameter Mean Standard Deviation 95% Credible Interval

δ −0.04868 0.001669 (−0.05284,−0.04628)

σ 0.03901 0.008916 (0.02343, 0.05948)

In Figure 2(a) we present the histogram of the returns ρ (·) time series while in Figure 2(b) we
have the Gaussian probability plot for the same data. From these figures, one observes that the
Gaussian distribution does not fit well the data.
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Figure 2: (a) Empirical return distribution; (b) Normal probability plot.

Assuming a Lévy distribution with probability density function given in (2.1) for a Bayesian
analysis we consider the following prior distributions for δ and σ, δ ∼ U(−1,−0.0271) and σ ∼
U(0, 1), where U(a, b) denotes a uniform distribution on the interval (a, b). Observe that the
minimum value for the ρ (·) data is given by −0.0271 and xi ≥ δ, that is, min{x1, · · · , xn} ≥
δ. To simulate samples for the joint posterior distribution for δ and σ, using standard MCMC
methods, we have used OpenBUGS software which only requires the log-likelihood function and
prior distributions for model parameters. In Table 3 we present the posterior summaries of interest
considering a burn-in-sample of size 5, 000 discarded to eliminate the initial value effect. After this
burn-in-sample period we simulate another 200, 000 Gibbs samples taking every 10-th sample.
This gives a final sample of size 20, 000 to be used for finding the posterior summaries of interest.
Convergence of the Gibbs sample algorithm was verified by trace-plots of the simulated Gibbs
samples. From OpenBUGS output we obtain a Deviance Information Criterium (DIC) value equals
to −151.7. In Figure 2 (red line), we have the plot of the fitted Lévy density with δ = −0.0487
mean and σ = 0.0391 as the scale parameter and the histogram of the ρ (·) returns.

Assuming a general stable distribution, we present in Table 4 the posterior summaries of interest
obtained using OpenBUGS software considering the following priors: α ∼ U(1, 2), β ∼ U(−1, 0),
δ ∼ U(−0.5, 0.5) and σ ∼ U(0, 0.5). In the simulation procedure we have used a burn-in-sample
of size 10, 000 and another 490, 000 Gibbs samples taking every 100-th sample. This gives a final
sample of size 4, 900 to be used for finding the posterior summaries of interest.

In Figure 3 we have the trace-plots of the simulated Gibbs samples. In Figure 2 we also have the
plot of the fitted stable distribution with α = 1.653, β = −0.3455, δ = 0.00782 and σ = 0.001132.
We observe good fit of the stable distribution (black line). The obtained DIC value is equal to
−70480. From this value we conclude that the data is better fitted by the general stable distribution
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in contrast to the Lévy distribution (since it has smaller DIC value).

Table 4: Posterior summaries for the general stable distribution.

Parameter Mean Standard Deviation 95% Credible Interval

α 1.653 0.01639 (1.29,1.965)

β -0.3455 0.02556 (-0.9188,-0.01257)

δ 0.00782 0.0702 (0.00549,0.01048)

σ 0.001132 1.35e-4 (-0.002478,0.004601)

4.2 Coding and Non-Coding Regions in DNA Sequences

Crato et al. [2] introduce the length distribution of coding and non-coding regions for all Homo
Sapiens chromosomes available from the European Bioinformatics Institute. In this way they con-

Table 5: Coding sequence CM000275.

