1. (ex. 37, pg. 73) Sejam $A, B \subseteq \mathbb{R}$ subconjuntos limitados superiormente e não vazios. Defina

$$A + B = \{x + y \mid x \in A, y \in B\}$$
.

Prove que A+B também é não vazio e limitado superiormente e que $\sup(A+B)=\sup A+\sup B$. Solução:

$$A \neq \emptyset \Longrightarrow \exists x_0 \in A . B \neq \emptyset \Longrightarrow \exists y_0 \in B . \text{Logo } x_0 + y_0 \in (A + B) . \text{Segue que } A + B \neq \emptyset .$$

Sejam $a = \sup A$ e $b = \sup B$. Então $x \le a$, $\forall x \in A$ e $y \le b$, $\forall y \in B$. Logo $x + y \le a + b$, $\forall x \in A$, $\forall y \in B$. Segue que A + B é limitado superiormente, sendo a + b uma cota superior. Conclui-se daí que existe $\sup(A + B)$ e que $a + b \le \sup(A + B)$, pois a + b é uma cota superior para A + B e $\sup(A + B)$ é a menor das cotas superiores. Fica assim mostrado que

$$\sup(A+B) \le \sup A + \sup B.$$

Falta mostrar a desigualdade no sentido contrário. Seja $\, \varepsilon > 0 \,. \,$ Então,

$$\exists x_1 \in A \text{ tal que } x_1 > \sup A - \frac{\varepsilon}{2}.$$

Da mesma forma,

$$\exists y_1 \in B \text{ tal que } y_1 > \sup B - \frac{\varepsilon}{2}.$$

Somando as duas desigualdades, obtemos

$$x_1 + y_1 > \sup A + \sup B - \varepsilon$$
.

Como $\sup(A+B) \ge x_1 + y_1$, segue que

$$\sup(A+B) > \sup A + \sup B - \varepsilon, \ \forall \varepsilon > 0.$$

Conclui-se daí que

$$\sup(A+B) > \sup A + \sup B$$
.

Combinando com a desigualdade contrária, obtida anteriormente, segue, finalmente, a igualdade

$$\sup(A+B) = \sup A + \sup B.$$

- **2.** (ex. 38, pg. 73) Seja $X \subseteq \mathbb{R}$. Uma função $f: X \longrightarrow \mathbb{R}$ é dita limitada superiormente se sua imagem, $f(X) = \{f(x) \mid x \in X\}$, for um subconjunto de \mathbb{R} limitado superiormente. Neste caso define-se o supremo de f (e denota-se por sup f) como sendo o supremo do conjunto f(X). Dadas duas funções $f, g: X \longrightarrow \mathbb{R}$, a soma f+g é a função $f+g: X \longrightarrow \mathbb{R}$, definida por (f+g)(x) = f(x) + g(x).
- (i) Prove que se $f,g:X\longrightarrow \mathbb{R}$ são limitadas superiormente, então f+g também é limitada superiormente, com

$$\sup(f+q) < \sup f + \sup q$$
.

Solução:

Suponhamos que as funções f e g são limitadas superiormente. Sejam $a=\sup f$ e $b=\sup g$. Então

$$\forall x \in X, f(x) < a \text{ e } g(x) < b.$$

Somando estas duas desigualdades, obtemos

$$f(x) + g(x) \le a + b$$
, $\forall x \in X$.

Segue que f + g é limitada superiormente, com a + b uma cota superior para f + g. Como o supremo é a menor das cotas superiores, temos que os supremos de f + g existe e satisfaz

$$\sup(f+g) \le a+b \,,$$

ou seja,

$$\sup(f+g) \le \sup f + \sup g.$$

(ii) Mostre, com um exemplo, que no item anterior a desigualdade pode ser estrita. Sugestão: tome X = [-1, 1], f(x) = x e g(x) = -x.

3. (ex. 36) Para $A \subseteq \mathbb{R}$ limitado e não vazio e c > 0, definindo $c \cdot A = \{c \mid x \in A\}$, prove que $\sup(c \cdot A) = c \cdot \sup A$ e $\inf(c \cdot A) = c \cdot \inf A$.

