
A ROLEWICZ-TYPE CHARACTERIZATION OF

NONUNIFORM BEHAVIOUR

LUCAS BACKES AND DAVOR DRAGIČEVIĆ

Abstract. We present necessary and sufficient conditions in the spirit
of Rolewicz under which all Lyapunov exponents of a given linear co-
cycle are either positive or negative. As a consequence, we formulate
new conditions for the existence of the so-called tempered exponential
dichotomies. We consider cocycles over both maps and flows.

1. Introduction

In [11], Datko proved his famous theorem that asserts that for a C0-
semigroup T (t), t ≥ 0 of bounded operators on an arbitrary Hilbert space
X, the following statements are equivalent:

• T (t) is exponentially stable, i.e. there exist D,λ > 0 such that

‖T (t)‖ ≤ De−λt for t ≥ 0;

• for each x ∈ X, ∫ ∞
0
‖T (t)x‖2 dt <∞. (1)

Since then, the above result has inspired numerous extensions and general-
izations for different classes of dynamics. Among many developments, we
mention that Pazy [26] showed that the conclusion of Datko’s theorem re-
mains valid if (1) is replaced by the requirement that there exists p > 0 such
that ∫ ∞

0
‖T (t)x‖p dt <∞, for each x ∈ X.

Similar results for discrete semigroups of linear operators were established
by Zabczyk [46]. Furthermore, Datko was able to establish the version of
his theorem which deals with a nonautonomous dynamics. More precisely,
in [12] he proved that for an evolution family T (t, s) on R+ = [0,∞) of
bounded operators on an arbitrary Banach space X, the following properties
are equivalent:

• T (t, s) is (uniformly) exponentially stable, i.e. there exist D,λ > 0
such that

‖T (t, s)‖ ≤ De−λ(t−s), for t ≥ s ≥ 0;
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• there exists p > 0 such that

sup
s≥0

∫ ∞
s
‖T (t, s)x‖p dt <∞, for every x ∈ X. (2)

A major contribution to this line of the research is due to Rolewicz [34]
who proved that in the above characterization of exponential stability for
evolution families, condition (2) can be replaced with the requirement that
for each x ∈ X there exists α(x) > 0 such that

sup
s≥0

∫ ∞
s

N(α(x), ‖T (t, s)x‖) dt <∞, (3)

where N : (0,∞) × [0,∞) → [0,∞) is an arbitrary map that satisfies the
following properties:

• N(·, u) is non-decreasing for each u ≥ 0;
• N(α, ·) is continuous and non-decreasing for each α > 0;
• N(α, 0) = 0 and N(α, u) > 0 for every α > 0 and u ≥ 0.

We emphasize that (3) includes (2) as a very particular case that corre-
sponds to N(α, u) = up. We also refer to [33] for similar results in the case
of discrete evolution families and to [41] for the simplest known proof of the
Rolewicz’s result. More recently, many authors have obtained characteri-
zations of exponential stability, instability and dichotomy (including their
nonuniform and stochastic versions) for continuous and discrete evolution
families (see [6, 8, 14, 18, 19, 21, 24, 30]) in the spirit of Datko, Pazy and
Rolewicz. In particular, we recommend [36] for an excellent survey devoted
to those developments.

Finally and most importantly for our work, we mention important pa-
pers [22, 29, 35, 37, 38] in which the authors obtained characterizations of
uniform exponential behaviour for linear cocycles over maps and flows of
Datko-Pazy and Rolewicz type (see also [13]). The importance of those re-
sults stems from the fact that the notion of a linear cocycle arises naturally
in the study of the nonautonomous dynamical systems. Indeed, the smooth
ergodic theory builds around the study of the derivative cocycle associated
either to a map or a flow (see Chapters 5 and 6 in [4]). Moreover, cocycles
describe solutions of variational equations and Cauchy problems with un-
bounded coefficients (see Chapter 6 in [10]). Finally, we note that cocycles
describe solutions of stochastic differential equations (see [1] for details).

The objective of our paper is to formulate Rolewicz-type conditions that
imply nonuniform exponential stability, instability and dichotomy (via neg-
ativity, positivity and nonvanishing of Lyapunov exponents) for linear co-
cycles over both maps and flows. Our approach builds on that in [15],
where the second author has formulated Datko-Pazy conditions that imply
nonuniform exponential stability (see [31, 32] for similar results but where
conditions are formulated in terms of the so-called Lyapunov norms and
hence hard to verify in practice). We emphasize that the results of the
present paper represent a nontrivial extension of those in [15]. Moreover, as
in [15] we also formulate new conditions for uniform exponential stability,
instability and dichotomy of linear cocycles. This is achieved by combining
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our results with results devoted to the so-called subadditive ergodic opti-
mization obtained by Morris [23] (building on the earlier work of Cao [9],
Schreiber [39] and Sturman and Stark [42]).

The relevance of our results stems from the importance of the theory
of nonuniform hyperbolicity that goes back to the landmark work of Os-
eledets [25] and particulary Pesin [27, 28] (see [4] for a detailed exposi-
tion). This theory represents a nontrivial and far-reaching extension of the
theory of uniformly hyperbolic dynamical systems which was initiated by
Smale [40]. Hence, it is important to develop tools for detecting nonuniform
hyperbolicity and precisely this is a main objective and contribution of the
present paper.

The paper is organized as follows. In Section 2.2 we describe necessary
and sufficient conditions under which all Lyapunov exponents of a given
cocycle are negative and present many consequences of it while in Section
2.3 the case of positive Lyapunov exponents is considered. In Section 2.4 we
combine the previous results in order to get the characterization of tempered
exponential dichotomies. Section 3 is devoted to extend all the previous
results for coycles over continuous-time dynamical systems.

2. Cocycles over maps

2.1. Preliminaries. Let M be an arbitrary compact metric space and as-
sume that f : M → M is a continuous map. Furthermore, let X = (X, ‖·‖)
be an arbitrary separable Banach space and let B(X) denote the space of
all bounded linear operators on X. Finally, set N0 = {0, 1, 2, . . .}. A map
A : M × N0 → B(X) is said to be a cocycle over f if:

(1) A(q, 0) = Id for each q ∈M ;
(2) A(q, n+m) = A(fm(q), n)A(q,m) for each q ∈M and n,m ∈ N0;
(3) the map A : M → B(X) given by

A(q) = A(q, 1), q ∈M (4)

is strongly continuous, i.e. the map q 7→ A(q)x is continuous for
each x ∈ X.

