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Abstract. In this work, we introduce three notions of dichotomy spectrum
based on general growth rates and describe their structure. Our results are

applicable to nonautonomous linear systems acting on general Banach spaces

having negative µ-index of compactness, a condition which is satisfied, for in-
stance, by any sequence of compact operators. Moreover, for any possible form

of the spectra, we present an explicit example exhibiting such spectrum. Fur-
thermore, as an application, we obtain normal forms of certain nonautonomous

systems. We emphasize that the classical Sacker-Sell spectrum can be obtained

as a very particular case of our setting.

1. Introduction

The notion of an exponential dichotomy, introduced by Perron [21], plays an im-
portant role in the study of nonautonomous dynamical systems. Roughly speaking,
a system is said to admit an exponential dichotomy if, at each moment of time,
the phase space splits into two complementary directions such that along one of
these directions we have exponential expansion with time, while in the other one
we have exponential contraction. Associated with this notion we have that of the
Sacker-Sell spectrum or dichotomy spectrum, introduced by Sacker and Sell [25] in
the study of linear skew product flows with compact base and latter extended to
several different settings [2, 5, 6, 15, 26]. In general terms, this spectrum consists
of all real numbers for which an appropriate perturbation, determined by these
numbers, of the original system does not admit an exponential dichotomy. This
notion has proved to be useful in several contexts, like in the obtention of normal
forms for nonautonomous difference and differential equations [8, 27, 28, 29, 32],
and is by now reasonably well understood.

In the present work we aim to extend the study of dichotomy spectrum by
considering a similar notion but now associated to a more general concept of di-
chotomy, namely, that of (µ, ν)-dichotomy. Similarly to what happens in the case
of an exponential dichotomy, this notion also requires that the phase space splits
(at each moment of time) into two complementary directions along which the dy-
namics contracts/expands, but here the rates of contraction/expansion are given
by a general function µ and the nonuniformity of these contractions/expansions
is measured using a function ν (for more on this concept, check out Section 2.1).
Then, based on this notion of (µ, ν)-dichotomy, we will introduce three notions of
dichotomy spectrum and describe their structure. Our results are applicable to
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nonautonomous linear systems acting on general Banach spaces having negative µ-
index of compactness, a condition which is satisfied, for instance, by any sequence
of compact operators. Moreover, for any possible form of the spectra, we present
an explicit example exhibiting such spectrum. Furthermore, as an application, we
obtain normal forms of certain nonautonomous systems. The importance of our
results stems from our general framework. More precisely, we are able to treat in
a unified manner various settings in which no similar result has been previously
obtained and to recover and refine several known results. In particular, we observe
that the classical Sacker-Sell spectrum can be obtained as a very particular case of
our setting.

We would like to mention that our work was inspired by the works of Barreira,
Dragičević and Valls [5, 6]. In these works, the authors introduce and charac-
terize a strong nonuniform spectrum associated with arbitrary growth rates for
finite-dimensional systems and a nonuniform dichotomy spectrum associated with
a nonuniform exponential dichotomy with an arbitrarily small nonuniform part for
possible infinite-dimensional systems acting on Banach spaces and with index of
compactness smaller than zero, respectively. In the present paper, we combine
the main features of both works and deal with very general types of dichotomy
(even more general than the one considered in [5]) and also work in the infinite-
dimensional setting of Banach spaces. As for the application to normal forms, we
mention that our work was inspired by [8] in which the authors have obtained nor-
mal forms by making use of the nonuniform dichotomy spectrum introduced in [6].
Here, we use our nonuniform µ-dichotomy spectrum to obtain a similar application.
Finally, we refer to [1, 2, 15, 17, 23, 24, 25, 31, 32] and references therein for more
interesting results involving several types of dichotomy spectra.

2. Preliminaries

Let X = (X, ∥ · ∥) be an arbitrary Banach space. By B(X) we will denote the
space of all bounded linear operators on X. The operator norm on B(X) will be
also denoted by ∥ · ∥. Given a sequence (An)n∈Z of bounded linear operators in
B(X), let us consider the associated linear difference equation

xn+1 = Anxn, n ∈ Z. (2.1)

For m,n ∈ Z, the evolution operator associated to (2.1) is given by

A(m,n) =

{
Am−1 · · ·An for m > n;

Id for m = n,
(2.2)

where Id denotes the identity operator on X.

2.1. Growth rates and (µ, ν)-dichotomy. Let µ = (µn)n∈Z be a strictly increas-
ing sequence of positive numbers such that

lim
n→−∞

µn = 0 and lim
n→+∞

µn = +∞. (2.3)

We call such a sequence µ a growth rate. Furthermore, let ν = (νn)n∈Z be an
arbitrary sequence with νn ≥ 1 for every n ∈ Z.

Definition 2.1. We say that (2.1) admits a (µ, ν)-dichotomy if the following con-
ditions are satisfied:

(1) there exists a family of projections Pn, n ∈ Z, such that

AnPn = Pn+1An; (2.4)



A (µ, ν)-DICHOTOMY SPECTRUM 3

(2) the restriction

An|KerPn : KerPn → KerPn+1 (2.5)

is an invertible operator for each n ∈ Z;
(3) there exist D,λ > 0 such that

∥A(m,n)Pn∥ ≤ Dνn

(
µm

µn

)−λ

for m ≥ n (2.6)

and

∥A(m,n)(Id−Pn)∥ ≤ Dνn

(
µn

µm

)−λ

for m ≤ n (2.7)

where

A(m,n) :=
(
A(n,m)|KerPm

)−1
: KerPn → KerPm, (2.8)

for m ≤ n.

Remark 2.2. We would like to emphasize the great generality of the notion of
(µ, ν)-dichotomy. For instance, suppose initially that νn = C for every n ∈ Z and
some C ≥ 1. Then, by taking µn = en, n ∈ Z, we recover the well-known notion
of exponential dichotomy ; by taking µn = 1 + n, for n ≥ 0 and µn = 1/(1− n) for
n < 0, we get the notion of polynomial dichotomy ; by taking µn = ln(e + n) for
n ≥ 0 and µn = 1/ ln(e− n) for n < 0, we get the notion of logarithmic dichotomy.
Moreover, in all these cases, if we take a general sequence ν instead of the constant

one, for instance, νn = µ
sgn(µn−1)ε
n for some small ε > 0 and n ∈ Z where sgn(µn−1)

denotes the sign of µn − 1, we get nonuniform versions of those dichotomies.

Remark 2.3. We observe that versions of (µ, ν)-dichotomy for discrete and con-
tinous time dynamics have already appeared in the literature and have been in-
vestigated by many authors. For instance, among the topics that have already
been explored for systems exhibiting this type of behaviour are invariant mani-
folds [9, 10, 11, 20], the shadowing property [3], admissibility [4, 30], reducibility
[12, 22, 31] and roughness [19, 14, 16]. Moreover, spectral properties associated
with variations of this notion were also studied, for instance, in [5, 12, 31]. We will
compare these results with ours in a more systematic way throughout the text.

2.2. (µ, ν)-dichotomy spectrum. We define the (µ, ν)-dichotomy spectrum of
(2.1) as the set of all numbers γ ∈ R for which the system

xn+1 =

(
µn

µn+1

)γ

Anxn, n ∈ Z, (2.9)

does not admit a (µ, ν)-dichotomy and denote this set by Σµ,ν . The set ρµ,ν :=
R \ Σµ,ν is called the (µ, ν)-resolvent set of (2.1). We will denote the evolution
operator associated with (2.9) by Aγ(m,n). In particular,

Aγ(m,n) =

(
µn

µm

)γ

A(m,n).

Remark 2.4. We observe that the classical Sacker-Sell spectrum can be recovered
in the particular case when µn = en and νn = C for some C ≥ 1 and all n ∈ Z.

2.3. µ-index of compactness. Let BX denote the closed unit ball in X centered
at 0. For an arbitrary A ∈ B(X), let ∥A∥ic be the infimum over all r > 0 with the
property that A(BX) can be covered by finitely many open balls of radius r. It is
easy to show that

∥A∥ic ≤ ∥A∥ and ∥cA∥ic = |c|∥A∥ic,
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for every A ∈ B(X) and c ∈ R. Moreover,

∥A1A2∥ic ≤ ∥A1∥ic · ∥A2∥ic, for every A1, A2 ∈ B(X).

Using ∥ · ∥ic we define

κic := lim sup
n→+∞

1

logµn
log ∥A(n, 0)∥ic.

We call this number the µ-index of compactness of (2.1). An interesting property
of (2.1) involving the µ-index of compactness is the following.

Proposition 2.5. Suppose that (2.1) admits a (µ, ν)-dichotomy with projections
(Pn)n∈Z and let λ > 0 be such that (2.6) and (2.7) are satisfied. Moreover, suppose
there exists ε ∈ (0, λ] such that

lim
n→+∞

µ−ε
n νn = 0. (2.10)

Then, if κic < 0 we have that dimKerPn < +∞ for every n ∈ Z.

Proof. We start observing that by the invertibility required in (2.5), dimKerPn =
dimKerPm for everym,n ∈ Z. Thus, all we have to do is to prove that dimKerP0 <
+∞. Suppose that this is not the case and consider the unit ball centered at 0 in
KerP0 given by

BKerP0
= {v ∈ KerP0 : ∥v∥ ≤ 1} = BX ∩KerP0.

By Riez’s Lemma, there exists a sequence of elements (vk)k∈N in BKerP0
such that

∥vk − vj∥ ≥ 1/2 for every k ̸= j. Then, it follows by (2.7) that for n ≥ 0,

∥vk − vj∥ ≤ Dνn

(
µn

µ0

)−λ

∥A(n, 0)(vk − vj)∥.