Solução:

 $A \neq \emptyset \Longrightarrow \exists x_0 \in A$. Logo $c x_0 \in (c \cdot A)$. Segue que $c \cdot A \neq \emptyset$.

Seja $a = \sup A$. Então $x \le a$, $\forall x \in A$. Logo $c x \le c a$, $\forall x \in A$. Segue que $c \cdot A$ é limitado superiormente, sendo c a uma cota superior. Conclui-se daí que existe $\sup(c \cdot A)$ e que

$$\sup(c \cdot A) \le c \cdot \sup A .$$

Falta mostrar a desigualdade no sentido contrário. Seja $\varepsilon > 0$. Então,

$$\exists x_1 \in A \text{ tal que } x_1 > \sup A - \frac{\varepsilon}{c}.$$

Multiplicando a desigualdade por c, obtemos

$$c x_1 > c \cdot \sup A - \varepsilon$$
.

Como $\sup(c \cdot A) \geq c x_1$, segue que

$$\sup(c \cdot A) > c \cdot \sup A - \varepsilon, \ \forall \varepsilon > 0.$$

Conclui-se daí que

$$\sup(c \cdot A) \ge c \cdot \sup A.$$

Combinando com a desigualdade contrária, obtida anteriormente, segue, finalmente, a igualdade

$$\sup(c \cdot A) = c \cdot \sup A.$$

4. (ex. 39) Para $A, B \subseteq \mathbb{R}^+$ limitados e não vazios, definindo $A \cdot B = \{x \ y \mid x \in A \ , y \in B \}$, prove que $\sup(A \cdot B) = (\sup A) \cdot (\sup B)$ e $\inf(A \cdot B) = (\inf A) \cdot (\inf B)$.

Solução:

 $A \neq \emptyset \Longrightarrow \exists x_0 \in A . B \neq \emptyset \Longrightarrow \exists y_0 \in B . \text{Logo } x_0 y_0 \in (A \cdot B) . \text{Segue que } A \cdot B \neq \emptyset .$

Sejam $a=\sup A$ e $b=\sup B$. Então $0< x\le a$, $\forall x\in A$ e $0< y\le b$, $\forall y\in B$. Logo $x\ y\le a\ b$, $\forall x\in A$, $\forall y\in B$. Segue que $A\cdot B$ é limitado superiormente, sendo $a\ b$ uma cota superior. Conclui-se daí que existe $\sup(A\cdot B)$ e que

$$\sup(A \cdot B) \le (\sup A) \cdot (\sup B) .$$

Falta mostrar a desigualdade no sentido contrário. Seja $\varepsilon > 0$. Então,

$$\exists x_1 \in A \text{ tal que } x_1 > \sup A - \varepsilon = a - \varepsilon.$$

Pela mesma razão,

$$\exists y_1 \in B \text{ tal que } y_1 > \sup B - \varepsilon = b - \varepsilon.$$

Multiplicando as duas desigualdades, obtemos

$$x_1 y_1 > a b - (a + b + \varepsilon)\varepsilon$$
.

Como sup $(A \cdot B) \ge x_1 y_1$, segue que

$$\sup(A \cdot B) > a b - (a + b + \varepsilon)\varepsilon, \ \forall \varepsilon > 0.$$

Logo

$$\sup(A \cdot B) > a b - (a + b + 1)\varepsilon, \ \forall \varepsilon \text{ com } 0 < \varepsilon < 1.$$

Conclui-se daí que

$$\sup(A \cdot B) \ge a b = (\sup A) \cdot (\sup B).$$

Como já tínhamos obtido a desigualdade na outra direção, temos, então, a igualdade

$$\sup(A \cdot B) = (\sup A) \cdot (\sup B).$$

Para o caso do ínfimo, se os ínfimos de A e de B forem ambos positivos, a demonstração é análoga, trocando os sentidos das desigualdades acima e também é feita em duas etapas. Mas se pelo menos um dos ínfimos se anular, a demonstração é mais simples ainda, precisando de uma só etapa. De fato, suponhamos que

$$\inf A = 0$$
.