We recall that the map A given by (4) is called the generator of a cocycle A.
Let E(f) denote the set of all ergodic, f -invariant Borel probability measures
on M . Since M is compact and f continuous, we have that E(f) 6= ∅.
Observe that:

• the map q 7→ ‖A(q, n)‖ is Borel-measurable for each n ∈ N (see [17,
Lemma 2.4.]);
• it follows from the strong continuity of A, compactness of M and

the uniform boundness principle that

sup
q∈M
‖A(q)‖ <∞. (5)

Hence, the Kingman’s subadditive ergodic theorem [20] implies that for each
µ ∈ E(f), there exists λµ(A) ∈ [−∞,∞) such that

λµ(A) = lim
n→∞

1

n
log‖A(q, n)‖, for µ-a.e. q ∈M . (6)
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The number λµ(A) is called the largest Lyapunov exponent of a cocycle A

with respect to µ.
We also introduce a class of maps which will play a central role in our

results. For a Borel-measurable set E ⊂ M , let F(E) denote the collection
of all maps N : E × [0,∞)→ [0,∞) with the following properties:

(1) N (q, 0) = 0 and N (q, t) > 0 for q ∈ E and t > 0;
(2) N (q, ·) is nondecreasing for q ∈ E;
(3) N (·, t) is measurable for each t > 0.

2.2. Nonuniform exponential stability. We start with a result describ-
ing necessary and sufficient conditions for a cocycle to be non-uniformly
exponentially stable (see also Theorem 2 below).

Theorem 1. For any µ ∈ E(f), the following properties are equivalent:

(1) λµ(A) < 0;
(2) there exist a Borel-measurable set E ⊂ M satisfying µ(E) = 1, a

Borel-measurable function C : E → (0,∞) and N ∈ F(E) such that
∞∑
n=0

N (fn(q), ‖A(q, n)x‖) ≤ C(q)N (q, ‖x‖) (7)

for q ∈ E and x ∈ X;
(3) there exist a Borel-measurable set E ⊂ M satisfying µ(E) > 0,

a Borel-measurable function C : E → (0,∞) and N ∈ F(E) such
that (7) holds for q ∈ E and x ∈ X.

Proof. Let us show that (1) implies (2). Assume that λµ(A) < 0 and take
an arbitrary ε > 0 such that λµ(A) + ε < 0. It follows from (6) that there
exists E ⊂M satisfying µ(E) = 1 and such that

C(q) := sup{‖A(q, n)‖e−n(λµ(A)+ε) : n ∈ N0} <∞, (8)

for q ∈ E. Obviously, C is measurable and

‖A(q, n)‖ ≤ C(q)en(λµ(A)+ε) for q ∈ E and n ∈ N0. (9)

Take now any p > 0 and define N : E × [0,∞) → [0,∞) by N (q, t) = tp.
Clearly, N ∈ F(E). It follows from (9) that

∞∑
n=0

N (fn(q), ‖A(q, n)x‖) =
∞∑
n=0

‖A(q, n)x‖p

≤ C(q)p‖x‖p
∞∑
n=0

enp(λµ(A)+ε)

=
C(q)p

1− ep(λµ(A)+ε)
N (q, ‖x‖),

and consequently (7) holds with

C(q) :=
C(q)p

1− ep(λµ(A)+ε)
∈ (0,∞).

Since (2) trivially implies (3), it remains to prove that (3) implies (1). There-
fore, let us assume that there exist a Borel-measurable set E ⊂M satisfying
µ(E) > 0, a Borel-measurable function C : E → (0,∞) and N ∈ F(E) such



A CHARACTERIZATION OF NONUNIFORM BEHAVIOUR 5

that (7) holds for q ∈ E and x ∈ X. Using Lusin’s theorem, we can without
any loss of assumption assume that E is compact and that C, N (·, 1

2) and
N (·, 1) are continuous on E. Indeed, otherwise we can simply replace E
with its subset of positive measure that has desired properties. For q ∈ E
and x ∈ X, let

‖x‖q :=

∞∑
n=0

N (fn(q), ‖A(q, n)x‖).

It follows from (7) that

N (q, ‖x‖) ≤ ‖x‖q ≤ C(q)N (q, ‖x‖) for q ∈ E and x ∈ X. (10)

Since E is compact and C continuous on E, we have that there exists K > 1
such that

sup
q∈E

C(q) = max
q∈E

C(q) ≤ K. (11)

Set

γ := 1− 1

K
∈ (0, 1).

Lemma 1. For any m ∈ N, q ∈ E and x ∈ X, we have that

‖A(q,m)x‖fm(q) ≤ γ‖x‖q. (12)

Proof of the lemma. Note that

‖A(q,m)x‖fm(q) =

∞∑
n=0

N (fn(fm(q)), ‖A(fm(q), n)A(q,m)x‖)

=
∞∑
n=0

N (fn+m(q), ‖A(q,m+ n)x‖)

=

∞∑
n=m

N (fn(q), ‖A(q, n)x‖)

≤
∞∑
n=1

N (fn(q), ‖A(q, n)x‖)

= ‖x‖q −N (q, ‖x‖).

(13)

On the other hand, (10) and (11) imply that

‖x‖q ≤ KN (q, ‖x‖),
and thus

‖x‖q −N (q, ‖x‖) ≤ (1− 1/K)‖x‖q. (14)

Combining (13) and (14), we conclude that (12) holds. �

On the other hand, it follows from Poincaré recurrence theorem (see [44,
45]) that µ(E′) = µ(E), where

E′ := {q ∈ E : fn(q) ∈ E for infinitely many n ∈ N}.
For each q ∈ E′, set

τ(q) := min{n ∈ N : fn(q) ∈ E} and f̄(q) := f τ(q)(q).

Moreover, let
A(q) := A(q, τ(q)), q ∈ E′
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and consider the cocycle A over f̄ and with generator A. Note that

f
n
(q) = f τn(q)(q) and A(q, n) = A(q, τn(q)) for q ∈ E′ and n ∈ N,

(15)
where

τn(q) :=
n−1∑
i=0

τ(f̄ i(q)).