Therefore,

∥A(n, 0)(vk − vj)∥ ≥ 1

Dνn
∥vk − vj∥

(
µn

µ0

)λ

≥ 1

2Dνn

(
µn

µ0

)λ

.

In particular, A(n, 0)(BX) cannot be covered by finitely many balls of radius

1
4Dνn

(
µn

µ0

)λ
which implies that ∥A(n, 0)∥ic ≥ 1

4Dνn

(
µn

µ0

)λ
. Therefore,

κic = lim sup
n→+∞

1

logµn
log ∥A(n, 0)∥ic

≥ lim sup
n→+∞

1

logµn
log

(
1

4Dνn

(
µn

µ0

)λ
)

= lim sup
n→+∞

1

logµn
log

(
µλ
n

νn

)
.

Finally, given ε ∈ (0, λ] such that (2.10) holds, there exists C > 0 satisfying νn ≤
Cµε

n for every n ∈ N. Plugging this information into the previous inequality we get
that

κic ≥ lim sup
n→+∞

1

logµn
log

(
µλ
n

Cµε
n

)
≥ λ− ε ≥ 0

contradicting our assumption that κic < 0. Thus, dimKerP0 < +∞ and the proof
is complete. □

Observe that whenever dimX < +∞ or, more generally, if A is a compact
operator in B(X), then ∥A∥ic = 0. In particular, if (An)n∈Z is a sequence such
that An is a compact operator for some n ∈ N, then A(m, 0) is compact for every
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m ≥ n and κic = −∞ (taking log 0 = −∞). In this case, whenever (2.10) holds,
the hypotheses of Proposition 2.5 are automatically satisfied.

In what follows, we are going to focus our attention in the description of Σκic
µ,ν =

Σµ,ν ∩ (κic,+∞), that is, the restriction of the (µ, ν)-dichotomy spectrum to the
set (κic,+∞). The reason for this is that, given γ ∈ (κic,+∞)∩ ρµ,ν , we have that
the µ-index of compactness associated with (2.9) is smaller than 0. Indeed,

lim sup
n→+∞

1

logµn
log ∥Aγ(n, 0)∥ic

= lim sup
n→+∞

1

logµn
log

∥∥∥∥(µ0

µn

)γ

A(n, 0)

∥∥∥∥
ic

= lim sup
n→+∞

1

logµn
log

(
µ0

µn

)γ

+ lim sup
n→+∞

1

logµn
log ∥A(n, 0)∥ic

= −γ + κic < 0.

Thus, whenever (2.10) holds, by Proposition 2.5 we have that dimKerPn < +∞
for every n ∈ Z where (Pn)n∈Z is the family of projections associated with the
(µ, ν)-dichotomy of (2.9).

3. The structure of the (µ, ν)-dichotomy spectrum

In this section, we are going to describe the possible structure of Σκic
µ,ν := Σµ,ν ∩

(κic,+∞). For this purpose, let us consider the following possibilities:

(P1) Σκic
µ,ν = ∅;

(P2) Σκic
µ,ν = (κic,+∞);

(P3) Σκic
µ,ν = I1 ∪

⋃k
j=2[aj , bj ] where I1 = [a1, b1] or [a1,+∞) for some numbers

κic < ak ≤ bk < ak−1 ≤ bk−1 < . . . < a1 ≤ b1 (3.1)

and some k ∈ N;
(P4) Σκic

µ,ν = I1 ∪
⋃k−1

j=2 [aj , bj ] ∪ (κic, bk] where I1 = [a1, b1] or [a1,+∞) and the

numbers aj and bj are as in (3.1) for some k ≥ 2. In the case when k = 1
we have Σκic

µ,ν = (κic, b1];

(P5) Σκic
µ,ν = I1 ∪

⋃∞
j=2[aj , bj ] where I1 = [a1, b1] or [a1,+∞) for some numbers

κic < . . . < a2 ≤ b2 < a1 ≤ b1 (3.2)

with lim
j→+∞

aj = κic;

(P6) Σκic
µ,ν = I1 ∪

⋃∞
j=2[aj , bj ] ∪ (κic, b∞] where I1 = [a1, b1] or [a1,+∞) and the

numbers aj and bj are as in (3.2) with b∞ := lim
j→+∞

aj > κic.

Moreover, given γ ∈ R and n ∈ Z, let us consider

Sγ(n) =

{
v ∈ X : sup

m≥n

(
µ−γ
m ∥A(m,n)v∥

)
< +∞

}
and let Uγ(n) be the space of all v ∈ X for which there exists a sequence (zm)m≤n

such that zn = v, zm = Am−1zm−1 for every m ≤ n and supm≤n (µ
−γ
m ∥zm∥) < +∞.

It is easy to see that whenever γ < β,

Sγ(n) ⊂ Sβ(n) and Uβ(n) ⊂ Uγ(n)

for every n ∈ Z.
Finally, given subspaces S,U ⊂ X, let us consider

∠(S,U) = inf{∥v − u∥ : v ∈ S and u ∈ U with ∥v∥ = ∥u∥ = 1}.
Observe that this quantity may be interpreted as the angle between the subspaces
S and U .
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3.1. Main result. The following is the main result of this section. In the state-
ment, we use the adjective “admissible” for a number j ∈ N meaning “values of
j ∈ N for which the expression makes sense according to the case we are dealing
with”.

Theorem 3.1. Suppose κic < 0 and that for every ε > 0,

lim
n→−∞

µε
nνn = 0 and lim

n→+∞
µ−ε
n νn = 0. (3.3)

Then Σκic
µ,ν has one of the forms given in (P1)-(P6). Moreover, in the case when

Σµ,ν ∩ R+ is bounded, taking numbers cj ∈ (bj+1, aj) for each j and c0 > b1, the
subspaces

Ej(n) = Scj−1
(n) ∩ Ucj (n)

are finite-dimensional, independent of the choices of cj and satisfy the following
properties:

• for every admissible j ≥ 1 and n ∈ Z,
An|Ej(n) : Ej(n) → Ej(n+ 1) (3.4)

is invertible;
• for every admissible 1 ≤ i ≤ j and n ∈ Z,

Ucj (n) = Uci−1(n)⊕
j⊕

l=i

El(n); (3.5)

• for each admissible i ≥ 1 and l ≥ 0 and n ∈ Z,

X = Sci+l
(n)⊕ Uci−1

(n)⊕
i+l⊕
j=i

Ej(n); (3.6)

• for v ∈ Ej(n) \ {0},

aj ≤ lim inf
m→±∞

1

logµm
log ∥A(m,n)v∥ ≤ lim sup

m→±∞

1

logµm
log ∥A(m,n)v∥ ≤ bj . (3.7)

• for every i ̸= j,

lim
n→±∞

1

logµn
log∠(Ei(n), Ej(n)) = 0. (3.8)

Remark 3.2. In Section 4 we will present examples showing that all the possi-
bilities for Σκic

µ,ν given in the previous theorem can actually appear. Moreover, we
once more observe that whenever (An)n∈Z is a sequence such that An is a compact
operator for some n ∈ N, κic = −∞ and Σκic

µ,ν = Σµ,ν . In particular, in this context
Theorem 3.1 gives us a complete characterization of the (µ, ν)-dichotomy spectrum
of (2.1).

Before we go into the proof of Theorem 3.1, we will present a simple yet inter-
esting observation which completely characterizes the stable and unstable spaces
associated to a (µ, ν)-dichotomy.

Proposition 3.3. Suppose (2.1) admits a (µ, ν)-dichotomy with projections (Pn)n∈Z
and constants D,λ > 0. Moreover, assume that

lim
n→−∞

µλ
nνn = 0 and lim

n→+∞
µ−λ
n νn = 0. (3.9)

Then,

ImPn =

{
v ∈ X : sup

m≥n
∥A(m,n)v∥ < +∞

}
while KerPn consists of all v ∈ X for which there exists a sequence (zm)m≤n such
that zn = v, zm = Am−1zm−1 for every m ≤ n and supm≤n ∥zm∥ < +∞.
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Proof. Given v ∈ ImPn, condition (2.6) implies that

sup
m≥n

∥A(m,n)v∥ < +∞ (3.10)

showing that ImPn ⊂
{
v ∈ X : supm≥n ∥A(m,n)v∥ < +∞

}
. To show the reverse

inclusion, we start by observing that, if v ∈ X is such that (3.10) holds, then by
(2.6) we have that

sup
m≥n

∥A(m,n)(Id−Pn)v∥ < +∞. (3.11)

On the other hand, given m ≥ n, condition (2.7) implies that

∥(Id−Pn)v∥ ≤ Dνm

(
µm

µn

)−λ

∥A(m,n)(Id−Pn)v∥

and thus

1

Dνm

(
µm

µn

)λ

∥(Id−Pn)v∥ ≤ ∥A(m,n)(Id−Pn)v∥.

Consequently, if (Id−Pn)v ̸= 0, using condition (3.9) we get that the right-hand
side of the previous inequality goes to infinity as m → +∞ which contradicts (3.11).
Thus, (Id−Pn)v = 0 and ImPn =

{
v ∈ X : supm≥n ∥A(m,n)v∥ < +∞

}
.

