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ABSTRACT. The main objective of the present paper is to formulate suffi-
cient conditions under which a nonautonomous dynamics acting on a arbitrary
Fréchet space exhibits shadowing property and (partial) linearization. These
conditions require that the linear part is hyperbolic (in the sense of the concept
recently introduced by Aragao Costa) and that the nonlinear part is Lipschitz.
Our results extend those previously known in the setting of nonautonomous
dynamics acting on Banach space. We consider both the case of discrete and
continuous time dynamics.

1. INTRODUCTION

In general, a dynamical system is said to be stable if certain dynamical properties
are preserved under small perturbations of a system. Clearly, we have several
notions of stability depending, for instance, on which dynamical properties we want
to be preserved and how do we measure the smallness of the perturbations. In the
present work we are interested in two such notions: shadowing and linearization.
More precisely, given a dynamical system of the form

Tn4+1 = Anxn + fn(xn)7 ne Za (11)

where A,: X — X, n € Z, is sequence of linear maps acting on a Fréchet space
X and f,: X — X, n € Z, is a sequence of nonlinear maps, we are interested in
describing sufficient conditions under which the system (1.1) and its continuous
time counterpart have the shadowing property and are linearizable.

The shadowing theory deals with the problem of finding exact trajectories of
a dynamical system close to pseudo-orbits. In the case of the dynamical system
generated by (1.1), for instance, a pseudo-orbit is a sequence of points (y, )nez in X
which is almost an orbit of the system: for each n € Z, the difference y,,+1 — Apyn —
fn(yn) does not need to be zero (as it is in the case of an actual orbit) but must, on
the other hand, be small. We say that a dynamical system exhibits the shadowing
property if close to a pseudo-orbit we can find an exact orbit. This theory has a
long history starting with the seminal work of Bowen [10, 11]. Afterwards, many
authors have given several interesting and deep contributions to broadening its
scope of applicability and also obtaining important dynamical consequences arising
from shadowing. We refer to the excellent monographs of Palmer [25], Pilyugin [26]
and Pilyugin-Sakai [28] for a thorough overview of these results. We just mention
that initially the theory was developed for autonomous systems defined on compact
spaces and, more recently, was extended to both autonomous and nonautonomous
context for infinite dimensional Banach spaces. See, for instance, [2, 3, 6, 8, 9, 12,

2020 Mathematics Subject Classification. 37B65, 34D30, 34D09.
Key words and phrases. Shadowing, Linearization, Fréchet spaces.
1



2 LUCAS BACKES AND DAVOR DRAGICEVIC

13, 27] and the references therein for an overview of these later developments. In this
work we go one step further and study the shadowing property for nonautonomous
dynamics acting on Frechet spaces. In the sequel we explain the importance of
considering this setting but first let us turn our attention to the other stability
property that we are going to explore.

We start by recalling that the system (1.1) is said to be linearizable if there exists
a sequence of homeomorphisms H,,: X — X sending the trajectories of (1.1) into
the trajectories of the linear system

Tpi1 = Apy, n € Z. (1.2)

In particular, whenever this happens, many important dynamical properties of the
nonlinear system (1.1) can be obtained by studying the linear system (1.2), which in
general is much easier to deal with. Although this is a nice property, it is also a very
strong one and, in particular, may fail to be true in many interesting situations.
A weaker version of this property is what we call partial linearization: instead of
looking for a transformation that sends all the trajectories of (1.1) to trajectories
of (1.2), we restrict ourselves to trajectories starting in some special invariant sub-
spaces of (1.2). This notion will be made more precise when we are going to state
our results in Section 4. Probably the first and most well-known results regarding
linearization are due to Grobman [18, 19] and Hartman [20, 21, 22] in the context of
autonomous dynamics and by Palmer [24] in the context of nonautonomous dynam-
ics. Following the lead of these precursors, many authors have worked to expand
the reach of applicability of these type of results by considering, for instance, more
general dynamics acting on very general phase spaces, by weakening the notions of
linearization and also by improving the regularity of the conjugacy maps H,. We
refer to the introductions of [4, 5, 7, 14, 15, 16, 23] for a more thorough revision of
the literature regarding this subject.