Lemma 2. For each q ∈ E′ and n ∈ N, we have that

‖A(q, n)x‖fn(q) ≤ γ
n‖x‖q for every x ∈ X. (16)

Proof of the lemma. By (12) and (15), we have that

‖A(q, n)x‖fn(q) = ‖A(q, τn(q))x‖fτn(q)(q)

= ‖A(f τn−1(q)(q), τn(q)− τn−1(q))A(q, τn−1(q))x‖fτn(q)(q)

≤ γ‖A(q, τn−1(q))x‖
fτn−1(q)(q)

.

Now (16) follows by iterating. �

It follows from (10), (11) and (16) that

N (f
n
(q), ‖A(q, n)x‖) ≤ ‖A(q, n)x‖fn(q) ≤ γ

n‖x‖q ≤ KγnN (q, ‖x‖),

and thus

N (f
n
(q), ‖A(q, n)x‖) ≤ KγnN (q, 1), (17)

for every n ∈ N, q ∈ E′ and x ∈ X such that ‖x‖ ≤ 1. Since N (·, 1
2) and

N (·, 1) are continuous and positive on E, there exists n0 ∈ N such that

Kγn0 max
q∈E
N (q, 1) ≤ min

q∈E
N (q,

1

2
). (18)

By (17) and (18),

N (f
n0

(q), ‖A(q, n0)x‖) ≤ N (f
n0

(q),
1

2
),

for every q ∈ E′ and x ∈ X such that ‖x‖ ≤ 1. Therefore, recalling that
N (q, ·) is nondecreasing for q ∈ E,

‖A(q, τn0(q))‖ = ‖A(q, n0)‖ ≤ 1

2
for q ∈ E′. (19)

Since τkn0(q) =
∑k−1

j=0 τn0(f
j
(q)), it follows from (19) that

‖A(q, τkn0(q))‖ ≤
k−1∏
j=0

‖A(f
j
(q), τn0(f

j
(q)))‖ ≤ 1

2k
,
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for q ∈ E′ and k ∈ N. Therefore,

λµ(A) = lim
n→∞

1

n
log‖A(q, n)‖

= lim
n→∞

1

τn(q)
log‖A(q, τn(q))‖

= lim
k→∞

1

τkn0(q)
log‖A(q, τkn0(q))‖

≤ (log
1

2
) · lim

k→∞

k

τkn0(q)

< 0,

where in the last step we use Kac’s lemma (see [44]) which implies that

lim
n→∞

τn(q)

n
=

1

µ(E)
for µ-a.e. q ∈ E′

and thus

lim
k→∞

k

τkn0(q)
=
µ(E)

n0
> 0 for µ-a.e. q ∈ E′.

The proof of the theorem is completed. �

Remark 1. We would like to emphasize that Theorem 1 includes [15, The-
orem 1] as a particular case that corresponds to N given by N (q, t) = tp,
where p > 0.

Remark 2. Take any δ′ ≥ δ > 0. A careful inspection of the proof of
Theorem 1 shows that condition (7) can be replaced with the requirement
that

∞∑
n=0

N (fn(q), ‖A(q, n)x‖) ≤ C(q)N (q, δ′),

for q ∈ E and x ∈ X such that ‖x‖ = δ. Indeed, in this case we have that

N (q, ‖x‖) ≤ ‖x‖q ≤ C(q)N (q, δ′) for q ∈ E and ‖x‖ = δ.

Similarly to the proof of Theorem 1, we can assume that E is a compact set
of positive measure such that N (·, δ), N (·, δ/2) and N (·, δ′) are continuous
on E. Furthermore, set

a := min
q∈E

N (q, δ)

N (q, δ′)
> 0.

By repeating the arguments in the proof of Lemma 1, one can show that (12)
holds for q ∈ E and x ∈ X with ‖x‖ = δ, where γ = 1 − a/K and K is
given by (11). By increasing K if necessary, we can assume that γ ∈ (0, 1).
Therefore, one can also establish that the conclusion of Lemma 2 holds for
each q ∈ E′ and x ∈ X satisfying ‖x‖ = δ. Consequently, we have that

N (f
n
(q), ‖A(q, n)x‖) ≤ KγnN (q, δ′),

when q ∈ E′ and ‖x‖ = δ. Choosing n0 ∈ N such that

Kγn0 max
q∈E
N (q, δ′) ≤ min

q∈E
N (q, δ/2),

we get that (19) holds. Now one can proceed as in the proof of Theorem 1
and establish the negativity of the largest Lyapunov exponent.
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We recall the following result obtained in [15, Theorem 2.] that shows that
the cocycle with the negative largest Lyapunov exponent is nonuniformly
exponentially stable in the sense of Pesin [4, 27, 28]. Hence, Theorem 1 gives
conditions under which the cocycle exhibits nonuniformly stable behaviour.

Theorem 2. Assume that that λµ(A) < 0 for some µ ∈ E(f). Then, for
each ε > 0 there exists a measurable function T : M → (0,∞) such that:

(1) for µ-a.e. q ∈M and n ∈ N0,

‖A(q, n)‖ ≤ T (q)e(λµ(A)+ε)n;

(2) for µ-a.e. q ∈M and n ∈ N0,

T (fn(q)) ≤ T (q)eεn.

We are now in position to formulate new conditions for uniform expo-
nential stability of continuous cocycles, i.e. of cocycles with the property
that A : M → B(X) is a continuous map. We will say that a Borel subset
E ⊂ M has full-measure if µ(E) = 1 for every µ ∈ E(f). The proof of the
following result is analogous to the proof of [15, Theorem 3] but we include
it for the sake of completeness.

Theorem 3. Assume that A is a cocycle over f such that the map A given
by (4) is continuous. Then, the following properties are equivalent:

(1) there exist a full-measure set E ⊂M , a Borel-measurable map C : E →
(0,∞) and N ∈ F(E) such that (7) holds for each q ∈ E and x ∈ X;

(2) A is uniformly exponentially stable, i.e. there exist D,λ > 0 such
that

‖A(q, n)‖ ≤ De−λn for every q ∈M and n ∈ N0. (20)

Proof. Proceeding as in the proof of Theorem 1, it is easy to verify that (20)
implies that (7) holds for any q ∈ M , x ∈ X and with a N given by
N(q, t) = tp, for any p > 0.