To prove the second claim, given v ∈ KerPn, by (2.5) we may consider the
sequence zm = A(m,n)v for m ≤ n. Then, (zm)m≤n satisfies zm+1 = Amzm for
m < n and zn = v. Moreover, condition (2.7) gives us that supm≤n ∥zm∥ < +∞.
Reciprocally, if v ∈ X is such that there exists a sequence (zm)m≤n satisfying
zn = v, zm = Am−1zm−1 for every m ≤ n and supm≤n ∥zm∥ < +∞ then by (2.4)
and (2.6),

∥Pnv∥ = ∥A(n,m)Pmzm∥ ≤ Dνm

(
µn

µm

)−λ

∥zm∥

for m ≤ n. Thus, making m → −∞ and using (3.9) we get that Pnv = 0. This
concludes the proof of the second claim as well as the proposition. □

Remark 3.4. Observe that condition (3.3) implies that condition (3.9) holds for
any λ > 0.

Proof of Theorem 3.1. Given γ ∈ R and n ∈ Z, let us consider the sets Sγ(n) and
Uγ(n) defined at the beginning of this section. We have already observed that
Sγ(n) ⊂ Sβ(n) and Uβ(n) ⊂ Uγ(n) for every n ∈ Z whenever γ < β. Moreover,
by Proposition 3.3, for every γ ∈ ρµ,ν , the projections (Pn)n∈Z associated to the
(µ, ν)-dichotomy of (2.9) satisfy

ImPn = Sγ(n) and KerPn = Uγ(n) (3.12)

and

X = Sγ(n)⊕ Uγ(n) (3.13)

for every n ∈ Z. In particular, by condition (2.5), dimUγ(n) does not depend on
n ∈ Z and thus we will write dimUγ := dimUγ(n) for any n ∈ Z. Furthermore, as
observed in the end of Section 2.3, dimUγ < +∞ for every γ ∈ ρµ,ν ∩ (κic,+∞).

We now present a series of auxiliary results.

Lemma 3.5. The set ρµ,ν is open. Moreover, if γ ∈ ρµ,ν and J ⊂ ρµ,ν is an
interval containing γ, then

Sγ(n) = Sβ(n) and Uγ(n) = Uβ(n)

for every β ∈ J and n ∈ Z.
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Proof of Lemma 3.5. Let γ ∈ ρµ,ν . Then, there exists a family of projections
(Pn)n∈Z and constants D,λ > 0 such that∥∥∥∥( µn

µm

)γ

A(m,n)Pn

∥∥∥∥ ≤ Dνn

(
µm

µn

)−λ

for m ≥ n

and ∥∥∥∥( µn

µm

)γ

A(m,n)(Id−Pn)

∥∥∥∥ ≤ Dνn

(
µn

µm

)−λ

for m ≤ n.

Then, for each β ∈ R such that |γ−β| < λ/4, taking λ̃ = min{λ−γ+β, λ+γ−β} > 0
we have that ∥∥∥∥∥

(
µn

µm

)β

A(m,n)Pn

∥∥∥∥∥ ≤ Dνn

(
µm

µn

)−(λ−γ+β)

≤ Dνn

(
µm

µn

)−λ̃

for m ≥ n and ∥∥∥∥∥
(
µn

µm

)β

A(m,n)(Id−Pn)

∥∥∥∥∥ ≤ Dνn

(
µn

µm

)−(λ+γ−β)

≤ Dνn

(
µn

µm

)−λ̃

for m ≤ n. Then, β ∈ ρµ,ν and ρµ,ν is open.
Finally, let J ⊂ ρµ,ν be an interval containing γ and take β ∈ J . To fix notation,

assume β < γ. By the previous argument, for each η ∈ [β, γ] there exists an open
interval Iη containing η such that Iη ⊂ ρµ,ν and, for each ξ ∈ Iη, the projections
given by the (µ, ν)-dichotomy associated to ξ and η are the same. Thus, it follows
from (3.12) that Sη(n) = Sξ(n) and Uη(n) = Uξ(n) for every n ∈ Z. Consequently,
since the intervals Iη form an open cover of [β, γ] and this is a compact interval, it
follows that Sγ(n) = Sβ(n) and Uγ(n) = Uβ(n) for every n ∈ Z. Similarly we can
consider the case when β > γ. This concludes the proof of the lemma. □

Lemma 3.6. Let γ1, γ2 ∈ ρµ,ν ∩ (κic,+∞) be such that γ1 < γ2. Then, [γ1, γ2] ∩
Σµ,ν ̸= ∅ if and only if dimUγ2

< dimUγ1
.

Proof of Lemma 3.6. Take γ1, γ2 ∈ ρµ,ν ∩ (κic,+∞) with γ1 < γ2 and suppose
initially that [γ1, γ2]∩Σµ,ν ̸= ∅. We have already observed that Uγ2

(n) ⊂ Uγ1
(n) for

every n ∈ Z. Thus, either dimUγ1 = dimUγ2 or dimUγ2 < dimUγ1 . Suppose that
dimUγ1 = dimUγ2 . Then, Uγ1(n) = Uγ2(n) for every n ∈ Z (recall that dimUγ <
+∞ for every γ ∈ ρµ,ν ∩ (κic,+∞)). Consequently, by (3.12), Sγ1

(n) = Sγ2
(n)

for every n ∈ Z and there exists a family of projections (Pn)n∈Z and constants
Di, λi > 0, i = 1, 2, such that∥∥∥∥( µn

µm

)γi

A(m,n)Pn

∥∥∥∥ ≤ Diνn

(
µm

µn

)−λi

for m ≥ n (3.14)

and ∥∥∥∥( µn

µm

)γi

A(m,n)(Id−Pn)

∥∥∥∥ ≤ Diνn

(
µn

µm

)−λi

for m ≤ n. (3.15)

Then, for γ ∈ [γ1, γ2], (3.14) for i = 1 gives us that∥∥∥∥( µn

µm

)γ

A(m,n)Pn

∥∥∥∥ ≤ D1νn

(
µm

µn

)−λ1

for m ≥ n
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while (3.15) for i = 2 gives us that∥∥∥∥( µn

µm

)γ

A(m,n)(Id−Pn)

∥∥∥∥ ≤ D2νn

(
µn

µm

)−λ2

for m ≤ n.

Therefore, taking D = max{D1, D2} and λ = min{λ1, λ2}, it follows that (2.9)
admits a (µ, ν)-dichotomy with constantsD and λ. Hence, γ ∈ ρµ,ν . Thus, since γ ∈
[γ1, γ2] was arbitrary, it follows that [γ1, γ2] ⊂ ρµ,ν , contradicting our assumption.
Therefore, dimUγ2

< dimUγ1
as claimed.

Suppose now that dimUγ2
< dimUγ1

and take

γ := inf{β ∈ ρµ,ν ∩ (κic,+∞) : dimUβ = dimUγ2}.
Then, since dimUγ1

> dimUγ2
, it follows by Lemma 3.5 that γ1 < γ < γ2 which in

particular implies that γ > κic. We will now show that γ ∈ Σµ,ν . Suppose that this
is not the case. Then, we conclude by Lemma 3.5 that we can not have dimUγ =
dimUγ2 (otherwise this would contradict the definition of γ). Consequently, the
only possibility is that dimUγ2

< dimUγ . In this case, again by Lemma 3.5, there
exists ε > 0 such that γ + ε < γ2, [γ, γ + ε] ⊂ ρµ,ν and dimUγ = dimUγ+ε. In
particular, dimUγ+ε ̸= dimUγ2

contradicting again the definition of γ. Therefore,
γ ∈ Σµ,ν and [γ1, γ2] ∩ Σµ,ν ̸= ∅. This concludes the proof of the lemma. □

Combining the previous results, we get the following fact.

Lemma 3.7. If γ and β belong to the same connected component of ρµ,ν∩(κic,+∞),
then Sγ(n) = Sβ(n) and Uγ(n) = Uβ(n) for every n ∈ Z.

We are now ready to conclude the proof of Theorem 3.1. We start by describing
the structure of Σκic

µ,ν . If Σκic
µ,ν = (κic,+∞) then we are in the case (P2) and we

are done. So, from now on suppose that Σκic
µ,ν ̸= (κic,+∞) and, consequently,

ρµ,ν ∩ (κic,+∞) ̸= ∅. By Lemma 3.5 we know that ρµ,ν is an open subset of
(κic,+∞) and thus it may be written as a finite or countable union of mutually
disjoint open intervals. Consequently, Σκic

µ,ν is either empty or it can be written
as a finite or countable union of mutually disjoint closed intervals of (κic,+∞). If
Σκic

µ,ν = ∅, then we are in the case (P1) and we are done. On the other hand, if Σκic
µ,ν

can be written as a finite union of mutually disjoint closed intervals of (κic,+∞),
then we are either in case (P3) or in case (P4) and again we are done. It remains to
analyze the case where Σκic

µ,ν can be written as a countable union of mutually disjoint
closed intervals of (κic,+∞). For this purpose, we need the following observations.

Claim 1. For every γ ∈ ρµ,ν ∩ (κic,+∞), the set Σµ,ν ∩ [γ,+∞) can be written as
a finite union of mutually disjoint closed intervals. More precisely, if d := dimUγ

(recall that this is a finite number due to Proposition 2.5), then Σµ,ν ∩ [γ,+∞) may
be written as a finite union of at most d+ 1 mutually disjoint closed intervals.