Vamos mostrar que neste caso $\inf(A \cdot B) = 0$. Obviamente, 0 < xy, $\forall x \in A$, $\forall y \in B$. Precisamos apenas mostrar que $\forall \varepsilon > 0$, $\exists x_1 \in A \ \exists y_1 \in B$ t.q. $x_1y_1 < \varepsilon$. Seja $\varepsilon > 0$.

Escolhemos, arbitrariamente $y_1 \in B$. Como inf A = 0, $\exists x_1 \in A$ t.q. $x_1 < \frac{\varepsilon}{y_1}$. Segue que $x_1 y_1 < \varepsilon$, provando que inf $(A \cdot B) = 0 = (\inf A) \cdot (\inf B)$.

6. (ex. 34) Sejam $A, B \subseteq \mathbb{R}$ não vazios t.q. $\forall x \in A, \forall y \in B, x \leq y$. Mostre que sup $A \leq \inf B$. Mostre que vale a igualdade se e somente se $\forall \varepsilon > 0, \exists x \in A, \exists y \in B$ t.q. $y - x < \varepsilon$.

Solução:

Sejam $A, B \subseteq \mathbb{R}$ não vazios t.q. $\forall x \in A, \forall y \in B, x \leq y$. Então, fixado $x \in A, x$ é uma cota inferior para B. Mas inf B é a maior cota inferior de B. Logo $x \leq \inf B$. Isto vale para $\forall x \in A$, pois x foi fixado arbitrariamente. Logo inf B é uma cota superior de A. Segue que

$$\sup A \leq \inf B$$
.

Vamos agora provar a equivalência

$$\sup A = \inf B \iff \forall \varepsilon > 0 \ \exists x \in A, \exists y \in B \text{ t.q. } y - x < \varepsilon.$$

 \implies

Suponhamos que sup $A=\inf B$. Dado $\varepsilon>0$, considere o número positivo $\frac{\varepsilon}{2}$. Temos que

$$\exists x \in A, \text{ t. q. } x > \sup A - \frac{\varepsilon}{2},$$

ou seja,

$$-x < -\sup A + \frac{\varepsilon}{2}.$$

Também

$$\exists y \in B$$
, t. q. $y < \inf B + \frac{\varepsilon}{2}$.

Somando as duas últimas, obtém-se

$$y-x<\varepsilon$$
.

 \Leftarrow

Suponhamos que $\forall \varepsilon > 0$, $\exists x \in A$, $\exists y \in B$ t.q. $y - x < \varepsilon$. Então

$$\inf B \le y < x + \varepsilon \le \sup A + \varepsilon.$$

Temos, assim,

$$\inf B < \sup A + \varepsilon, \ \forall \varepsilon > 0.$$

Segue que

$$\inf B \leq \sup A .$$

Mas a desigualdade no outro sentido vale sempre. Logo

$$\inf B = \sup A$$
.

8. (ex. 51) Sejam X e Y conjuntos não vazios e seja $f: X \times Y \longrightarrow \mathbb{R}$ uma função limitada. Para cada $x_0 \in X$ e cada $y_0 \in Y$, sejam $s_1(x_0) = \sup\{f(x_0,y) \mid y \in Y\}$ e $s_2(y_0) = \sup\{f(x,y_0) \mid x \in X\}$. Isto define funções $s_1: X \longrightarrow \mathbb{R}$ e $s_2: Y \longrightarrow \mathbb{R}$. Prove que

$$\sup_{x \in X} s_1(x) = \sup_{y \in Y} s_2(y) .$$

Em outras palavras

$$\sup_{y \in Y} \left[\sup_{x \in X} f(x, y) \right] = \sup_{x \in X} \left[\sup_{y \in Y} f(x, y) \right].$$

Solução:

Sejam X e Y conjuntos não vazios e seja $f: X \times Y \longrightarrow \mathbb{R}$ uma função limitada. Seja

$$A = \sup_{x \in X} s_1(x) = \sup_{x \in X} \left[\sup_{y \in Y} f(x, y) \right].$$

e seja

$$B = \sup_{y \in Y} s_2(y) = \sup_{y \in Y} \left[\sup_{x \in X} f(x, y) \right].$$

Temos, pela definição de supremo, que $s_1(x) \leq A, \ \forall x \in X$. Segue que

$$\sup_{y \in Y} f(x,y) \le A, \ \forall y \in Y.$$

Logo

$$f(x,y) < A$$
, $\forall x \in X$, $\forall y \in Y$.