Let us establish the converse. Assume that there exist a full-measure
set E ⊂ M , a Borel-measurable map C : E → (0,∞) and N ∈ F(E) such
that (7) holds for each q ∈ E and x ∈ X. It follows from Theorem 1 that

λµ(A) < 0 for every µ ∈ E(f). (21)

Consider a sequence of maps (Fn)n∈N, where Fn : M → R ∪ {−∞} is given
by

Fn(q) := log‖A(q, n)‖ for q ∈M and n ∈ N, (22)

with the convention that log 0 := −∞. Note that since A and f are contin-
uous, Fn is upper semi-continuous for each n ∈ N. Moreover,

Fn+m(q) ≤ Fn(fm(q)) + Fm(q), for m,n ∈ N and q ∈M .

Therefore, it follows from [23, Theorem A.3] that there exists ν ∈ E(f) such
that

lim
n→∞

1

n
max
q∈M

Fn(q) = λν(A),

which together with (21) implies that

lim
n→∞

1

n
max
q∈M

Fn(q) < 0.
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Hence, there exist λ > 0 and n0 ∈ N such that

max
q∈M

Fn(q) ≤ −λn for every n ≥ n0,

which in a view of (22) readily implies (20). �

Our Theorem 3 is quite similar to the following result established by Sasu
and Sasu [35, Theorem 3.1.].

Theorem 4. Assume that A is a cocycle over f . Then, the following prop-
erties are equivalent:

(1) there exist a nondecreasing function N : [0,∞) → [0,∞) satisfying
N(0) = 0 and N(t) > 0 for t > 0 and K, δ > 0 such that

∞∑
n=0

N(‖A(q, n)x‖) ≤ K, (23)

for q ∈M and x ∈ X such that ‖x‖ ≤ δ;
(2) there exist D,λ > 0 such that (20) holds.

Remark 3. Let us now compare Theorems 3 and 4. We note that in Theo-
rem 4, it is required that (23) holds for each q ∈M . On the other hand, in
the statement of Theorem 3 we require that (7) holds for each q ∈ E, where
E is a set of full-measure. At the first glance, it might seem that the latter is
an artifical and only minor relaxation of the requirement in the statement of
Theorem 4. However, it turns out that quite the opposite is true. More pre-
cisely, it follows from the results of Barreira and Schmeling [5] that in many
generic situations, M \E can have a complicated structure when E is a set of
full-measure. More precisely, it can happen that M \E has the same Haus-
dorff dimension as M which in particular implies that it is uncountable (and
thus nonempty). Moreover, our condition (7) is stated in terms of a map N
which is a function of two variables (just like in the work of Rolewicz [34]),
while (23) is expressed in terms of the existence of a map N which is a
function of one real variable. The drawback of our Theorem 3 when com-
pared with Theorem 4 is that it requires for the cocycle A to be (operator
norm) continuous. Certainly, this is considerably stronger than to require
that the cocycle is only strongly continuous. However, it still includes many
interesting classes of dynamics (see [4, 7, 10]). We conclude that Theorem 3
represents a nontrivial extension of Theorem 4 (for continuous cocycles).

Assume that λµ(A) ≥ 0. Then, it follows readily from Theorem 1 that
there exists E ⊂M satisfying µ(E) = 1 and such that for each q ∈ E there
exists x ∈ X such that

∞∑
n=0

N (fn(q), ‖A(q, n)x‖) = +∞.

We will now study topological properties of the set of all x ∈ X for which
the above equality holds (for a fixed point q ∈ E).

We begin by introducing some auxiliary notation. Let [0,∞)N0 denote the
set of all sequences (an)n≥0 with an ∈ [0,∞) for every n ≥ 0. Furthermore,
let E ⊂ M be any Borel-measurable set and consider a family F ′(E) that
consists of all N ∈ F(E) such that:
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(1) N : M × [0,∞)→ [0,∞) is a measurable map;
(2) N (q, ·) is lower semicontinuous for each q ∈ E;
(3) For every q ∈ E, the set{

(an)n≥0 ∈ [0,∞)N0 :

∞∑
n=0

N (fn(q), an) <∞
}

is a convex cone.

Theorem 5. Assume that λµ(A) ≥ 0 and take an arbitrary N ∈ F ′(M).
Then, there exists a Borel-measurable set E ⊂ M satisfying µ(E) = 1 and
such that

Xq :=

{
x ∈ X :

∞∑
n=0

N (fn(q), ‖A(q, n)x‖) = +∞
}

(24)

is a residual set, for each q ∈ E.

Proof. It follows from Theorem 1 that there exists a Borel-measurable set
E ⊂ M satisfying µ(E) = 1 and such that for every q ∈ E there exists
xq ∈ X so that

∞∑
n=0

N (fn(q), ‖A(q, n)xq‖) = +∞. (25)

We claim that Xq is residual for each q ∈ E. We first observe that

Xq =
∞⋂
k=1

Xq,k,

where

Xq,k :=

{
x ∈ X :

∞∑
n=0

N (fn(q), ‖A(q, n)x‖) > k

}
.

Take x ∈ Xq,k. Hence, there exists N ∈ N such that

N∑
n=0

N (fn(q), ‖A(q, n)x‖) > k.

By using lower-semicontinuity of N and strong continuity of A(·, n), we
conclude that there exists δ > 0 such that for any y ∈ X with ‖x− y‖ < δ,
we have that

N∑
n=0

N (fn(q), ‖A(q, n)y‖) > k.

Hence, y ∈ Xq,k and we conclude that Xq,k is open in X.
Let us now show that each Xq,k is dense in X. Take x ∈ X and δ > 0. We

claim that B(x, δ) ∩Xq,k 6= ∅. Assume the opposite and take an arbitrary
y ∈ X such that ‖y‖ < δ. Then, x+ y ∈ B(x, δ) and consequently,

∞∑
n=0

N (fn(q), ‖A(q, n)(x+ y)‖) ≤ k. (26)
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Furthermore, since x ∈ B(x, δ) we have that

∞∑
n=0

N (fn(q), ‖A(q, n)x‖) ≤ k. (27)

Thus, using the third condition in the definition of F ′(M), (26) and (27) it
follows that

∞∑
n=0

N (fn(q), ‖A(q, n)y‖) <∞.