Proof of Claim 1. For the sake of contradiction, suppose Σµ,ν ∩ [γ,+∞) can be
written as the union of at least d + 2 mutually disjoint closed intervals. Then
there exist real numbers γ1 < γ2 < . . . < γd+1 in ρµ,ν ∩ (κic,+∞) such that
[γi, γi+1]∩Σµ,ν ̸= ∅ for every i = 1, . . . , d. Consequently, by Lemma 3.6 we get that

d ≥ dimUγ1
> dimUγ2

> . . . > dimUγd+1

which is a contradiction and, therefore, the claim is proved. □

Claim 2. For every γ1 ∈ ρµ,ν ∩ (κic,+∞), there exists γ2 ∈ ρµ,ν ∩ (κic, γ1) such that
(γ2, γ1) ∩ Σµ,ν ̸= ∅.
Proof of Claim 2. Suppose that the claim is false. Then, there exists γ1 ∈ ρµ,ν ∩
(κic,+∞) such that either ρµ,ν ∩ (κic, γ1) = ∅ and then

Σκic
µ,ν ∩ (κic, γ1) = (κic, γ1)
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or (κic, γ1) ⊂ ρµ,ν . In both cases, by applying Claim 1 to Σµ,ν ∩ [γ1,+∞), we get a
contraction with the fact that Σκic

µ,ν can be written as a countable union of mutually
disjoint closed intervals of (κic,+∞). □

Using Claim 2 and proceeding inductively we obtain a decreasing sequence of
numbers (γn)n∈N satisfying

γn ∈ ρµ,ν ∩ (κic,+∞) and (γn+1, γn) ∩ Σµ,ν ̸= ∅.

Moreover, by Claim 1, for each n ∈ N there exists mutually disjoint closed intervals
I1, I2, . . . , Ikn

such that

Σµ,ν ∩ [γn,+∞) = Ikn ∪ Ikn−1 ∪ . . . ∪ I1

where (kn)n∈N is an increasing sequence. Then, either limn→+∞ γn = κic and we
are in case (P5) or limn→+∞ γn =: b∞ > κic. In the latter case, Claim 1 implies
that (κic, b∞] ⊂ Σµ,ν and thus we are in case (P6). This concludes the description
of the possible structure of Σκic

µ,ν .
Let us now prove the remaining claims in Theorem 3.1. Fix n ∈ Z. We start by

observing that Lemma 3.5 implies that Ej(n) does not depend neither on cj nor on
cj−1. Moreover, given i < j, we have that

Ej(n) ⊂ Scj−1
(n) ⊂ Sci(n) and Ei(n) ⊂ Uci(n). (3.16)

Thus, by (3.13) it follows that Ei(n) ∩ Ej(n) = {0}. Furthermore, since

(U + V ) ∩W = (U ∩W ) + V

whenever U , V and W are subspaces with V ⊂ W , using (3.13) we get that for
every j,

Ucj (n) =
(
Scj−1(n)⊕ Ucj−1(n)

)
∩ Ucj (n)

=
(
Scj−1(n) ∩ Ucj (n)

)
⊕ Ucj−1(n)

= Ej(n)⊕ Ucj−1(n).

(3.17)

Proceeding recursively, we conclude that for every 1 ≤ i ≤ j,

Ucj (n) = Uci−1
(n)⊕

j⊕
l=i

El(n)

proving (3.5). Combining this observation with (3.13) we conclude that (3.6) holds.
Now, given γ ∈ R, it follows easily from the definition that

AnSγ(n) ⊂ Sγ(n+ 1) and AnUγ(n) ⊂ Uγ(n+ 1)

Thus, the definition of Ej(n) readily implies that AnEj(n) ⊂ Ej(n + 1). More-
over, given γ ∈ ρµ,ν , it follows by Proposition 3.3, Eq. (3.12) and (2.5) that
An|Uγ(n) : Uγ(n) → Uγ(n+1) is invertible and, in particular, since dimUcj (n) < ∞
for every j, we have dimUcj (n) = dimUcj (n + 1) for every j and n ∈ Z. Thus,
using (3.17) we conclude that dimEj(n) = dimEj(n + 1). Finally, recalling that
Ej(n) ⊂ Ucj+1

(n) and An|Ucj+1
(n) is injective, we get that An|Ej(n) is also injective

and thus An|Ej(n) : Ej(n) → Ej(n+1) is invertible proving (3.4). Let us now prove
(3.7).

Let v ∈ Ej(n) \ {0} with j ≥ 1. Since cj−1 ∈ ρµ,ν , we have that (2.9) admits a
(µ, ν)-dichotomy with γ = cj−1. In particular, there exists a family of projections
(Pn)n∈Z and constants D,λ > 0 such that∥∥∥∥( µn

µm

)cj−1

A(m,n)Pn

∥∥∥∥ ≤ Dνn

(
µm

µn

)−λ

for m ≥ n.
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Thus, since v ∈ Scj−1
(n), by (3.12) we get that∥∥∥∥( µn

µm

)cj−1

A(m,n)v

∥∥∥∥ ≤ Dνn

(
µm

µn

)−λ

∥v∥ for m ≥ n

which implies that

lim sup
m→+∞

1

logµm
log ∥A(m,n)v∥ ≤ lim sup

m→+∞

logµ
−λ+cj−1
m

logµm
= cj−1 − λ < cj−1.

Making cj−1 ↘ bj we get that

lim sup
m→+∞

1

logµm
log ∥A(m,n)v∥ ≤ bj .

Similarly, since cj ∈ ρµ,ν , we have that (2.9) admits a (µ, ν)-dichotomy with γ = cj .
In particular, there exists a family of projections (Pn)n∈Z and constants D,λ > 0
such that ∥∥∥∥(µm

µn

)cj

A(n,m)(Id−Pm)

∥∥∥∥ ≤ Dνm

(
µm

µn

)−λ

for m ≥ n.

Thus, since v ∈ Ucj (n), by (3.12) and (2.5) we get that

∥v∥ ≤ Dνm

(
µm

µn

)−λ ∥∥∥∥( µn

µm

)cj

A(m,n)v

∥∥∥∥ for m ≥ n.

In particular,

1

Dνm

(
µm

µn

)λ+cj

∥v∥ ≤ ∥A(m,n)v∥ for m ≥ n.

Consequently, using (3.3) we get

lim inf
m→+∞

1

logµm
log ∥A(m,n)v∥ ≥ lim inf

n→+∞

1

logµm

(
logµλ+cj

m − logDνm
)

= cj + λ ≥ cj .

Thus, making cj ↗ aj it follows that

lim inf
m→+∞

1

logµm
log ∥A(m,n)v∥ ≥ aj .

Similarly we can prove that

aj ≤ lim inf
m→−∞

1

logµm
log ∥A(m,n)v∥ ≤ lim sup

m→−∞

1

logµm
log ∥A(m,n)v∥ ≤ bj .

Combining these observations we get that (3.7) is satisfied. It remains to observe
that (3.8) also holds.

We may assume without loss of generality that i < j. Then, it is easy to see that

∠(Ei(n), Ej(n)) ≤ 2.

Moreover, by (3.16) we have that Ej(n) ⊂ Sci(n) and Ei(n) ⊂ Uci(n). Now, letting
(Pn)n∈Z be the family of projections associated to (2.9) with γ = ci, it follows by
[7, Proposition 2.4] and (3.12) that

1

∥Pn∥
≤ ∠(Sci(n), Uci(n))

for every n ∈ Z. Combining these observations with (2.6) for m = n we get that

1

Dνn
≤ ∠(Ei(n), Ej(n)) ≤ 2
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for every n ∈ Z. Then, using (2.3) and (3.3) we get that

lim
n→±∞

1

logµn
log∠(Ei(n), Ej(n)) = 0

as claimed. This concludes the proof the theorem. □

Corollary 3.8. Suppose dimX < +∞ and that for every ε > 0 condition (3.3) is
satisfied. Then Σµ,ν have the form given in (P1), (P2), (P3) or (P4) and in the
latter two cases k ≤ dimX + 1.

Proof. Since dimX < +∞, it follows that κic = −∞ and Σκic
µ,ν = Σµ,ν . In par-

ticular, the description of Σκic
µ,ν given in Theorem 3.1 is actually a description of

the whole spectrum Σµ,ν . Moreover, proceeding as in the proof of Claim 1 with
d = dimX, we conclude that Σµ,ν may have at most d + 1 different connected
components proving that k ≤ dimX+1 and that the only possible options for Σµ,ν

are (P1)-(P4). □

3.2. Some extra properties of Σµ,ν . In this section we describe some properties
of Σµ,ν under some extra conditions.

Lemma 3.9. Suppose there exists K,χ > 0 such that

∥A(m,n)∥ ≤ Kνn

(
µm

µn

)χ

for m ≥ n. (3.18)

Then Σµ,ν ⊂ (−∞, χ] and Sγ(n) = X for every γ ≥ χ and n ∈ Z.

Proof. Given ε > 0, condition (3.18) implies that∥∥∥∥∥
(
µn

µm

)χ+ε

A(m,n)

∥∥∥∥∥ ≤ Kνn

(
µm

µn

)−ε

for m ≥ n.

Consequently, χ + ε ∈ ρµ,ν (with Pn = Id for every n ∈ Z) and Σµ,ν ⊂ (−∞, χ].
The second claim follows directly from (3.18) and the definition of Sγ(n). □

Similarly, we have the following.

Lemma 3.10. Suppose that An, n ∈ Z, is invertible and there exists K,χ > 0 such

∥A(m,n)∥ ≤ Kνn

(
µn

µm

)χ

for n ≥ m. (3.19)

Then Σµ,ν ⊂ [−χ,+∞) and Uγ(n) = X for every γ ≤ −χ and n ∈ Z.

If there exists K,χ > 0 such that (3.18) and (3.19) are satisfied we say that (2.1)
has (µ, ν)-bounded growth.