As already mentioned, our main objective in this work is to present sufficient
conditions under which a system of the form (1.1) together with its continuous
time counterpart have the shadowing property and are (partially) linearizable. Our
major assumption is that the linear system (1.2) admits a type of exponential
dichotomy (introduced by Aragao Costa [1]) and that the nonlinear perturbations
fn, n € Z, are Lipschitz with small Lipschitz constant. These are somehow classical
assumptions when dealing with this kind of problems but the main novelty of this
work with respect to previous ones is that here we work on Fréchet spaces. This
level of generality allows us to apply our results, for instance, to dynamics defined
via differential operators. This type of linear operators, when thought as operators
acting on a Banach space, are, in general, not bounded and, in particular, previously
available results can not be applied to them. On the other hand, they may fit into
our framework as observed in Example 3. This example deals with the Laplace
operator acting on the space of tempered distributions and satisfies, for instance,
the hypothesis of Theorems 1 and 3. In particular, small perturbations of it have
the shadowing property and are partially linearizable.

The paper is organized as follows: in Section 2 we recall some notions regarding
Fréchet spaces and introduce the notions of exponential dichotomy in this setting
for both discrete and continuous time dynamical systems. Moreover, we present
some examples of systems satisfying this property. In Sections 3 and 4 we present
sufficient conditions under which the system (1.1) and its continuous time counter-
part have the shadowing property and are (partially) linearizable, respectively.
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2. PRELIMINARIES

In this section we recall some important notions that are going to be used in the
paper.

2.1. Fréchet spaces. A complete Hausdorff topological vector space whose topol-
ogy is generated by a countable family of seminorms is called a Fréchet space.
Throughout this paper X will denote an arbitrary Fréchet space whose topology is
generated by a sequence (p;),en of seminorms on X. Then, we have (see [17, 5.16
Proposition]) that

z=0in X < pj(z)=0forall jeN. (2.1)

We recall that B < X is said to be bounded if for every j € N, the set {p;(z) :
x € B} < R is bounded. By £(X), we will denote the set of all linear operators
A: X — X with the property that A(B) is a bounded set for each bounded B < X.
One can easily check (see [17]) that if A: X — X is a linear operator then the
following conditions are equivalent:

e A€ ﬁ(X),

e A is continuous;

e for each j € N there exists k; € N and C; > 0 such that

k;j
pi(Az) < C; Z pi(x) for every z € X.
i=1

Ezample 1. Every Banach space (X, | -||) is a Fréchet space with p;(-) = |||, j € N,
and in this case we obviously have that £(X) is just the space of bounded linear
operators on (X, || - ).

Ezample 2. Let X = C®([0,1]) be the space of all infinitely differentiable functions
f:]0,1] — R and, for each j € N, consider the seminorm

p) = s { | sw): e}

Then, it is not difficult to check that (X, (p;);en) is a Fréchet space and % e L(X).
On the other hand, there is no norm in X with respect to which % is bounded. In
particular, this example show us that the notion of Fréchet space is an important
generalization of the notion of Banach space.

2.2. Exponential dichotomy. In this section we present versions of the notion
of exponential dichotomy in the setting of Fréchet spaces.

2.2.1. The discrete time case. For a sequence (A,)nez < L(X), we denote by
A(m,n) the associated linear cocycle defined by

A(m,n) = {

where Id denotes the identity operator on X. We now recall the notion of expo-
nential dichotomy introduced in [1, Definition 2.13.].

Ap_1- Ay m>n;
Id m=n,

Definition 1. We say that a sequence (An)nez < L(X) admits an exponential
dichotomy if there exist two sequences (M;) en and (w;)jen of positive numbers, as
well as a sequence (Qn)nez < L(X) of projections such that the following conditions

hold:
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o fornelZ,
AnQn = Q’VL+1AT7.;

o for every n € Z, Anlr,): R(Qn) — R(Qny1) is an isomorphism, where
R(Q) denotes the range of Qp;
e form=mn,jeNand x e X,

pi(A(m,n)(Id — Qu)x) < Mje™ ™ ™ p;(x); (22)
e form<mn,jeNandxe X,
Dj ('A(man)an) < Mjeiwj(nim)pj (I)a (23)

where
1
A(m,n) := (A(n,m)|R(Qm)) : R(Qn) = R(Qm), m<n.

The following interesting example is taken from [1, Example 3.5].

Ezample 3. Let us denote by S(R™) the space of Schwartz functions or rapidly
decreasing functions f: R™ — C (see [17]). Then, a tempered distribution on R™
is just a continuous linear functional on S(R™). Let S’(R™) denote the set of all
tempered distributions on R™ and 2 be an open subset of R”. On S'(R™) we
consider the equivalence relation given by

U~ v = g = 0|q,

where § denotes the Fourier transform of g € §’'(R™).
Let uq denote the equivalence class of u € §'(R™) with respect to
consider

‘~q’ and
FEq = {uq : t|q e L3 .(Q) for some u € ug}.