Hence, B(0, δ) ⊂ X \ Xq. This together with the third condition in the
definition of F ′(M) implies that Xq = ∅ which contradicts (25). �

The following result is similar in nature to Theorem 5 but it concerns
different class of maps N and is valid under stronger assumption that
λµ(A) > 0. Let E ⊂ M be any Borel-measurable set and consider a family
F ′′(E) that consists of all N ∈ F(E) such that:

(1) N : M × [0,∞)→ [0,∞) is a measurable map;
(2) N (q, ·) is lower semicontinuous for each q ∈ E;
(3) for each q ∈ E and for infinite I ⊂ N, we have that∑

n∈I
N (fn(q), 1) = +∞.

Theorem 6. Assume that λµ(A) > 0 and take an arbitrary N ∈ F ′′(M).
Then, there exists a Borel-measurable set E ⊂ M satisfying µ(E) = 1 and
such that Xq given by (24) is a residual set for each q ∈ E.

Proof. Using the same notation as in the proof of Theorem 5, we have that
Xq,k is open for each q ∈ E and k ∈ N. In addition, without any loss of
assumption we may assume that

λµ(A) = lim
n→∞

1

n
log‖A(q, n)‖ > 0, for every q ∈ E. (28)

It remains to prove that Xq,k is also dense for q ∈ E and k ∈ N. Take now
an arbitrary x ∈ X and δ > 0. We claim that there exists y ∈ B(x, δ) such
that

lim sup
n→∞

1

n
log‖A(q, n)y‖ > 0. (29)

If y = x satisfies (29) there is nothing to prove. Otherwise, we have that

lim sup
n→∞

1

n
log‖A(q, n)x‖ ≤ 0. (30)

On the other hand, it follows from (28) and [16, Proposition 14.] that there
exists z ∈ B(0, δ) satisfying

lim sup
n→∞

1

n
log‖A(q, n)z‖ > 0. (31)

It follows readily from (30) and (31) that y = x + z satisfies (29). Hence,
we have found y ∈ B(x, δ) such that (29) holds. In particular, there exists
an infinite subset I of N such that

‖A(q, n)y‖ ≥ 1, for each n ∈ I.
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This together with our assumption that N ∈ F ′′(M) implies that

∞∑
n=0

N (fn(q), ‖A(q, n)y‖) ≥
∑
n∈I
N (fn(q), ‖A(q, n)y‖)

≥
∑
n∈I
N (fn(q), 1)

= +∞.

We conclude that y ∈ Xq and the proof is completed. �

Remark 4. We note that similar results to our Theorems 5 and 6 have
been obtained earlier by van Neerven [43] in the autonomous case, i.e. for
semigroups of linear operators.

2.3. Nonuniform exponential instability. Given L ∈ B(X), we define
the mininorm of L as

m(L) = inf{‖Lv ‖/‖ v ‖ : v 6= 0}.

It follows from Kingman’s subadditive ergodic theorem [20] that there exists
λ−µ (A) ∈ [−∞,∞) such that

λ−µ (A) = lim
n→∞

1

n
logm(A(q, n)) for µ-a.e. q ∈M. (32)

Such number is called the smallest Lyapunov exponent of A with respect to
µ. It is easy to see that, whenever A(q) is an invertible operator for µ-almost
every q ∈M ,

λ−µ (A) = − lim
n→∞

1

n
log‖A(q, n)−1‖ for µ-a.e. q ∈M .

Indeed, this follows from a simple observation that for any invertible oper-
ator L ∈ B(X) we have that m(L) = ‖L−1‖−1.

We now formulate conditions (in the spirit of Theorem 1) under which the
smallest Lyapunov exponent of a given cocycle (and with respect to some
ergodic invariant measure) is strictly positive.

Theorem 7. For any µ ∈ E(f), the following properties are equivalent:

(1) λ−µ (A) > 0;
(2) there exist a Borel-measurable set E ⊂ M satisfying µ(E) = 1, a

Borel-measurable function C : E → (0,∞) and N ∈ F(E) such that

∞∑
n=0

N
(
fn(q),

1

‖A(q, n)x‖

)
≤ C(q)N

(
q,

1

‖x‖

)
, (33)

for q ∈ E and x ∈ X \ {0};
(3) there exist a Borel-measurable set E ⊂ M satisfying µ(E) > 0,

a Borel-measurable function C : E → (0,∞) and N ∈ F(E) such
that (33) holds for q ∈ E and x ∈ X \ {0}.

Proof. We start by proving that (1) implies (2). Assume that λ−µ (A) > 0

and let ε > 0 be such that λ−µ (A) − ε > 0. It follows from (32) that there
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exists a Borel-measurable set E ⊂M satisfying µ(E) = 1 and such that

K(q) = sup
n

{
en(λ−µ (A)−ε)

m(A(q, n))

}
< +∞

for every q ∈ E. Furthermore, K is obviously a measurable map. Moreover,

1

m(A(q, n))
≤ K(q)e−n(λ−µ (A)−ε)

for every q ∈ E. Observing that

1

m(A(q, n))
= sup
‖x ‖6=0

‖x ‖
‖A(q, n)x ‖

,

we obtain

1

‖A(q, n)x ‖
≤ K(q)e−n(λ−µ (A)−ε)

‖x ‖
for every x ∈ X \ {0}.

In particular, for any p > 0 we have
∞∑
n=0

1

‖A(q, n)x ‖p
≤ 1

‖x ‖p
K(q)p

∞∑
n=0

e−n(λ−µ (A)−ε)p.

Consequently, setting

C(q) = K(q)p
∞∑
n=0

e−n(λ−µ (A)−ε)p =
K(q)p

1− e−(λ−µ (A)−ε)p
,

we conclude that (33) holds with N (q, t) = tp.
The fact that (2) implies (3) is trivial so it remains to prove that (3) im-

plies (1). Assume that there exist a Borel-measurable set E ⊂M satisfying
µ(E) > 0, a Borel-measurable function C : E → (0,∞) and N ∈ F(E) such
that (33) holds for q ∈ E and x ∈ X \ {0}. As in the proof of Theorem 1,
we may to assume that E is compact and that C, N (·, 1

2) and N (·, 1) are
continuous on E. For q ∈ E and x ∈ X \ {0}, let

‖x‖q :=

∞∑
n=0

N
(
fn(q),

1

‖A(q, n)x‖

)
.