Corollary 3.11. Suppose that An is invertible for each n ∈ Z and that there exist
K,χ > 0 such that (3.18) and (3.19) hold. Then, Σµ,ν is bounded and non-empty.

Proof. The first claim follows directly from Lemmas 3.9 and 3.10. Let us prove the
second one. For this purpose, given n ∈ Z, let us consider

c = inf{γ ∈ ρµ,ν : Sγ(n) = X}.

Observe that Lemmas 3.9 and 3.10 imply that −χ ≤ c ≤ χ. For the sake of
contradiction, suppose c ∈ ρµ,ν . Then, if Sc(n) = X, it follows by Lemma 3.5 that
Sc−ε(n) = X for some small ε which contradicts the definition of c. On the other
hand, if Sc(n) ̸= X, then by Lemma 3.5 we have that Sc+ε(n) ̸= X for some small
ε which again contradicts the definition of c. Thus, c ∈ Σµ,ν and Σµ,ν ̸= ∅. □



A (µ, ν)-DICHOTOMY SPECTRUM 13

4. Examples

We now present a series of examples showing that all the possibilities (P1)-(P6)
given in Theorem 3.1 can actually appear as the (µ, ν)-spectrum of (2.1) even in
the case when each An is a compact operator. Throughout this section, we assume
that (3.3) is satisfied. Moreover, recall that we denote by Aγ(m,n) the evolution
operator associated with (2.9) for γ ∈ R.

Example 4.1. Let us consider An : R → R given by An ≡ 0 for every n ∈ Z. It
is easy to see that, in this case, (2.9) admits a (µ, ν)-dichotomy with Pn = Id for
every n ∈ Z and every γ ∈ R. Consequently, Σµ,ν = ∅ for this sequence of maps
and possibility (P1) actually does occur.

Example 4.2. Let (αn)n∈Z be an increasing sequence such that limn→−∞ αn =
−∞ and limn→+∞ αn = +∞ and consider An : R → R, n ∈ Z, defined by

Anx =
µ
αn+1

n+1

µαn
n

x.

Then,

A(m,n)x =
µαm
m

µαn
n

x.

In particular, given γ ∈ R we have that

Aγ(m,n)x =
µαm−γ
m

µαn−γ
n

x. (4.1)

Now, if (2.9) admits a (µ, ν)-dichotomy, we have two possibilities: either Pn = Id
for every n ∈ Z or Pn = 0 for every n ∈ Z. We will show that neither of them
can happen for any γ ∈ R. Indeed, suppose (2.9) admits a (µ, ν)-dichotomy with
Pn = Id for every n ∈ Z. Then, by (2.6), it follows that for every n ∈ Z,

lim
m→+∞

Aγ(m,n) = 0.

On the other hand, recalling that limm→+∞ µm = +∞ and limm→+∞ αm = +∞,
by (4.1) we get that limm→+∞ Aγ(m,n) = +∞. Thus, (2.9) does not admit a
(µ, ν)-dichotomy with Pn = Id for every n ∈ Z. Similarly, suppose (2.9) admits a
(µ, ν)-dichotomy with Pn = 0 for every n ∈ Z. Then, by (2.7), it follows that for
every n ∈ Z,

lim
m→−∞

Aγ(m,n) = 0.

On the other hand, recalling that limm→−∞ µm = 0 and limm→−∞ αm = −∞, by
(4.1) we get that limm→−∞ Aγ(m,n) = +∞ and (2.9) does not admit a (µ, ν)-
dichotomy with Pn = 0 for every n ∈ Z. Consequently, γ ∈ Σµ,ν . Thus, since
γ ∈ R was arbitrary, we get that Σµ,ν = R and possibility (P2) also does occur.

The objective of the next three examples is to build sequences of operators
acting on R for which Σµ,ν = [a, b] for a ≤ b, Σµ,ν = [a,+∞) and Σµ,ν = (−∞, b],
respectively. This will then be used to build examples having the (µ, ν)-spectrum
as in (P3), (P4), (P5) and (P6).

Example 4.3. We start with the case Σµ,ν = [a, b] for a ≤ b. For this purpose,
observe that, since (µn)n∈Z is strictly increasing and

lim
n→−∞

µn = 0 and lim
n→+∞

µn = +∞,
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there exists n0 ∈ Z such that µn < 1 for every n < n0 and µn ≥ 1 for every n ≥ n0.
Then, given a ≤ b, let us consider Aa,b

n : R → R, n ∈ Z, defined as

Aa,b
n x =


(

µn+1

µn

)b
νn

νn+1
x if n ≥ n0(

µn+1

µn

)a
νn

νn+1
x if n < n0.

Then, for m ≥ n,

A(m,n)x =



(
µm

µn

)b
νn

νm
x if m,n ≥ n0

µa−b
n0

µb
m

µa
n

νn

νm
x if n < n0 ≤ m(

µm

µn

)a
νn

νm
x if m,n ≤ n0.

Consequently, since a ≤ b and νm ≥ 1 for every m ∈ Z, there exists D > 0 such
that

A(m,n) ≤ Dνn

(
µm

µn

)b

for every m ≥ n (in order to verify that this inequality holds for m ≥ n0 > n, recall
that µn < 1 for n < n0). Thus, for γ > b we have that

Aγ(m,n) ≤ Dνn

(
µm

µn

)−(γ−b)

for every m ≥ n and (2.9) admits a (µ, ν)-dichotomy with Pn = Id. In particular,
γ /∈ Σµ,ν .

Similarly, for m < n,

A(m,n)x =



(
µm

µn

)b
νn

νm
x if m,n ≥ n0

µb−a
n0

µa
m

µb
n

νn

νm
x if m < n0 ≤ n(

µm

µn

)a
νn

νm
x if m,n ≤ n0.

Thus, since a ≤ b and νm ≥ 1 for every m ∈ Z, there exists D > 0 such that

A(m,n) ≤ Dνn

(
µm

µn

)a

for every m < n (in order to verify that this inequality holds for m < n0 ≤ n, recall
that µn ≥ 1 for n ≥ n0). Consequently, for γ < a we have that

Aγ(m,n) ≤ Dνn

(
µm

µn

)−(γ−a)

= Dνn

(
µn

µm

)−|γ−a|

and (2.9) admits a (µ, ν)-dichotomy with Pn = 0. In particular, γ /∈ Σµ,ν .
Now, let us consider γ ∈ [a, b]. Then, we observe that

Aγ(m,n)x =


(

µm

µn

)b−γ
νn

νm
x if m,n ≥ n0(

µm

µn

)a−γ
νn

νm
x if m,n ≤ n0.

Thus, analyzing the expression for Aγ(m,n) in the case when m,n ≥ n0 we con-
clude that (2.9) does not admit a (µ, ν)-dichotomy with Pn = Id for every n ∈ Z.
Similarly, analyzing the expression for Aγ(m,n) in the case when m,n ≤ n0 we
conclude that (2.9) does not admit a (µ, ν)-dichotomy with Pn = 0 for every n ∈ Z.
Consequently, γ ∈ Σµ,ν . Combining our previous observations, we conclude that
Σµ,ν = [a, b].
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Example 4.4. We will now modify our construction in Example 4.3 in order to
obtain a sequence of operators acting on R for which Σµ,ν = [a,+∞) for a ∈ R. So,
let n0 be as in the aforementioned example, a ∈ R and (αn)n∈Z be an increasing
sequence such that αn > a for every n ∈ Z and limn→+∞ αn = +∞ and consider
Aa

n : R → R, n ∈ Z, defined as

Aa
nx =


µ
αn+1
n+1

µαn
n

νn

νn+1
x if n ≥ n0(

µn+1

µn

)a
νn

νn+1
x if n < n0.

Then, for m < n,

A(m,n)x =


µαm
m

µαn
n

νn

νm
x if m,n ≥ n0

µ
αn0

−a
n0

µa
m

µαn
n

νn

νm
x if m < n0 ≤ n(

µm

µn

)a
νn

νm
x if m,n ≤ n0.

Thus, since αm > a and νm ≥ 1 for every m ∈ Z, there exists D > 0 such that

A(m,n) ≤ Dνn

(
µm

µn

)a

for every m < n (recall that µn ≥ 1 > µm for n ≥ n0 > m). Consequently, for
γ < a we have that

Aγ(m,n) ≤ Dνn

(
µm

µn

)−(γ−a)

= Dνn

(
µn

µm

)−|γ−a|

and (2.9) admits a (µ, ν)-dichotomy with Pn = 0. In particular, γ /∈ Σµ,ν .
Let us now consider γ ≥ a. Then, analyzing the expression for Aγ(m,n) in the

case when m,n ≤ n0, we conclude that (2.9) does not admit a (µ, ν)-dichotomy
with Pn = 0 for every n ∈ Z. On the other hand, observing that for m ≥ n,

A(m,n)x =


µαm
m

µαn
n

νn

νm
x if m,n ≥ n0

µ
a−αn0
n0

µαm
m

µa
n

νn

νm
x if n < n0 ≤ m(

µm

µn

)a
νn

νm
x if m,n ≤ n0

and analyzing the expression for Aγ(m,n) in the case when m,n ≥ n0, recalling
(3.3) and that αm > γ for every m sufficiently large, we conclude that Aγ(m,n) →
+∞ as m → +∞. In particular, (2.9) can not admit a (µ, ν)-dichotomy with
Pn = Id for every n ∈ Z. Thus, γ ∈ Σµ,ν and, consequently, Σµ,ν = [a,+∞).