Then, Eq is a vector space. Now, given a sequence (K;)jen of compact sets such
that K; < Kj; for every j € Nand Q = UjeN K, let us consider the sequence of
seminorms on Eq given by

oo (]

J

1/2
|a(€)[* d&) (2.4)

for every j € N, u € ug and ug € Eq. It is not difficult to check that (p;’f)jeN is
indeed a separating sequence of seminorms on Eq and, consequently,

+00

d(uQ, UQ) = Z

Jj=1

pj (ug — ve)
2j(1 + p;k(UQ — UQ))

is a metric on Eq.

Let us consider now FLZ () the completion of the metric space (Eq,d). Here
we think of the completion as the quotient space of all Cauchy sequences in Fq by
the equivalence relation given by

(ug,)ien ~ (Va)ien <= lim d(uq,va,) = 0.
15400

One can check that the seminorms given in (2.4) have natural extensions to FLZ ()
and that this space endowed with these seminorms is a Fréchet space.
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Given [u] € FL2 (), we may define its Fourier transform as follows: for any
(uq,1)ien € [u] we have that (@iq ;) ey is a Cauchy sequence in L2 (2) and, therefore,
there exists a unique w € LZ () such that g, — w in LE (). We then define
[u] = w.
It is easy to check that this definition does not depend on the representative (ugq,;)ien
of [u] and, moreover, when restricted to elements of Fq this Fourier transform
coincide with the ordinary one in Eq. Finally, if [u] € FL2 () and [u] = w then
we define w'= [u] as the inverse Fourier transform, which is well defined as one can
easily check.
Let us now specialize our example to the case when = R”\{0}. Denoting
by A = Z?:l 6672? the Laplace operator on R™\{0}, let us consider the operator

T: E]Rn\{o} d E]Rn\{o} given by
Tu = ePu = (ei4ﬂ2|§|2ﬁ)v.

This operator has a natural extension to FL2 (R™\{0}) given by T': FLZ (R™\{0}) —

loc loc
FLE, (R™M\{0}),

Tlu] == [(T'(urm\{o},1))ien]
for (ugn(oy,1)ien € [u] € FLE (R™{0}). In this case we have that

loc

Tlu] = e~ "16P
where w = [Au] e L2 (R™\{0}).
Considering now K; = {z € R": 1/j < |z| < j} we have that

P = | e e de

Thus, for every n € N it follows that
*(m _ —4nm?|¢|? 24 < —4nn? /5% %
py (T"[u]) = le w7 dg ) <e Py ([u]).
1/5<|€1<g

Consequently, the sequence (A, )nez = (T)nez = (€2)nez admits an exponential
dichotomy with constants M; = 1 and w; = 47%/j2 for every j € N. On the other
hand, we recall that, as observed in [1, Introduction], (A, )nez = (6)nez does not
admit an exponential dichotomy when thought of as acting, for instance, in the
Banach space L?(R™).

2.2.2. The continuous time case.

Definition 2. Let T'(t,s), t = s be a two parameter family of linear operators on
X. We say that T(t,s) is an evolution family if the following properties hold:

o T(t,t) =1d forteR;

o fort=s>=r,

T(t,s)T(s,7) =T(t,T);
o for (s,x) e Rx X, t —» T(t,s)x is continuous on [s,0);
e for each j € N, there exist K;j,a; > 0 such that
pi(T(t,8)x) < K;e“"=9p;(x), fort=s. (2.5)

Remark 1. Observe that (2.5) implies that T'(¢,s) € £(X) for t = s.
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We now introduce the notion of exponential dichotomy for evolution families.