By (33),

N
(
q,

1

‖x‖

)
≤ ‖x‖q ≤ C(q)N

(
q,

1

‖x‖

)
, (34)

for q ∈ E and x ∈ X \ {0}. Since E is compact and C continuous on E, we
have that there exists K > 1 such that

sup
q∈E

C(q) = max
q∈E

C(q) ≤ K. (35)

By repeating the arguments in the proof of Lemma 1, one can verify that

‖A(q,m)x‖fm(q) ≤ γ‖x‖ for q ∈ E and x ∈ X \ {0},

where γ := 1 − 1/K. Let E′, τ , f̄ and Ā be as in the proof of Theorem 1.
Arguing as in the proof of Lemma 2, one can show that

‖A(q, n)x‖fn(q) ≤ γ
n‖x‖q, (36)
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for q ∈ E′, n ∈ N and x ∈ X \ {0}. Observe that (34), (35) and (36) imply
that

N
(
f
n
(q),

1

‖A(q, n)x‖

)
≤ KγnN (q, 1),

for q ∈ E′, n ∈ N and x ∈ X such that ‖x‖ = 1. As in the proof of
Theorem 1 this implies that there exists n0 ∈ N such that

1

‖A(q, τn0(q))x‖
=

1

‖A(q, n0)x‖
≤ 1

2
for q ∈ E′ and ‖x‖ = 1,

and therefore

‖x‖
‖A(q, τkn0(q))x‖

≤ 1

2k
for q ∈ E′, k ∈ N and x ∈ X \ {0}.

In particular,

m(A(q, τkn0(q))) ≥ 2k for every k ∈ N and q ∈ E′.
Hence,

λ−µ (A) = lim
n→∞

1

n
logm(A(q, n)) = lim

n→∞

1

τn(q)
logm(A(q, τn(q)))

= lim
k→∞

1

τkn0(q)
logm(A(q, τkn0(q))) ≥ lim

k→∞

1

τkn0(q)
log 2k

= log 2 · lim
k→∞

k

τkn0(q)
.

Arguing as in the proof of Theorem 1 we have that

lim
k→∞

k

τkn0(q)
> 0,

and thus the proof is completed. �

The proof of the following result can be established by repeating the
arguments in the proof of Theorem 2 (see [15, Theorem 3]).

Theorem 8. Assume that λ−µ (A) > 0 for some µ ∈ E(f). Then, for each
ε > 0 there exists a measurable function T : M → (0,∞) such that:

(1) for µ-a.e. q ∈M , x ∈ X and n ∈ N0,

‖A(q, n)x‖ ≥ 1

T (q)
e(λ−µ (A)−ε)n‖x‖;

(2) for µ-a.e. q ∈M and n ∈ N0,

T (fn(q)) ≤ T (q)eεn.

The following is a version of Theorem 3 for exponential instability. We
omit the proof since it is analogous to the proof of Theorem 3.

Theorem 9. Assume that A is an invertible cocycle over f such that the
map A given by (4) is injective and continuous. Then, the following prop-
erties are equivalent:

(1) there exist a full-measure set E ⊂M , a Borel-measurable map C : E →
(0,∞) and N ∈ F(E) such that (33) holds for each q ∈ E and
x ∈ X;
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(2) A is uniformly exponentially unstable, i.e. there exist D,λ > 0 such
that

‖A(q, n)x‖ ≥ 1

D
eλn‖x‖ for every q ∈M , x ∈ X and n ∈ N0.

Finally, we also state (without the proof) the following version of Theo-
rem 5 in the current setting.

Theorem 10. Assume that λ−µ (A) ≤ 0 and take an arbitrary N ∈ F ′(M) as
in Theorem 5. Then, there exists a Borel-measurable set E ⊂ M satisfying
µ(E) = 1 and such that

Xq :=

{
x ∈ X :

∞∑
n=0

N
(
fn(q),

1

‖A(q, n)x‖

)
= +∞

}
is a residual set, for each q ∈ E.

Assume now that X = Rd and that A is a cocycle of (bounded) lin-
ear operators on Rd. We will now formulate conditions under which all
Lyapunov exponents of A (given by the Oseledets multiplicative ergodic
theorem [4, 25]) belong to a given open interval.

Theorem 11. Take µ ∈ E(f) and assume that there exist a Borel-measurable
set E ⊂M satisfying µ(E) > 0, a Borel-measurable function C : E → (0,∞)
and Ni ∈ F(E), i = 1, 2 such that

∞∑
n=0

N1(fn(q), e−an‖A(q, n)x‖) ≤ C(q)N1(q, ‖x‖) (37)

and
∞∑
n=0

N2

(
fn(q),

1

e−bn‖A(q, n)x‖

)
≤ C(q)N2

(
q,

1

‖x‖

)
, (38)

for q ∈ E and x ∈ X \ {0}, where b < a. Then, all Lyapunov exponents of
A are contained in the interval (b, a).

Proof. Let B be a cocycle over f with the generator B given by B(q) =
e−aA(q), q ∈M . It follows from (37) and Theorem 1 that λµ(B) < 0. Since
λµ(B) = −a+ λµ(A), we conclude that λµ(A) < a.

Similarly, (38) and Theorem 7 imply that λ−µ (A) > b and the proof is
completed.

�

2.4. Tempered exponential dichotomy. By combining results from pre-
vious sections, we are in a position to formulate sufficient conditions for the
existence of tempered exponential dichotomies which were recently studied
in [2, 47].

Theorem 12. Take µ ∈ E(f) and assume that there exist a Borel-measurable
set E ⊂ M satisfying µ(E) = 1, a Borel measurable map C : E → (0,∞),
Ni ∈ F(E), i ∈ {s, u}, and a measurable splitting

X = Es(q)⊕ Eu(q) for q ∈ E, (39)

where Es(q) and Eu(q) are closed subspace of X satisfying:

• A(q)Es(q) ⊂ Es(f(q)) and A(q)Eu(q) = Eu(f(q)) for q ∈ E;
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• A(q)|Eu(q) : Eu(q)→ Eu(f(q)) is invertible for q ∈ E;
• (7) holds for Ns, q ∈ E and x ∈ Es(q);
• (33) holds for Nu, q ∈ E and x ∈ Eu(q).