Example 4.5. Given n0 as in Example 4.3 and b ∈ R, let (αn)n∈Z be an increasing
sequence such that αn < b for every n ∈ Z and limn→−∞ αn = −∞ and consider
Ab

n : R → R, n ∈ Z, defined as

Ab
nx =


(

µn+1

µn

)b
νn

νn+1
x if n ≥ n0

µ
αn+1
n+1

µαn
n

νn

νn+1
x if n < n0.

Then, proceeding as in Example 4.4 we can show that if γ > b then (2.9) admits a
(µ, ν)-exponential dichotomy with Pn = Id. On the other hand, if γ ≤ b then we
can proceed again as above to show that γ ∈ Σµ,ν . Thus, Σµ,ν = (−∞, b].

From now on we fix the Banach space

X =

{
(wn)n∈N ∈ RN :

+∞∑
n=0

w2
n < +∞

}
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endowed with the norm

∥(wn)n∈N∥2 =

(
+∞∑
n=0

w2
n

) 1
2

.

As promised above, we will use Examples 4.3, 4.4 and 4.5 to build examples of
systems acting on X with spectrum as in (P3)-(P6).

Example 4.6. Given numbers

ak ≤ bk < ak−1 ≤ bk−1 < . . . < a1 ≤ b1, (4.2)

let us consider the compact operator An : X → X, n ∈ Z, given by

Anx = (Aa1,b1
n x1, A

a2,b2
n x2, . . . , A

ak,bk
n xk, 0, 0, . . .)

for x = (x1, x2, . . .) ∈ X where A
aj ,bj
n is as in Example 4.3 for j = 1, 2, . . . , k. We

will now observe that

Σµ,ν = [a1, b1] ∪ [a2, b2] ∪ . . . ∪ [ak, bk].

Let γ ∈ R \
⋃k

j=1[aj , bj ]. If γ > b1, let us consider Pn = Id for every n ∈ Z; if
γ ∈ (bj , aj−1), let us consider

Pnx = (0, . . . , 0, xj , xj+1, . . .)

for x = (x1, x2, . . .) and n ∈ Z; and finally, if γ < ak let us consider

Pnx = (0, . . . , 0, xk+1, xk+2, . . .)

for x = (x1, x2, . . .) and n ∈ Z. Then, (2.9) admits a (µ, ν)-dichotomy with these

projections since by Example 4.3 we have that
((

µn

µn+1

)γ
A

aj ,bj
n

)
n∈Z

admits either

a (µ, ν)-contraction or a (µ, ν)-expansion for each j = 1, 2, . . . , k. Therefore, Σµ,ν ⊂⋃k
j=1[aj , bj ]. Let us now prove that the reverse inclusion also holds.

We will proceed by contradiction. Suppose there exist j ∈ {1, . . . , k} and γ ∈
[aj , bj ] such that (2.9) admits a (µ, ν)-dichotomy with projections (Pn)n∈Z. Let us
consider the one-dimensional subspace Xj ⊂ X which consists of all the elements
of X of the form (0, . . . 0, xj , 0, . . .) with xj ∈ R. Then, AnXj = Xj for every
n ∈ Z and, consequently, either Xj ⊂ ImPn for every n ∈ Z or Xj ⊂ KerPn for

every n ∈ Z. In particular, the action of
((

µn

µn+1

)γ
An

)
n∈Z

restricted to Xj , which

is basically given by
((

µn

µn+1

)γ
A

aj ,bj
n

)
n∈Z

, must be either a (µ, ν)-contraction or

a (µ, ν)-expansion. On the other hand, we have observed in Example 4.3 that
this is not the case, giving us a contradiction. Therefore, combining the previous

observations we conclude that Σµ,ν =
⋃k

j=1[aj , bj ].

Example 4.7. Given numbers as in (4.2), let us consider the compact operator
An : X → X, n ∈ Z, given by

Anx = (Aa1
n x1, A

a2,b2
n x2, . . . , A

ak,bk
n xk, 0, 0, . . .)

for x = (x1, x2, . . .) ∈ X where Aa1 is as in Example 4.4 and A
aj ,bj
n is as in Example

4.3 for j = 2, . . . , k. By proceeding as in Example 4.6 we conclude that

Σµ,ν = [ak, bk] ∪ . . . ∪ [a2, b2] ∪ [a1,+∞).

Now, combining Examples 4.6 and 4.7 and recalling that in both cases κic = −∞
we conclude that possibility (P3) does occur.
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Example 4.8. Let us again consider numbers as in (4.2) and let An : X → X,
n ∈ Z, be given by

Anx = (Aa1
n x1, A

a2,b2
n x2, . . . , A

ak−1,bk−1
n xk−1, A

bk
n xk, 0, 0, . . .)

for x = (x1, x2, . . .) ∈ X where Aa1 is as in Example 4.4, A
aj ,bj
n is as in Example 4.3

for j = 2, . . . , k − 1 and Abk is as in Example 4.5. Proceeding again as in Example
4.6 we conclude that

Σµ,ν = (−∞, bk] ∪ [ak−1, bk−1] ∪ . . . ∪ [a2, b2] ∪ [a1,+∞).

Then, since each An, n ∈ Z, is a compact operator, we have that κic = −∞ and,
consequently, possibility (P4) also does occur.

Example 4.9. For our next example, consider numbers

. . . < a3 ≤ b3 < a2 ≤ b2 < a1 ≤ b1 (4.3)

with lim
j→+∞

aj = −∞ and let An : X → X, n ∈ Z, be given by

Anx = (Aa1,b1
n x1, A

a2,b2
n x2, A

a3,b3
n x3, . . .)

for x = (x1, x2, . . .) ∈ X where A
aj ,bj
n is as in Example 4.3 for j = 1, 2, 3, . . .. Then,

each operator An, n ∈ Z, is compact. Indeed, given the canonical basis (ej)j∈N of
X, we have that Anej = λjej for every j with limj→+∞ λj = 0. Thus, since X
is a separable Hilbert space, it follows by [18, Proposition 4.6] that An is compact
as claimed. In particular, Σκic

µ,ν = Σµ,ν . Now, proceeding as in Example 4.6 we

get that Σµ,ν =
⋃+∞

j=1[aj , bj ]. Similarly, changing Aa1,b1
n by Aa1

n in the definition of
An above where Aa1

n is as in Example 4.4, we get an example of dynamics having

Σµ,ν =
⋃+∞

j=2[aj , bj ] ∪ [a1,+∞). This shows that possibility (P5) also occurs.

Example 4.10. For our final example, consider numbers as in (4.3) with lim
j→+∞

aj =:

b∞ ∈ R. Then, let An : X → X, n ∈ Z, be given by

Anx = (Ab∞
n x1, A

1
nx2, A

2
nx3, A

3
nx4, . . .)

for x = (x1, x2, . . .) ∈ X where Ab∞
n is as in Example 4.5 and Aj

n : R → R

Aj
ny =


(

µn+1

µn

)bj
1

αn,j
y if n ≥ n0(

µn+1

µn

)aj
1

αn,j
y if n < n0

for j = 1, 2, 3, . . ., y ∈ R and n0 as in Example 4.3 where αn,j ≥ 1 are numbers
such that αn,j → +∞ as j → +∞ and

∏
n∈Z αn,j < +∞ for every j (we may

take, for instance, αn,j = 1 + je−|n|). In particular, Aj
n → 0 as j → +∞ and, by

[18, Proposition 4.6], An is compact and Σκic
µ,ν = Σµ,ν . In fact, this last fact is the

reason why we have used Aj
n instead of A

aj ,bj
n to construct the operator An.

Then, proceeding as in Example 4.3 we obtain that the (µ, ν)-spectrum of
(Aj

n)n∈Z is [aj , bj ] for j = 1, 2, 3, . . .. Finally, using this observation and Exam-
ple 4.5 and proceeding as in Example 4.6, we conclude that the (µ, ν)-spectrum of
(An)n∈Z is equal to (−∞, b∞] ∪

⋃∞
j=1[aj , bj ]. Similarly, changing A1

n by Aa1
n in the

definition of An where Aa1
n is as in Example 4.4 we get an example of dynamics

with (µ, ν)-spectrum equal to (−∞, b∞]∪
⋃∞

j=2[aj , bj ]∪ [a1,+∞). This shows that

possibility (P6) also does occur.

5. Variations of the (µ, ν)-dichotomy spectrum

In this section we consider two slight variations of the notion of (µ, ν)-dichotomy
considered in the previous sections and present a classification of the dichotomy
spectrum associated with these notions.
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5.1. Generalized (µ, ν)-dichotomy spectrum. We say that (2.1) admits a gen-
eralized (µ, ν)-dichotomy if conditions (2.4) and (2.5) are satisfied and, moreover,
there exist D,λ > 0 and θ ≥ 0 such that

∥A(m,n)Pn∥ ≤ Dνθn

(
µm

µn

)−λ

for m ≥ n

and

∥A(m,n)(Id−Pn)∥ ≤ Dνθn

(
µn

µm

)−λ

for m ≤ n

where A(m,n) is as in (2.8) for m ≤ n. Observe that in the case when θ = 1 we
recover the notion of (µ, ν)-dichotomy.

We define the generalized (µ, ν)-dichotomy spectrum of (2.1) as the set of all
numbers γ ∈ R for which the system (2.9) does not admit a generalized (µ, ν)-
dichotomy and denote this set by Σg

µ,ν . The set ρgµ,ν := R \ Σµ,ν is called the
generalized (µ, ν)-resolvent set of (2.1). It is easy to see that Σg

µ,ν ⊂ Σµ,ν and, in
general, we may have Σg

µ,ν ̸= Σµ,ν as we show in the next example.

