Se quiser ter um exercício corrigido, sem valer nota, entregue-o até dia 10.11.02

NOTAÇÃO: Denotamos por (a_n) a seqüência (lista infinita)

$$a_1$$
, a_2 , a_3 , a_4 , a_5 , \cdots

Verifique se são enumeráveis ou não, justificando sua resposta:

- 1. O conjunto de todas as seqüências formadas de 0's e 1's, possuindo exatamente 3 1's.
- **2.** Para um $k \in \mathbb{N}$, o conjunto \mathcal{M}_k de todas as seqüências formadas de 0's e 1's, possuindo no máximo k termos iguais a 1.
- **3.** $A = \{(a_n) \mid \forall n , a_n \in \mathbb{N} \cup \{0\} \text{ e } a_n = 0 \text{ exceto para um número finito de } n$'s $\}$.
- 4. O conjunto de todas as següências formadas de 0's e 1's.
- 5. O conjunto \mathcal{C} de todos os pontos da circunferência $x^2 + y^2 = 1$ que são vértice de algum polígono regular inscrito na circunferência e que tenha (1,0) como um de seus vértices.
- **6.** $\mathcal{B} = \{(a_n) \mid \forall n , a_n \in \mathbb{N} , a_n \geq a_{n+1} \}$
- 7. $\mathcal{F} = \{f : \mathbb{N} \to \{1, 2, 3, 4, 5\}\}$
- **8.** $\mathcal{P} = \{(a_n) \mid a_n \text{ \'e n\'umero primo } \forall n \}$
- **9.** $\mathcal{G} = \{(a_n) \mid \forall n , a_n \in \mathbb{N} , a_n \leq a_{n+1} \}$
- **10.** $\mathcal{J} = \{(a_n) \mid \forall n , a_n \in \mathbb{N}, n \leq a_n \leq 2 n\}$
- 11. $\mathcal{D} = \{(a_n) \mid \forall n , a_{n+1} \in \text{multiplo de } a_n\}$
- **12.** $\mathcal{E} = \{(a_n) \mid \forall n \text{ , } a_{n+1} \text{ é um divisor de } a_n\}$ (OBS: é equivalente a dizer que a_n é múltiplo de a_{n+1}).
- 12. O conjunto de todas as seqüências formadas de 0's e 1's, contendo uma infinidade de 0's e uma infinidade de 1's.
- 13. O conjunto de todas as séries de potências $\sum_{n=0}^{\infty} a_n x^n$ com coeficientes $a_n \in \mathbb{Z}$.
- 14. (i) Suponhamos que um elemento $x \in [0,1)$ possua duas expansões decimais diferentes

$$x = 0.a_1a_2a_3 \ldots = 0.b_1b_2b_3 \ldots$$

Seja n_0 o menor índice n tal que $a_n \neq b_n$. Então $a_{n_0} < b_{n_0}$ ou $a_{n_0} > b_{n_0}$. Podemos, sem perda de generalidade, trocando os símbolos, se necessário, supor que $a_{n_0} < b_{n_0}$. Prove que as duas

expansões acima são

$$x = 0.a_1 a_2 \dots a_{n_0} 999 \dots$$
 e $x = 0.a_1 a_2 \dots (a_{n_0} + 1)000 \dots$

- (ii) Prove que o conjunto dos elementos de [0, 1) cuja expansão decimal não é única é enumerável.
- 15. Sejam A e B conjuntos infinitos não enumeráveis. Suponha que exista uma aplicação sobrejetiva $\varphi:A\longrightarrow B$ que não seja injetiva, mas para qual exista um subconjunto **enumerável** infinito $E\subseteq A$ tal que a restrição $\left.\varphi\right|_{(A\setminus E)}:A\setminus E\longrightarrow B$ de φ ao conjunto diferença $A\setminus E$ seja bijetiva. Isto é estamos supondo que φ é tal que ao retirarmos de seu domínio um conjunto infinito enumerável E conveniente a função resultante passe a ser injetiva, sem deixar de ser sobrejetiva.

Prove que existe uma aplicação $\psi:A\longrightarrow B$ bijetiva. Sugestão: Tomando $F\subseteq A$ um outro subconjunto infinito enumerável tal que $E\cap F=\emptyset$, suponhamos $E=\{e_1,e_2,e_3,\ldots\}$ e $F=\{f_1,f_2,f_3,\ldots\}$. Construa ψ pondo $\psi(x)=\varphi(x)$, se $x\in A\setminus (E\cup F)$. Construa uma bijeção $\alpha:E\cup F\longrightarrow F$ e defina $\psi(x)=\varphi(\alpha(x))$, se $x\in E\cup F$. Prove que ψ definida deste modo é uma bijeção de A sobre B.

16. O objetivo deste exercício é mostrar que existe uma bijeção entre um quadrado e um segmento. Vamos construir primeiro uma aplicação sobrejetiva

$$\varphi: [0,1) \longrightarrow [0,1) \times [0,1)$$
.

Dado $t \in [0,1)$, tomemos a expansão decimal de $t = 0.c_1c_2c_3...$, convencionando que no caso de t ter duas expansões decimais diferentes consideramos aquela que a partir de certo ponto é 000... Definimos $\varphi(t) = (x,y)$ onde $x,y \in [0,1)$ são dados pelas expansões decimais

$$x = 0.c_1c_3c_5...$$
 e $y = 0.c_2c_4c_6...$

Note que uma destas expansões de x ou de y (mas não as duas) pode a partir de certo ponto ser constante igual a 999...

Prove de φ assim definida é sobrejetiva.

Mostre que φ não é injetiva, dando exemplo de $t \neq t'$ tais que $\varphi(t) = \varphi(t')$.

Prove que dado $t \in [0,1)$, existem no máximo 2 outros pontos $t_1, t_2 \in [0,1)$ tais que $\varphi(t) = \varphi(t_1) = \varphi(t_2)$ e que isto só pode acontecer para uma quantidade enumerável de t's. Combine isto com o exercício 15 para provar que existe uma bijeção

$$\psi: [0,1) \longrightarrow [0,1) \times [0,1)$$
.