Then, there exists λ > 0 and for each ε > 0 a measurable function T : M →
(0,∞) such that:

• for µ-a.e. q ∈M , x ∈ Es(q) and n ∈ N,

‖A(q, n)x‖ ≤ T (q)e(−λ+ε)n‖x‖;
• for µ-a.e. q ∈M , x ∈ Eu(q) and n ∈ N,

‖A(q, n)x‖ ≥ 1

T (q)
e(λ−ε)n‖x‖;

• for µ-a.e. q ∈M ,

∠(Es(q), Eu(q)) ≤ T (q);

• for µ-a.e. q ∈M and n ∈ N,

T (fn(q)) ≤ T (q)eεn.

Proof. In a view of Theorems 1, 2, 7 and 8 only the third assertion of the
theorem requires some elaboration. However, this requires the use of some
standard arguments and thus we only give a sketch of the proof. We first
note that we can assume without any loss of assumption that

‖A(q, n)‖ ≤ T (q)e(c+ε)n for µ-a.e. q ∈M ,

where c = λµ(A). One can now easily introduce a family of the so-called
Lyapunov norms [3, 4] that transform all the above inequalities concern-
ing the growth of A into uniform estimates. More precisely, we have the
following lemma.

Lemma 3. There exists a family of norms ‖·‖q, q ∈M on X satisfying:

• there is C > 0 such that

‖x‖ ≤ ‖x‖q ≤ CT (q)‖x‖ for x ∈ X and µ-a.e. q ∈M ; (40)

• for µ-a.e. q ∈M , x ∈ Es(q) and n ∈ N,

‖A(q, n)x‖fn(q) ≤ Ce(−λ+ε)n‖x‖q;

• for µ-a.e. q ∈M , x ∈ Eu(q) and n ∈ N,

‖A(q, n)x‖fn(q) ≥
1

C
e(λ−ε)n‖x‖q;

• for µ-a.e. q ∈M , x ∈ X and n ∈ N,

‖A(q, n)x‖fn(q) ≤ Ce(c+ε)n‖x‖q

Let P (q) : X → Es(q) andQ(q) : X → Eu(q) be the projections associated
with the splitting (39). By using Lemma 3 and repeating the arguments in
the proof of [3, Lemma 4.4.], one can show that there exists D > 0 such that

‖P (q)x‖q ≤ D‖x‖q and and ‖Q(q)x‖q ≤ D‖x‖q,
for µ-a.e. q ∈M and x ∈ X. The above estimates together wth (40) imply
the third assertion of the theorem. �
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3. Cocycles over semi-flows

In this section we present versions of some of our previous results for
cocycles over semi-flows. In fact, all of them have such versions but, since
many translations to this setting are straightforward, we chose to present
only a few of them for the purpose of illustration.

We continue to assume that M is a compact metric space and that X is
a separable Banach space. A family of maps Φ = (ϕt)t≥0, ϕt : M → M is
said to be a semi-flow if:

(1) ϕt is a continuous map for each t ≥ 0;
(2) ϕ0 = Id;
(3) ϕt+s = ϕt ◦ ϕs for t, s ≥ 0;
(4) the map (q, t) 7→ ϕt(q) is continuous on M × [0,∞).

Furthermore, we say that the map A : M × [0,∞)→ B(X) is a cocycle over
Φ = (ϕt)t≥0 if:

(1) A(q, 0) = Id for q ∈M ;
(2) A(q, t+ s) = A(ϕs(q), t)A(q, s) for q ∈M and t, s ≥ 0;
(3) (q, t) 7→ A(q, t)x is a continuous map on M × [0,∞) for each x ∈ X.

It follows easily from the uniform boundness principle and the assumption
that M is compact that A is exponentially bounded, i.e. that there K,ω > 0
such that

‖A(q, t)‖ ≤ Keωt for q ∈M and t ≥ 0. (41)

Let E(Φ) denote the space of all ergodic, Φ-invariant Borel probability mea-
sures. It follows from Kingman’s subadditive ergodic theorem [20] that for
each µ ∈ E(Φ), there exists λµ(A) ∈ [−∞,∞) such that

λµ(A) = lim
t→∞

1

t
log‖A(q, t)‖, for µ-a.e. q ∈M . (42)

As for cocycles over maps, the number λµ(A) is called the largest Lyapunov
exponent of the cocycle A with respect to µ.

We now establish the version of Theorem 1 for cocycles over flows. Let
F̄(E) denote all N ∈ F(E) depending only on the second coordinate.

Theorem 13. For any µ ∈ E(Φ), the following properties are equivalent:

(1) λµ(A) < 0;
(2) there exist a Borel-measurable set E ⊂ M satisfying µ(E) = 1, a

Borel-measurable function C : E → (0,∞) and N ∈ F̄(E) such that∫ ∞
0
N (‖A(q, t)x‖) dt ≤ C(q)N (‖x‖) (43)

for q ∈ E and x ∈ X;
(3) there exist a Borel-measurable set E ⊂ M satisfying µ(E) > 0,

a Borel-measurable function C : E → (0,∞) and N ∈ ¯F(E) such
that (43) holds for q ∈ E and x ∈ X.

Proof. Let us prove that (1) implies (2). Assume therefore that λµ(A) < 0
and take an arbitrary ε > 0 such that λµ(A) + ε < 0. It follows from (42)
that

C(q) := sup{‖A(q, t)‖e−t(λµ(A)+ε) : t ≥ 0} <∞, (44)
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for µ-a.e. q ∈M . Obviously,

‖A(q, t)‖ ≤ C(q)et(λµ(A)+ε) for µ-a.e. q ∈M and t ≥ 0. (45)

Take p > 0 and let N ∈ F̄(E) be given by N (t) = tp. Using (45) we have
that∫ ∞

0
‖A(q, t)x‖p dt ≤ C(q)p‖x‖p

∫ ∞
0

ept(λµ(A)+ε) dt =
C(q)p

−p(λµ(A) + ε)
‖x‖p

for µ-a.e. q ∈M and x ∈ X. Hence, (43) holds with

C(q) :=
C(q)

(−p(λµ(A) + ε))1/p
, q ∈M.