Example 5.1. For n ∈ Z, let µn = en and

νn =

{
1 if n = 0 or |n| = 2k for some k ∈ N
|n| otherwise.

Now, let An : R → R be given by

Anx =
µn

µn+1

ν2n
ν2n+1

x for every x ∈ R.

Thus,

A(m,n) =
µn

µm

ν2n
ν2m

and Aγ(m,n) =

(
µn

µm

)1+γ
ν2n
ν2m

for every γ ∈ R and m,n ∈ Z. Consequently,

Aγ(m,n) =

ν2ne
−(1+γ)(m−n) if m = 0 or |m| = 2k for some k ∈ N

ν2
n

m2 e
−(1+γ)(m−n) otherwise.

(5.1)

Then, it is easy to see that, for every γ ≥ 0, the system (2.9) admits a generalized
(µ, ν)-dichotomy with parameters D = 1, λ = 1 + γ, θ = 2 and Pn = Id for every
n ∈ Z. In particular, [0,+∞) ∩Σg

µ,ν = ∅. On the other hand, (2.9) does not admit
a (µ, ν)-dichotomy for any γ ≥ 0. Indeed, suppose (2.9) admits a (µ, ν)-dichotomy
for some γ ≥ 0. Then, by the second line in (5.1) we have that Pn = Id for every
n ∈ Z. Consequently, there exist D > 0 and λ > 0 such that, for every k ∈ N,
m = 2k and m ≥ n,

ν2ne
−(1+γ)(m−n) ≤ Dνne

−λ(m−n)

which is equivalent to

νn ≤ De(1+γ−λ)(m−n).

In particular, taking n = 2k − 1 we get from the previous inequality that

2k − 1 = ν2k−1 ≤ De(1+γ−λ)

which is a contradiction since k ∈ N is arbitrary. Therefore, [0,+∞) ⊂ Σµ,ν and
Σµ,ν ̸= Σg

µ,ν .

Remark 5.2. We observe that in [31], Silva considered a similar notion of spectrum
for continuous time invertible dynamics acting on a finite-dimensional space in the
particular case where ν is given in terms of µ and, moreover, the exponent θ in the
definition of the dichotomy has some restrictions based on λ.
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In the next result, we describe the structure of the set Σg,κic
µ,ν := Σg

µ,ν ∩(κic,+∞).

Theorem 5.3. Suppose κic < 0 and that for every ε > 0 condition (3.3) is satisfied.
Then Σg,κic

µ,ν has one of the forms given in (P1)-(P6). Moreover, conclusions (3.4),
(3.5), (3.6), (3.7) and (3.8) are also satisfied. Furthermore, all the forms (P1)-(P6)
do appear as the generalized (µ, ν)-dichotomy spectrum of compact operators.

Proof. The proof of this result follows the same lines, mutatis mutandis, as the
proof of Theorem 3.1. Moreover, it is easy to adapt the examples presented in
Section 4 to the present context. □

5.2. Nonuniform µ-dichotomy spectrum. We say that (2.1) admits a nonuni-
form µ-dichotomy if conditions (2.4) and (2.5) are satisfied and, moreover, there
exists λ > 0 so that for each θ > 0 there exists D = D(θ) > 0 such that

∥A(m,n)Pn∥ ≤ Dµsgn(n)θ
n

(
µm

µn

)−λ

for m ≥ n

and

∥A(m,n)(Id−Pn)∥ ≤ Dµsgn(n)θ
n

(
µn

µm

)−λ

for m ≤ n

where A(m,n) is as in (2.8) for m ≤ n and sgn(n) denotes the “sign” of n.
Similarly to what we did above, we define the nonuniform µ-dichotomy spectrum

of (2.1) as the set of all numbers γ ∈ R for which the system (2.9) does not admit
a nonuniform µ-dichotomy and denote this set by ΣN

µ . The set ρNµ := R \ ΣN
µ is

called the nonuniform µ-resolvent set of (2.1). Observe that letting n0 ∈ Z be such
that µn < 1 for n < n0 and µn ≥ 1 for n ≥ n0 as in Example 4.3 and considering

νn =

{
µn if n ≥ n0

µ−1
n if n < n0,

we have that
Σg

µ,ν ⊂ Σµ,ν ⊂ ΣN
µ .

Moreover, in general, we have that Σµ,ν ̸= ΣN
µ .

Example 5.4. For n ∈ Z, let µn = en and νn = e|n|. Moreover, let An : R → R be
given by

Anx = e−
5
2+

(n+1) cos(n+1)−n cos(n)
2 x for every x ∈ R.

Then,

A(m,n) = e−
5
2 (m−n)+

m cos(m)−n cos(n)
2

for every m,n ∈ Z. Now, it follows from [6, Example 2] with c = 5/2 and b = 1/2
that ΣN

µ = R. On the other hand, we have that

A(m,n) ≤ e−
5
2 (m−n)+

|m|+|n|
2 ≤ e−2(m−n)+|n| = νn

(
µn

µm

)−2

for every m ≥ n. In particular, 0 /∈ Σµ,ν and Σµ,ν ̸= ΣN
µ .

In the next result, we describe the structure of the set ΣN,κic
µ := ΣN

µ ∩ (κic,+∞).

Theorem 5.5. Suppose κic < 0. Then ΣN,κic
µ has one of the forms given in (P1)-

(P6). Moreover, conclusions (3.4), (3.5), (3.6), (3.7) and (3.8) are also satisfied.
Furthermore, all the forms (P1)-(P6) do appear as the nonuniform µ-dichotomy
spectrum of compact operators.

Proof. The proof of this result again follows the same lines, mutatis mutandis, as
the proof of Theorem 3.1 and, moreover, the examples presented in Section 4 can
be easily adapted to the present context. □
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Remark 5.6. We observe that by taking µn = en for every n ∈ Z, our notion
of nonuniform µ-dichotomy spectrum coincides with the spectrum introduced and
studied in [6]. In particular, in this case, our Theorem 5.5 recovers [6, Theorem
4]. Furthermore, in [5] the authors consider a notion similar to our concept of
nonuniform µ-dichotomy spectrum whose main difference is that they work with
finite-dimensional invertible systems and use the notion of strong nonuniform µ-
dichotomy to define the spectrum instead of just that of nonuniform µ-dichotomy
as we do.

Remark 5.7. Versions of the results from Section 3.2 can also be obtained for the
generalized (µ, ν)-dichotomy spectrum and the nonuniform µ-dichotomy spectrum.

6. Cohomology and normal forms

Many of the applications obtained for the classical Sacker-Sell spectrum can
be adapted to obtain versions in terms of the spectra introduced above. In this
section, we present two such adaptations and show how the nonuniform µ-dichotomy
spectrum can be used to “reduce” (2.1) into a system which has a block-diagonal
form and comment on how one can use this spectrum to obtain normal forms of
certain nonautonomous systems. We follow the ideas developed in [8, 27, 29].

6.1. Cohomology. We say that a sequence (Tn)n∈Z of invertible linear maps in
B(X) is µ-tempered if for every ε > 0,

lim
n→±∞

∥Tn∥
µ
sgn(n)ε
n

= 0 and lim
n→±∞

∥T−1
n ∥

µ
sgn(n)ε
n

= 0 (6.1)

where as above sgn(n) denotes the “sign” of n. Two sequences (An)n∈Z and (Bn)n∈Z
are said to be µ-cohomologous if there exists a sequence of µ-tempered linear maps
(Tn)n∈Z such that

Bn = T−1
n+1AnTn. (6.2)

Proposition 6.1. If (An)n∈Z and (Bn)n∈Z are µ-cohomologous then they have the
same nonuniform µ-dichotomy spectrum.

In what follows, we are going to denote by B(m,n) the evolution operator asso-
ciated to (Bn)n∈Z which is obtained by changing Ak by Bk, k ∈ Z, in (2.2).

Proof of Proposition 6.1. Let γ ∈ ρNµ (A) where ρNµ (A) denotes the nonuniform µ-
resolvent of (An)n∈Z. Then (2.9) admits a nonuniform µ-dichotomy. That is, there
exists a family of projections (Pn)n∈Z such that (2.4) and (2.5) hold and, moreover,
there exists a constant λ > 0 such that for every θ > 0 there exists D = D(θ) > 0
satisfying ∥∥∥∥( µn

µm

)γ

A(m,n)Pn

∥∥∥∥ ≤ Dµsgn(n)θ
n

(
µm

µn

)−λ

for m ≥ n (6.3)

and ∥∥∥∥( µn

µm

)γ

A(m,n)(Id−Pn)

∥∥∥∥ ≤ Dµsgn(n)θ
n

(
µn

µm

)−λ

for m ≤ n. (6.4)

Then, considering the family of projections (P̃n)n∈Z given by P̃n = T−1
n PnTn,

conditions (2.4) and (6.2) imply that BnP̃n = P̃n+1Bn. Moreover, conditions (2.5)
and (6.2) imply that

Bn|Ker P̃n
: Ker P̃n → Ker P̃n+1

is invertible.
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Now, using (6.1) we have that for every ε ∈ (0, λ/2) there exists Cε > 0 such

that ∥Tn∥ ≤ Cεµ
sgn(n)ε
n and ∥T−1

n ∥ ≤ Cεµ
sgn(n)ε
n for every n ∈ Z. Thus, using (6.2)

and (6.3), for m ≥ n we have the following possibilities:
• m ≥ 0 and n ≤ 0:∥∥∥∥( µn