Definition 3. We say that an evolution family T(t,s) admits an exponential di-
chotomy if there exist two sequences (M;) en and (w;) en of positive numbers, as
well as a family Q(s) € L(X), s € R of projections such that the following conditions
hold:

o fort>=s,
T(t,5)Qs) = QUIT(t, )

o fort=s, T(t,s)|pqes): R(Q(s)) — R(Q(t)) is an isomorphism;
o fort >s,jeNandx € X,

pi(T(t,5)(1d = Q(s))z) < Mye~ =) p;(x); (2.6)
o fort<s,jeNandxe X,

Pi(T(t,5)Q(s)z) < Mye™ = (x), (27)
where T'(t,s) fort < s denotes the inverse of T(s,t)|rioq))-

As in the discrete time case, it is not difficult to present examples of evolution
families admitting an exponential dichotomy. For instance, we can consider the
continuous time version of Example 3 given by T'(¢,s) = e(t=9)A t > 5. Now, pro-
ceeding as in the above mentioned example one can check that T'(¢, s) is actually an
evolution family that admits an exponential dichotomy. An even simpler example
is the following.

Ezample 4. Consider the ‘annulus’ A = {z € R"; |z| > 1/2} and L] (A) endowed
with the sequence of seminorms

pi(f) = £ (©)ldg, jeN.

L&EA; 1€1<5}

Then, (L], (A), (p;)jen) is a Fréchet space. Set X := L{

loc

p]X((f’g)) = max{pj(f),pj(g)}, JEN, (fag)EX'

Then, (X, (p;()jeN) is also a Fréchet space. For t > s, we define T'(¢,s): X — X by

(A) x L{

loc

(A) and

T(t7 S)(fv g)(§1a€2) = (e_(t_S)Ifl‘f(€1)7e(t_s)l&lg(SQ)%

for (£1,&) € A x A and (f,g) € X. Moreover, let Q(s): L (A) x LL _(A) —
L (A) x LL (A) be given by Q(s)(f,g) = (0,g) for every s € R. Then, it is
not difficult to see that T'(¢,s) is an evolution family that admits an exponential

dichotomy with family of projections Q(s), s € R.

3. THE SHADOWING PROPERTY

In this section we are going to present sufficient conditions under which a cer-
tain type of dynamical systems defined on a Fréchet space exhibit the shadowing

property.
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3.1. The discrete time case. In what follows, for a sequence (A4, )nez < L(X)
we will consider the associated linear nonautonomous dynamics given by

Tpe1 = Anzn, nez. (3.1)

Furthermore, let f,,: X — X, n € Z be a sequence of (nonlinear) maps. We consider
the nonlinear nonautonomous dynamics given by

Tni1 = ApTn + fu(zn), neZ. (3.2)
The following is our first result.
Theorem 1. Assume that a sequence (Ap)nez < L(X) admits an exponential

dichotomy with sequences of constants (M;)jen and (wj)jen. Let (¢j)jen < [0, 00)
be such that

1+e7 %

C]Mjﬁ < 17 fOT’jEN. (33)
p—r
Moreover, set
M, 1te vi
Jq_,—wy
Cj = e °’ _ >0, jeN
1-— Cij _wj

Finally, let fr,: X — X, ne€Z be a sequence of maps with the property that

pi(fu() = fa()) < ¢jpj(x —y), forneZ, jeN andx,ye X. (3-4)

Then, for every two sequences (£;)jen < (0,0) and (Yn)nez < X such that
Pi(Wns1 — Antia — falya) <& forneZ andjeN, (3.5)
there exists a unique sequence (Tn)nez € X satisfying (3.2) and
pj(Tn —yn) < Cje;, forneZ and jeN. (3.6)

Remark 2. In other words, what our first result is saying is that for any pseudo-orbit
(yn)nez of (3.2) there exists an actual solution of (3.2) that shadows (yn)nez (con-
dition (3.6)). In particular, the system (3.2) has the so-called shadowing property
(see [25, 26]).

Proof. Let (¢;)jen < (0,00) and (yn)nez < X be as in the statement of the theorem.
We define a sequence z' = (z}),cz = X by

n

zh= > A k)(Id — Q) (Ak—1yr—1 + fr-1(yr—1) — yx)

k=—00

— D A K)Qk(Ak—1yr—1 + fro1 (Y1) — ur),

k=n+1
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for n € Z. By (2.2), (2.3) and (3.5), we have that

n

1

pi(z,) < Z pi(An, k) (Id — Qi) (Ak—1Yk—1 + fr—1(Yk—1) — Yx))

k=—00

+ 0 (A E)Qk(Ak—1yk—1 + fe1(Yr—1) — yx))

k=n+1

< Z Mje 1Ry (A gkt + feo1(Yr1) — Ui

k=—00

o8]
+ Z Mje i *=mp Ay yyk—1 + feo1(Yr—1) — Ur)

k=n+1

n 0
< Z Mje=win=Fg, 4 Z Mjewitk=n)g,

k=—00 k=n+1

and thus

1+
1 .
p](Zn) gMij]7 fOI"rLEZandJEN.