It remains to prove that (3) implies (1) since (2) trivially implies (3). Hence,
suppose that there exist a Borel-measurable set E ⊂M satisfying µ(E) > 0,
a Borel-measurable function C : E → (0,∞) and N ∈ F̄(E) such that (43)
holds for q ∈ E and x ∈ X. If follows from (41) that

‖A(q, n+ 1)x‖ ≤ ‖A(ϕt(q), n+ 1− t)‖ · ‖A(q, t)x‖ ≤ Keω‖A(q, t)x‖,

for q ∈M , n ∈ N0, t ∈ [n, n+ 1] and x ∈ X. Thus,

N (‖A(q, n+ 1)x‖) ≤
∫ n+1

n
N (‖A(q, t)Tx‖) dt

and consequently
∞∑
n=1

N (‖A(q, n)x‖) ≤
∫ ∞

0
N (‖A(q, t)Tx‖) dt,

for q ∈ E and every x ∈ X, where T = max{Keω, 1}. It follows from (43)
that

∞∑
n=0

N (‖A(q, n)x‖) ≤ (C(q) + 1)N (T ), (46)

for q ∈ E and every x ∈ X such that ‖x‖ = 1. Note that the restriction of
A to M ×N0 is a cocycle over ϕ1 and that µ ∈ E(ϕ1). Hence, it follows from
Theorem 1, Remark 2 and (46) that

lim
n→∞

1

n
log‖A(q, n)‖ < 0 for µ-a.e. q ∈M ,

which implies that

λµ(A) = lim
t→∞

1

t
log‖A(q, t)‖ = lim

n→∞

1

n
log‖A(q, n)‖ < 0.

�

The following is a continuous-time version of Theorem 3.

Theorem 14. Assume that A is a continuous cocycle over Φ. Furthermore,
suppose that M is a compact topological space. Then, the following properties
are equivalent:

(1) there exist a full-measure set E ⊂M , a Borel-measurable map C : E →
(0,∞) and N ∈ F̄(E) such that (43) holds for each q ∈ E and
x ∈ X;
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(2) A is uniformly exponentially stable, i.e. there exist D,λ > 0 such
that

‖A(q, t)‖ ≤ De−λt for every q ∈M and t ≥ 0. (47)

Proof. We shall show that (1) implies (2) since the converse is easy. It
follows from Theorem 13 that

λµ(A) < 0 for every µ ∈ E(Φ). (48)

For each t ≥ 0, we define Ft : M → R ∪ {−∞} by

Ft(q) = log‖A(q, t)‖, q ∈M.

Note that Ft is upper semi-continuous and that

Ft+s(q) ≤ Ft(ϕs(q)) + Fs(q), for q ∈M and t, s ≥ 0.

It follows from (48) and [23, Theorem A.3.] that

lim
t→∞

1

t
log max

q∈M
‖A(q, t)‖ < 0,

which immediately implies (47). �

Similarly to (32), we define the smallest Lyapunov exponent of A with
respect to µ as λ−µ (A) ∈ [−∞,∞) such that

λ−µ (A) = lim
t→∞

1

t
logm(A(q, t)) for µ-a.e. q ∈M.

The existence of such number is once again ensured by Kingman’s subaddi-
tive ergodic theorem [20]. Thus, proceeding as in the proof of Theorem 13
we can get a version of Theorem 7 for cocycles over semi-flows.

Theorem 15. Assume that there exist D > 0 and ω > 0 such that

m(A(q, t)) ≥ 1

D
e−ωt, for q ∈M and t ∈ [0, 1].

For any µ ∈ E(Φ), the following properties are equivalent:

(1) λ−µ (A) > 0;
(2) there exist a Borel-measurable set E ⊂ M satisfying µ(E) = 1, a

Borel-measurable function C : E → (0,∞) and N ∈ F̄(E) such that∫ ∞
0
N
(

1

‖A(q, t)x‖

)
dt ≤ C(q)N

(
1

‖x‖

)
(49)

for q ∈ E and x ∈ X;
(3) there exist a Borel-measurable set E ⊂ M satisfying µ(E) > 0,

a Borel-measurable function C : E → (0,∞) and N ∈ F̄(E) such
that (49) holds for q ∈ E and x ∈ X.

Consequently, we can also get a complete characterization of tempered
exponential dichotomies for continuous-time cocycles.

Theorem 16. Take µ ∈ E(Φ) and assume that there exist a Borel-measurable
set E ⊂ M satisfying µ(E) = 1, a Borel measurable map C : E → (0,∞),
Ni ∈ F̄(E), i ∈ {s, u}, and a measurable splitting

X = Es(q)⊕ Eu(q) for q ∈ E,

where Es(q) and Eu(q) are closed subspace of X satisfying:
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• A(q, t)Es(q) ⊂ Es(ϕt(q)) and A(q, t)Eu(q) = Eu(ϕt(q)) for q ∈ E;
• A(q, t)|Eu(q) : Eu(q) → Eu(ϕt(q)) is invertible for q ∈ E and there

exist D,ω > 0 such that

m(A(q, t)|Eu(q)) ≥
1

D
e−ωt, for q ∈ E and t ∈ [0, 1].;

• (43) holds for Ns, q ∈ E and x ∈ Es(q);
• (49) holds for Nu, q ∈ E and x ∈ Eu(q).

Then, there exist λ > 0 and for each ε > 0 a measurable function T : M →
(0,∞) such that:

• for µ-a.e. q ∈M , x ∈ Es(q) and t ≥ 0,

‖A(q, t)x‖ ≤ T (q)e(−λ+ε)t‖x‖;
• for µ-a.e. q ∈M , x ∈ Eu(q) and t ≥ 0,

‖A(q, t)x‖ ≥ 1

T (q)
e(λ−ε)t‖x‖;

• for µ-a.e. q ∈M ,

∠(Es(q), Eu(q)) ≤ T (q);

• for µ-a.e. q ∈M and t ≥ 0,

T (ϕt(q)) ≤ T (q)eεt.

One can similarly establish continuous time versions of all other results
we have established for cocycles over maps.
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