Para ser entregue até o dia 06.08.08:

1. (i) Seja $U \subseteq \mathbb{R}^3$ um aberto limitado por uma superfície suave fechada S orientada pelo campo normal unitário exterior \vec{n} . Sejam $u, v \in C^2(\overline{U}) \cap C^1(\overline{U})$. Prove a $1^{\underline{a}}$ Identidade de Green

$$\iiint\limits_V u\Delta v\,dxdydz = \iint\limits_S u\,\frac{\partial v}{\partial n}\,d\sigma - \iiint\limits_V \nabla u\cdot\nabla v\,d\sigma \ .$$

(ii) Dada $g:S\longrightarrow \mathbb{R}$ contínua, use (i) para provar a unicidade de solução para o problema de Dirichlet

$$\begin{cases} \Delta u = 0 & \text{em } D \\ u = g & \text{em } S \end{cases}$$

- (iii) Prove que $\iiint\limits_V \Delta v\, dx dy dz = \iint\limits_S \frac{\partial v}{\partial n}\, d\sigma$. Sugestão: Faça u=1 em (i).
- (iv) Dada $h:S\longrightarrow \mathbb{R}$ contínua, considere o problema de Neumann

$$\begin{cases} \Delta u = 0 & \text{em } D \\ \frac{\partial u}{\partial n} = h & \text{em } S \end{cases}$$

Prove que para que o Problema de Neumann tenha solução é necessário que $\iint\limits_{\mathcal{C}} h\,d\sigma=0.$

Prove que duas soluções quaisquer do Problema de Neumann diferem por uma constante.

2. Prove a 2ª Identidade de Green

$$\iiint\limits_V \left(u\Delta v - v\Delta u\right) dx dy dz = \iint\limits_S \left(u\frac{\partial v}{\partial n} - v\frac{\partial u}{\partial n}\right) d\sigma.$$

Sugestão: Use 1 (i) e a identidade obtida trocando os papéis de u e v.

3. Seja $D \subseteq \mathbb{R}^2$ um aberto limitado por uma curva suave, fechada, simples γ . Sejam $u, v \in C^1(\overline{D}) \cap C(\overline{D})$. Prove as fórmulas de integração por partes

$$\iint\limits_{D} uv_x \, dx dy = \int\limits_{\gamma} uv \, dy - \iint\limits_{D} u_x v \, dx dy,$$

$$\iint\limits_{D} uv_y \, dx dy = \int\limits_{\gamma} -uv \, dy - \iint\limits_{D} u_y v \, dx dy.$$

4. Seja $D \subseteq \mathbb{R}^2$ um aberto limitado por uma curva suave, fechada, simples γ . Sejam $u, v \in C^2(\overline{D}) \cap C^1(\overline{D})$. Prove que

$$2\iint\limits_{D} \left(uv_{xy}-vu_{xy}\right) dx dy = \int\limits_{\gamma} \left(uv_{y}-vu_{y}\right) dy - \left(uv_{x}-vu_{x}\right) dx .$$

Definição. Analogamente à integral de superfície do $1^{\underline{o}}$ tipo, define-se também integral de linha do $1^{\underline{o}}$ tipo (em relação ao comprimento de arco). Se γ é uma curva suave, parametrizada por φ : $[a,b] \longrightarrow \mathbb{R}^p$ e $f: \gamma \longrightarrow \mathbb{R}$ é contínua, para $\mathcal{P} = \{t_0 = a < t_1 < t_2 < \ldots < t_n = b\}$, escolhendo-se pontos $\xi_i \in [t_{i-1},t_i]$, considera-se a soma $\sum (f,\mathcal{P}) = \sum_i f(\varphi(\xi_i))s_i$, onde s_i é o comprimento do arco $\{\varphi(t) \mid t_{i-1} \leq t \leq t_i\}$. A integral de linha do $1^{\underline{o}}$ tipo $\int_{\gamma} f \, ds$ é definida como sendo o

limite das somas $\sum (f, \mathcal{P})$ quando a norma da partição $\|\mathcal{P}\| \longrightarrow 0$. Como $s_i = \int_{t_{i-1}}^{t_i} \|\varphi'(t)\| dt$, mostra-se que

$$\int\limits_{\gamma} f \, ds = \int_a^b f(t) \|\varphi'(t)\| \, dt \; .$$

Note que a integral de linha do 1º tipo não depende da orientação da curva. Se f(t) for a densidade de massa (massa por unidade de comprimento) ao longo de uma curva, ou analogamente a densidade de carga, a integral $\int_{\gamma} f \, ds$ representa a massa, ou a carga, total da curva.