108 103 68 55 97 73 87 110 320 111 152 177 11 297 61

42 88 68 64 78 272 190 39 254 18 95 119 263 168 165

20 101 165 127 74 121 60 97 63 141 132 252 145 57 53

47 44 425 5 379 246 87 97 179 102 74 161 34 11 116

431 101 104 58 74 38 9 54 76 111 110 95 124 80 77

353 215 34 111 77 152 77 60 394 77 111 144 51 353 77

111 144 51 128 94 110 113 146 174 11 155 254 121 117 212

48 57 156 183 76 353 54 91 781 69 149 77 122 170 134

129 145 158 119 158 181 162 119 194 181 124 147 96 358 138

179 137 599 69 199 350 149 77 122 134 129 145 158 119 158

181 162 119 194 181 124 147 96 358 138 179 137 599 69 199

350 323 95 92 32 20 91 282 112 282 1659 554 161 263 46

90 346 11 139 46 33 183 212 341 512 98 512 109 21 512

692 101 107 84 151 185 20 15 83 103 50 81 91 5 29

103 147 64 3 26 180 97 171 157 101 26 180 97 171 4

479 105 33 74 159 64 94 364 56 31 143 88 78 18 81

300 103 108 144 458 104 145 200 342 353 77 111 148 125 56

160 74 37 201 86 131 127 114 278 258 115 68 30 115 68

57 137 98 91 57 137 91 18 114 152 177 103 108 272 103

108 227 108 103 177 152 114 110 87 98 50 195 90 53 66

28 139 159 118 136 141 139 178 191 159 122 89 80 370 159

31 150 86 83 122 467 91 51 63 139 71 71 37 96 72

1591 1622 767 122 29 188 88 18 248 88 74 57 8 273 379

260 44 59 257 260 44 233 33 211 173 77 117 105 18 139

390 - - - - - - - - - - - - - -

sider a transformation of the genomes in numerical sequences. As an illustration, we have, re-
spectively, in Tables 5 and 6, the data for coding and non-coding length sequences for H. Sapiens
chromosomes transformed in a logarithm scale (sequence CM000275 extracted from Table 2, in
[2]).

Figure 4 presents the histograms of the data given in Tables 5 and 6, assuming a logarithm
transformation. From these plots, we observe that a Gaussian distribution could not be a reasonable
model for fitting the data. Assuming a Lévy distribution with probability density function (2.1) for
a Bayesian analysis we consider the following prior distributions for δ ∼ U(−1000, 1.0986), where
1.0986 is the minimum of the observations in logarithm scale, and for σ ∼ U(0, 10000). In Table
7 we have the posterior summaries of interest considering the transformed coding and non-coding
data using OpenBUGS software.

Figure 4 shows the fitted Lévy density with δ = 0.9693 and σ = 3.167 (for coding data) and
with δ = 4.182 and σ = 1.633 (for non-coding data). From this figure we observe that the data is
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Figure 3: Trace-plots for α, β,δ and σ — Buckle’s data.
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Table 6: Non-coding sequence CM000275.

473 3014 46804 1610 596 315546 82 438 122 1995 1886 2686

117891 4797 507006 439 3003 254680 132 208227 33316 27057 77385 299389

11126 14901 14946 21801 29460 182825 1282 2657 850 318 5045 6112

2730 110 699 392 6047 20772 17837 151831 2502 1230 270 1959

331299 126 52160 478 19056 94 689 2308 942 1034 936 42731

2590 2357 42188 4426 686 3091 2781 1250 14946 398 808 2001

70798 129 607 3731 155639 98 129 358 129 250729 99 608

129 102 107 1682 608 129 102 107 60835 402 86 858

2556 1917 3300 515979 894268 38404 20693 2501 149896 15176 12545 27795

12119 27552 28108 441 226144 310 380715 1146 1305 247 1656 3778

124 2610 419 116 10458 96 4157 123 275 84 116 4880

567 438 452 173 188 284 154 96 38536 1146 1305 2073

3778 124 2610 419 116 10458 96 4157 123 275 84 116

4880 567 438 452 173 188 284 154 96 101875 1486 2385

2074 7530 471 2014 1257 863 102886 426 1369 5266 496 103

6531 398292 19811 3485 547 1316 52053 114313 104170 41236 41846 2814

560 4016 479 33776 5064 67998 441 386840 1522 107156 3721 2899

1781 3500 1379 2766 135123 1931 392 699 110 25884 3013 1236

7424 10533 1265 24203 3013 1236 7424 11955 27994 142294 6042 349782

290 164 64038 152 117 2263 8885 409 83 489 882 2368

836 451 4275 39510 2967 1082 878 1046 15536 610 129 100

100912 1610 12498 4740 197823 433 11102 1320 1133 654 2979 157170

9491 2576 11103 8314 2576 60172 219 111 949 1662 219 1158

119353 1466 2036 1925 2995 423 3901 2995 423 13114 157134 454

2709 1936 2008 870 83 425 19373 45480 21308 11169 16584 43630

48317 5045 9466 5710 233467 12543 13912 198 651 6242 617 985

2978 122 1039 2194 2636 1138 2212 10411 94951 561 437 90

1401 2373 382432 2382 167632 421 1622 145848 1639 18367 90 256

421 1031 256 421 1357 297 66358 271 78 87 924 139

78 87 233 51764 138 275166 19259 2060 2855 693 52166 189

not well fitted by the Lévy distribution.