µm

)γ

B(m,n)P̃n

∥∥∥∥ =

∥∥∥∥( µn

µm

)γ

T−1
m A(m,n)PnTn

∥∥∥∥
≤ ∥Tn∥∥T−1

m ∥
∥∥∥∥( µn

µm

)γ

A(m,n)Pn

∥∥∥∥
≤ Dµsgn(n)θ

n Cεµ
sgn(n)ε
n Cεµ

sgn(m)ε
m

(
µm

µn

)−λ

= DC2
εµ

sgn(n)θ
n

(
µm

µn

)−λ+ε

≤ D̂µsgn(n)(θ+2ε)
n

(
µm

µn

)−λ+ε

for some D̂ > 0 where here we have used that limn→−∞ µn = 0 and, in particular,

µ
sgn(n)θ
n ≤ µ

sgn(n)(θ+2ε)
n for n small enough;

• m,n ≥ 0:∥∥∥∥( µn

µm

)γ

B(m,n)P̃n

∥∥∥∥ ≤ DC2
εµ

sgn(n)θ
n µsgn(n)ε

n µsgn(m)ε
m

(
µm

µn

)−λ

= DC2
εµ

θ
nµ

2ε
n

(
µm

µn

)−λ+ε

≤ DC2
εµ

sgn(n)(θ+2ε)
n

(
µm

µn

)−λ+ε

• m,n ≤ 0:∥∥∥∥( µn

µm

)γ

B(m,n)P̃n

∥∥∥∥ ≤ DC2
εµ

sgn(n)θ
n µsgn(n)ε

n µsgn(m)ε
m

(
µm

µn

)−λ

= DC2
εµ

−θ
n µ−2ε

n

(
µm

µn

)−λ−ε

≤ DC2
εµ

sgn(n)(θ+2ε)
n

(
µm

µn

)−λ−ε

Thus, combining the previous observations and taking λ̃ = λ/2 > 0 we get that

for every θ̃ > 0 there exists D̃ = D̃(θ) > 0 such that∥∥∥∥( µn

µm

)γ

B(m,n)P̃n

∥∥∥∥ ≤ D̃µsgn(n)θ̃
n

(
µm

µn

)−λ̃

for m ≥ n.

Similarly we can prove that∥∥∥∥( µn

µm

)γ

B(m,n)(Id−P̃n)

∥∥∥∥ ≤ D̃µsgn(n)θ̃
n

(
µn

µm

)−λ̃

for m ≤ n.

Consequently, γ ∈ ρNµ (B) showing that ρNµ (A) ⊂ ρNµ (B). By changing the roles of

(An)n∈Z and (Bn)n∈Z in the previous argument we conclude that ρNµ (B) ⊂ ρNµ (A)
completing the proof of the proposition. □
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6.2. Block-diagonalization. Our next objective is to show that a sequence (An)n∈Z
of bounded linear operators satisfying κic < 0 is µ-cohomologous to one in block
form. For this purpose, given integers k1 < k2 < . . . < ks, by Theorem 5.5 we may
write

X = F (n)⊕
s⊕

j=1

Ekj (n) (6.5)

for every n ∈ Z where

F (n) = Scks+1
(n)⊕ Uck1−1

(n)⊕
⊕
j∈S

Ej(n)

and S = (N ∩ [k1, ks]) \ {k1, k2, . . . , ks}. Denote by nj := dim(Ekj
(n)), which is

finite and independent of n ∈ Z, and consider d = n1 + n2 + . . .+ ns.

Theorem 6.2. Let (An)n∈Z be a sequence of bounded linear operators such that
κic < 0 and with decomposition as in (6.5). Then, (An)n∈Z is µ-cohomologous to
a sequence (Bn)n∈Z of linear operators from Rd × F (n) to Rd × F (n+ 1) with

Bn = diag(B1
n, B

2
n, . . . , B

s+1
n )

where Bj = (Bj
n)n∈Z is a sequence of invertible nj × nj matrices associated with

the spaces Ekj (n) with

ΣN
µ (Bj) = [akj , bkj ], for j = 1, . . . , s,

and

Bs+1
n = An|F (n) : F (n) → F (n+ 1).

Proof. The proof of this result can be obtained by making minor adjustments in
the proof of [8, Theorem 19] and, therefore, we refrain from writing full details. □

6.3. Normal forms. For x ∈ X, let us write x = (x1, . . . , xs, xs+1) with xj ∈ Rnj

for j = 1, . . . , s and xs+1 ∈ F (n). Observe that xs+1 depends on n but, since this
dependence is clear from the context, we will abuse notation and not write it. Given
a vector q = (q1, . . . , qs) ∈ Ns, we define |q| = q1+ . . .+qs and ∂qfn = ∂q1

x1 · · · ∂qs
xsfn.

Theorem 6.3. Let (An)n∈Z be a sequence of bounded linear operators such that
κic < 0 with decomposition as in (6.5) and suppose that fn : X → X are maps of
class Cr with fn(0) = 0 and d0fn = 0 for every n ∈ Z. Moreover, suppose that for
each ε > 0 there exists K = K(ε) > 0 such that

∥dq0fn∥ ≤ Kµsgn(n)ε
n (6.6)

for 2 ≤ |q| ≤ r and every n ∈ Z. Then, there exists a µ-tempered sequence of linear
operators (Tn)n∈Z such that if (xn)n∈Z satisfies

xn+1 = Anxn + fn(xn), n ∈ Z,

then yn = T−1
n xn satisfies

yn+1 = Bnyn + gn(yn), n ∈ Z (6.7)

for some linear operators Bn as in Theorem 6.2 and some maps gn : X → X of
class Cr with gn(0) = 0 and d0gn = 0 for every n ∈ Z having the property that for
each ε > 0 there exists L = L(ε) > 0 such that

∥dq0gn∥ ≤ Lµsgn(n)ε
n (6.8)

for 2 ≤ |q| ≤ r and every n ∈ Z.
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Proof. By Theorem 6.2, there exists a µ-tempered sequence of linear operators
(Tn)n∈Z and linear operators (Bn)n∈Z of the form given in the cited theorem such
that Bn = T−1

n+1AnTn. Thus, making yn = T−1
n xn and considering gn = T−1

n+1 ◦ fn ◦
Tn we have that

yn+1 = T−1
n+1xn+1 = T−1

n+1Anxn + T−1
n+1fn(xn)

= T−1
n+1AnTnyn + T−1

n+1fn(Tnyn)

= Bnyn + gn(yn).

Finally, condition (6.8) follows directly from (6.1) and (6.6). □

Given j ∈ {1, 2, . . . , s} and q ∈ Ns with |q| ≥ 2, we say that the pair (j, q) is a
resonance of order |q| if

[akj
, bkj

]
⋂[

s∑
i=1

qiaki
,

s∑
i=1

qibki

]
̸= ∅ (6.9)

where k1 < . . . < ks are as in Section 6.2.
Now, let gn : X → X be maps of class Cr satisfying gn(0) = 0 and d0gn = 0 for

every n ∈ Z. We have

gn(x) =
∑

q∈Ns,2≤|q|≤r

1

q!
dq0gnx

q + o(∥x∥r). (6.10)

Then, writing

gn = (g1n, g
2
n, . . . , g

s
n, g

s+1
n ),

(recall that we are identifying X with Rn1 × . . . × Rns × F (n)), we say that the
component (1/q!)dq0g

j
mxq in (6.10) is resonant if the pair (j, q) is a resonance.

Theorem 6.4. Let (Bn)n∈Z be a sequence of linear operators as in Theorem 6.2
and gn : X → X be maps of class Cr with gn(0) = 0 and d0gn = 0 for every n ∈ Z.
Moreover, suppose that for each ε > 0 there exists L = L(ε) > 0 satisfying (6.8).
Then, there exist polynomials hn : Rd → Rd with hn(0) = 0 and d0hn = 0 for every
n ∈ Z such that, if (yn)n∈Z satisfies (6.7), then making

yjn = zjn + hj
n(z

1
n, . . . , z

s
n)

for j ∈ {1, . . . , s} and ys+1
n = zs+1

n for every n ∈ Z, we get that

zn+1 = Bnzn + ḡn(zn), n ∈ Z,

for some maps ḡn : X → X of class Cr with ḡn(0) = 0, d0ḡn = 0 and dq0ḡ
j
n = 0

for all n ∈ Z, j ∈ {1, . . . , s} and q ∈ Ns with 2 ≤ |q| ≤ r such that (j, q) is not a
resonance, where ḡjn are the components of ḡn.

Proof. The proof of this result is analogous to the proof of [8, Theorem 21] and,
therefore, once again we refrain from writing full details. □

Remark 6.5. We observe that reducibility results and normal forms associated
with the µ-dichotomy spectrum studied in [31] were recently obtained in [12, 31] in
the context of continuous time dynamics acting on a finite-dimensional space.

Acknowledgements. We would like to thank the referees for their useful com-
ments that helped us to improve our paper. L. Backes was partially supported by
a CNPq-Brazil PQ fellowship under Grant No. 307633/2021-7.



24 LUCAS BACKES

References

[1] B. Aulbach and S. Siegmund, A spectral theory for nonautonomous difference quations, in:

New Trends in Difference Equations, Temuco, 2000, Taylor & Francis, 2002, pp. 45–55.

[2] B. Aulbach and S. Siegmund, The dichotomy spectrum for noninvertible systems of linear
difference equations, J. Differ. Equ. Appl. 7 (2001), 895–913.
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