Portanto

$$s_2(y) = \sup_{x \in X} f(x, y) \le A, \ \forall y \in Y.$$

Segue que

$$B = \sup_{y \in Y} s_2(y) \le A.$$

Fica, assim, provado que $B \leq A$. De modo inteiramente análogo se mostrar que $A \leq B$. Logo A = B.

9. (ex. 52) Sejam X e Y conjuntos não vazios e seja $f: X \times Y \longrightarrow \mathbb{R}$ uma função limitada. Para cada $x_0 \in X$ e cada $y_0 \in Y$, sejam $i(x_0) = \inf\{f(x_0, y) \mid y \in Y\}$ e $s(y_0) = \sup\{f(x, y_0) \mid x \in X\}$. Isto define funções $i: X \longrightarrow \mathbb{R}$ e $s: Y \longrightarrow \mathbb{R}$. Prove que

$$\sup_{x \in X} i(x) \le \inf_{y \in Y} s(y) .$$

Em outras palavras

$$\sup_{y \in Y} \left[\inf_{x \in X} f(x, y) \right] \le \inf_{x \in X} \left[\sup_{y \in Y} f(x, y) \right].$$

Dê um exemplo em que se tenha < na desigualdade acima.

Solução:

Sejam X e Y conjuntos não vazios e seja $f: X \times Y \longrightarrow \mathbb{R}$ uma função limitada. Seja

$$A = \sup_{x \in X} i(x) = \sup_{x \in X} \left[\inf_{y \in Y} f(x, y) \right].$$

e seja

$$B = \inf_{y \in Y} s(y) = \inf_{y \in Y} \left[\sup_{x \in X} f(x, y) \right].$$

Fixando arbitrariamente $x_0 \in X$ e $y_0 \in Y$, temos, pela definição de ínfimo, que

$$i(x_0) \le f(x_0, y), \forall y \in Y$$
.

Em particular, para $y = y_0$, temos

$$i(x_0) \leq f(x_0, y_0)$$
.

Analogamente, pela definição de supremo,

$$f(x, y_0) \le s(y_0), \ \forall x \in X.$$

Em particular, para $x = x_0$, temos

$$f(x_0, y_0) < s(y_0)$$
.

Logo

$$i(x_0) \leq s(y_0)$$
.

O elemento $x_0 \in X$ foi fixado arbitrariamente, isto é, pode ser qualquer elemento de X. Logo $s(y_0)$ é uma cota superior para o conjunto $\{i(x) \mid x \in X\}$. Logo

$$\sup_{x \in X} i(x) \le s(y_0) .$$

Mas y_0 também pode ser qualquer elemento de Y. Conclui-se que $\sup_{x \in X} i(x)$ é uma cota inferior para o conjunto $\{s(y) \mid y \in Y\}$. Segue que

$$\sup_{x \in X} i(x) \le \inf_{y \in Y} s(y) .$$

EXEMPLO em que ocorre a desigualdade estrita. Sejam X = Y = [0, 1]. Em seguida, definimos $f: [0, 1] \times [0, 1] \longrightarrow \mathbb{R}$ por f(x, y) = |x - y|. Então

$$i(x) = \inf_{y \in Y} f(x, y) = f(x, x) = 0, \ \forall x \in X$$

e, portanto,

$$\sup_{x \in X} i(x) = 0.$$

Por outro lado,

$$s(y) = \sup_{x \in X} f(x, y) \ge \max\{f(0, y), f(1, y)\} = \max\{y, 1 - y\} \ge \frac{1}{2}, \ \forall y \in Y.$$

Portanto

$$\sup_{x \in X} i(x) = 0 < \frac{1}{2} \le \inf_{y \in Y} s(y).$$