For a Bayesian analysis of the data assuming a general stable distribution we consider the
following prior distributions: α ∼ U(0, 2), β ∼ U(−1, 0), δ ∼ U(0, 3) and σ ∼ U(0, 10). Using
the OpenBugs software, we simulated 600, 000 Gibbs samples. From these 600, 000 samples, we
discarded the first 100, 000 as a “burn-in-sample” to eliminate the initial value effects. After this
“burn-in-sample” period, we took every 500-th sample, which gives a final Gibbs sample of size
1, 000 to be used for Monte Carlo of the interested random quantities. Convergence of the Gibbs
sampling algorithm was verified from trace plots of the simulated samples for each parameter.
Table 8 presents the posterior summaries of interest. Figure 5 shows the fitted stable distributions
for coding and non-coding data. We observe good fit of the stable distributions in both cases.

Table 7: Posterior summaries, in the case of the Lévy distribution, for coding and non-coding regions of CM000275
sequence.

Parameter Mean Standard Deviation 95% Confidence Interval

Coding

δ 0.9693 0.0260 (0.9106, 1.0160)

σ 3.1670 0.2437 (2.7060, 3.6490)

Non-coding

δ 4.182 0.0325 (4.114, 4.239)

σ 1.633 0.1496 (1.345, 1.628)
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Table 8: Posterior summaries, in the case of general stable distributions, for coding and non-coding regions of
CM000275 sequence.

Parameter Mean Standard Deviation 95% Confidence Interval

Coding

α 1.583 0.09803 (1.402, 1.783)

β −0.08868 0.06195 (−0.246,−0.0029)

δ 4.722 0.03743 (4.661, 4.802)

σ 0.4785 0.03409 (0.4098, 0.5424)

Non-coding

α 1.974 0.02802 (1.909, 1.999)

α −0.5291 0.3111 (−0.989,−0.0242)

δ 7.882 0.1225 (7.601, 8.100)

σ 1.638 0.06139 (1.520, 1.767)
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Figure 4: Histograms for log(coding) and log(non-coding) and fitted Lévy distributions.
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Figure 5: Histograms for log(coding) and log(non-coding) and fitted stable distribution.
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5 Concluding Remarks

The use of stable distributions could be a good alternative for many applications in data analysis,
since this model has a great flexibility for fitting the data. With the use of Bayesian methods and
MCMC simulation methods it is possible to get inferences for the model despite the nonexistence
of an analytical form for the density function. It is important to point out that the computa-
tional work in the sample simulations for the joint posterior distribution of interest can be greatly
simplified using standard free softwares like the OpenBugs software.

In the simulation study considered in both examples introduced in Section 4, the use of data
augmentation techniques (see, for instance, [11]) is the key to obtain a good performance for
the MCMC simulation method for applications using stable distributions. Observe that MCMC
methods are a class of algorithms for sampling from probability distributions based on constructing
a Markov Chain that has the desired distribution as its equilibrium distribution. The state of the
chain after a large number of steps is then used as a sample of the desired distribution. The quality
of the sample improves as a function of the number of steps. The obtained simulation results for
the applications in Section 4, could be easily replicated using the same auxiliary random variable
Y defined in Section 1 and the non-informative prior distributions defined in Section 3 for the
parameters of the model. More accurate posterior summaries results could be obtained using
informative prior distributions for the parameters of the model based on prior opinion of experts
rather than using non-informative priors as it was assumed in this paper. Observe that although
the nonexistence of an analytical form for the density function for stable distributions, the moments
could be obtained from the characteristic function defined in (1.1).

We emphasize that the use of OpenBugs software does not require large computational time
to get the posterior summaries of interest, even when the simulation of a large number of Gibbs
samples are needed for the algorithm convergence. These results could be of great interest for re-
searchers and practitioners, when dealing with non Gaussian data, as in the applications presented
here.
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