5. Mostre que se $\gamma \subseteq \mathbb{R}^3$ é uma curva suave na qual foi fixada uma orientação, se \vec{t} é o campo tangente unitário sobre a curva compatível com a orientação e se $\vec{F} = (L, M, N)$ é um campo de vetores definido num aberto contendo γ , então

$$\int_{\gamma} \vec{F} \cdot \vec{t} \, ds = \int_{\gamma} L \, dx + M \, dy + N \, dz .$$

6. Seja $D \subseteq \mathbb{R}^2$ a região limitada pela curva suave fechada simples γ . Sejam $a \in D$ e U aberto contendo \overline{D} . Sejam L e M funções de classe C^1 definidas no aberto $U \setminus \{a\}$ e satisfazendo $L_y = M_x$. Suponhamos que $B[a; \delta] \subseteq D$ e seja γ_δ a circunferência de raio δ centrada em a. Prove que

$$\int_{\gamma} L \, dx + M \, dy = \int_{\gamma_{\delta}} L \, dx + M \, dy$$

7. Seja γ uma curva fechada simples em \mathbb{R}^2 que não passa pela origem e orientada no sentido anti-horário. Seja $D\subseteq\mathbb{R}^2$ a região limitada pela curva γ . Denotemos por $\vec{r}=(x,y)$ e $r=\|\vec{r}\|$. Seja \vec{n} o campo normal exterior unitário a γ . Prove que

$$\frac{1}{2\pi} \int_{\gamma} \frac{\cos(\vec{r}, \vec{n})}{r} ds = \begin{cases} 0, & \text{se } (0, 0) \in D \\ 1, & \text{se } (0, 0) \notin D \end{cases}$$

Sugestão: Se $\varphi:[a,b] \longrightarrow \mathbb{R}^2$ é uma parametrização de γ , então $\vec{t} = \frac{\left(x'(t),y'(t)\right)}{\left(x'(t)^2 + y'(t)^2\right)^{\frac{1}{2}}}$ e,

portanto, $\vec{n} = \frac{\left(-y'(t), x'(t)\right)}{\left(x'(t)^2 + y'(t)^2\right)^{\frac{1}{2}}}$. Deduza daí que

$$\int_{\gamma} \frac{\cos(\vec{r}, \vec{n})}{r} ds = \int_{\gamma} \frac{-y \, dx + x \, dy}{x^2 + y^2} .$$

8. Sejam $U\subseteq\mathbb{R}^3$ aberto e $f\in C^2(U)$. Para $a\in U$ e $\delta>0$ suficientemente pequeno, sejam $B(a;\delta)$ a bola de raio δ centrada em a e $\left|B(a;\delta)\right|=\frac{4\pi\delta^3}{3}$ o seu volume.

Seja $S(a; \delta) = \{x \mid |x - a| = \delta\}$. Prove que

$$\Delta f(a) = \lim_{\delta \to 0^+} \frac{1}{|B(a;\delta)|} \iint_{S(a;\delta)} \frac{\partial f}{\partial n} d\sigma .$$

Sugestão: Use as identidades do exercício 1 e o Teorema do Valor Médio para integrais.

9. Seja S uma superfície com a propriedade que cada semi-reta a partir da origem corta S no máximo uma vez. Seja $\Omega(S)$ a união de todas as semi-retas partindo da origem que intersecionam S. Dizemos que $\Omega(S)$ é o ângulo sólido subentendido por S. Para a>0, seja $\sum(a)$ a interseção de $\Omega(S)$ com a bola B(0;a). O quociente

$$\frac{\operatorname{area}(\sum(a))}{a^2}$$

não depende de a, é denotado por $|\Omega(S)|$ e é usado para medir o ângulo sólido $\Omega(S)$. Prove que

$$\left|\Omega(S)\right| = \iint\limits_{S} \frac{\vec{r} \cdot \vec{n}}{r^3} \, d\sigma \ ,$$

onde $\vec{r} = (x, y, z), \ r = ||\vec{r}||$ e \vec{n} é o vetor normal unitário a S dirigido no sentido oposto à origem. Sugestão: Aplique o Teorema da Divergência na região $\sum (a) \setminus B(0; \varepsilon)$.