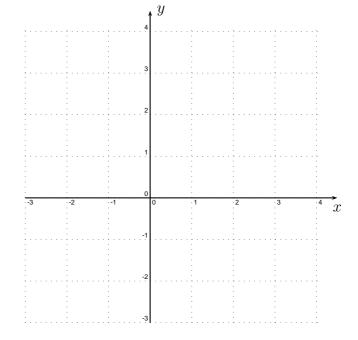
UFRGS – Instituto de Matemática Departamento de Matemática Pura e Aplicada MAT 01353 – Cálculo e Geometria Analítica IA Prova 2-27 de junho de 2014-10:30 – Fila A

1	2	3	4	5	Total

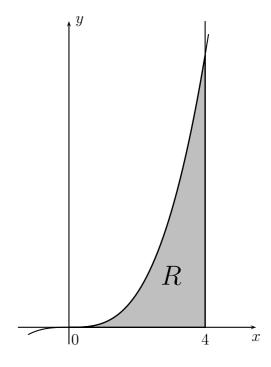

Λ.
4

Nome:	Cartão:	 Turma: _	

Questão 1 (2,0 pontos) Considere a região R do plano limitada pelas parábolas de equações

$$2y = x^2 \qquad e \qquad y = 3x - x^2$$

- a) Faça um esboço da região R no sistema de coordenadas dado ao lado.
- b) Calcule a área da região R.


Δ-2
H -2

Nome:	Cartão:	Turma:
1011101	cartao.	- ar ma

Questão 2 (1,0 ponto)

Ao lado aparece hachurada a região R situada sob a curva de equação $8y=x^3\,$ e acima do intervalo [0,4].

Escreva (sem calcular!) a integral definida que expressa o volume do sólido S obtido pela rotação da região R em torno do eixo y.

A 9
\mathbf{A} -3

Nome: _____ Cartão: ____ Turma: ___

Questão 3 (3,0 pontos)

a) (1,5 pontos) Determine a função f que satisfaz as condições

$$f'(x) = x + x e^{(2x)}$$
 e $f\left(\frac{1}{2}\right) = \frac{7}{8}$

b) (1,5 pontos) Calcule o valor de $\int_2^{+\infty} \frac{2}{\sqrt{(x+7)^3}} dx$, caso exista.

1 _
A-4
4 1

Cartão: _____ Turma: ____

Questão 4 (2,0 pontos) Escolha apenas uma das duas integrais. Marque a escolhida e calcule-a!

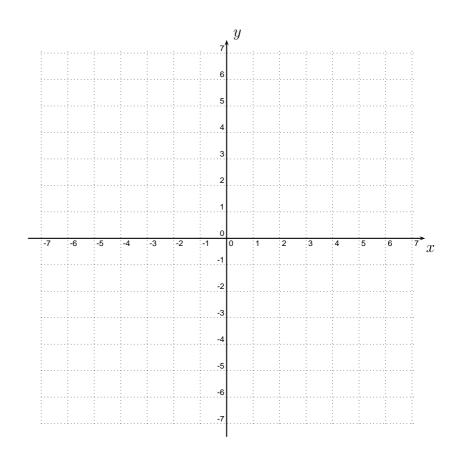
()
$$I_1 = \int \frac{1}{(\sqrt{4-x^2})^3} dx$$

ou
$$() I_2 = \int \frac{11x - 3}{x^3 + 3x^2} dx$$

A-5
- - -

Nome:	Cartão:	Turma:
1011101	cartao.	- ar ma

Questão 5 (2,0 pontos)


a) (1,0 ponto) Considere a cônica C de equação $16x^2+y^2+6y-7=0$. Determine a equação reduzida de C, classifique-a e obtenha as coordenadas de seu centro.

b) (1,0 ponto) Determine a equação reduzida (ou padrão) da hipérbole H cujas assíntotas tem equações

$$y = \frac{3}{2}x \quad e \quad y = -\frac{3}{2}x$$

e que tem um dos vértices em (0,3).

Faça então um esboço de H no sistema de coordenadas dado.