Next, we define a sequence z? = (22),ez = X by

n

= Y A E)(Id = Qi) (Ak—1yk-1 + fr-1(Ve—1 + 2h_1) — Ur)

k=—0

= 2 A E)Qk(Ak—1yk—1 + frr (k-1 + 2i1) — Uk,

k=n+1
for n € Z. Observe that (3.4) and (3.7) imply that

P (Ak—19r—1 + from1(Uh—1 + 24_1) — Yk

< pj(Ar—1Yn—1 + fr—1(Yr—1) — Yx)

+ 05 (fe1 (k-1 + 2h1) = fre1(Ur—1))

< pi(Ak—1yk—1 + feo1(yr—1) — yr) + ¢;pi(zh_1)
14+e %
1—e Wi

for k € Z and j € N. Hence, using (2.2) and (2.3) we obtain that

<€j+Cij €j,

1+ e 1+e
pi(zm) < MjT——-¢ <1 + Cij),

1—e Wi

for every n € Z and j € N. Thus, the sequence z? is well-defined. On the other

hand, observe that

n

Zn T An = Z An, k)Ad = Qi) (fe—1(yk—1 + 251) — fre1(yr—1))

k=—00

— D AMKR)Qk(fro1 (Y1 + 2h1) = fro1(We—1)),

k=n+1
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and consequently (using (2.2), (2.3), (3.4) and (3.7))

9 1 1+ewi\? )
pJ(Zn—Zn)<C] Mjm €j, forneZandjeN.

We proceed inductively: suppose that we have constructed z! = (2,),cz € X such
that

—wiy

1+ e i
pi(zh — 271 < cé_l (Mjl—i_e_) ¢j forneZandjeN, (3.8)

— Wy

and
—w; 1—1 —wi\
1+e 1+e™"
l

pi(zn) < e5MjT— ZE} (Cij T e—wj> ) (3.9)

im

for n € Z and j € N. We define a sequence z'*! = (2/1),c7 = X by

A= 3 A(n, k) (1d — Qi) (Ar—1yr—1 + foo1 (o1 + 25 1) — 1)

k=—0o0
o]
- 2 A, k) Qr(Ak—1Yr—1 + fro1(Wr—1 + 2h_1) — yn),
k=n+1

for n € Z. Observe that (3.4) and (3.9) imply that

(3.10)

P (Ak—1Yr-1 + froo1 (k-1 + 2h_1) — Yk)
< pi(Ar—1Yr—1 + fr—1(Yr—1) — Ur)

+ i (feo1 (k-1 + 21-1) — fr—1(ye—1))
ségt ijj(zllcfl)

—w; =1 —awi\
1+e ™ 1+e
<+ e MT——0 ) <chj = ) :
=0

for k € Z and j € N. Hence, (2.2) and (2.3) give that

—w; —w,; =1 —aws\ ¥
1+e ™ 1+e " 1+e
I+1
pilz) < Mjg— = (Ej + oMy ) <Cij T e_wj> >
=0
—ws L —aws\
14 e v 14+ e v
= &M= Z <Cij1 - ewj) ,

for n € Z and j € N. In particular, the sequence z'*! is well-defined. Moreover,

n

2t —zh = > A k) (I = Qi) (fr-1 (k-1 + Zh1) — fro1(Uk—1 + 2_}))

k=—00

- Z A, k) Qr(fr1 W1 + 2h_1) — fr—1(yr—1 + 2,_}))-
k=n+1

Hence, (2.2), (2.3), (3.4) and (3.8) imply that

14 e wi\*t
pi (25— 2h) < cé <M31> ¢j, forneZand jeN. (3.11)
— e wj
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Thus, we have constructed a sequence (z!)ien, 2' = (2})nez © X satisfying (3.11)
and

pj(zh) < Cjej, forneZand j,leN. (3.12)

By (3.3) and (3.11), we conclude that (z!,)ien is a Cauchy sequence in X for each
n € Z. Let

Zp 1= lim zil, ne .
=0
It follows from (3.12) that
pj(zn) < Cjej, forneZ and jeN. (3.13)

Moreover, (3.10) implies that

2= Y A k) (Id = Qr)(Ak—1yk—1 + fro1 (W1 + 2k—1) — Yx)

S (3.14)
- Z A, k)Qr(Ak—1Yk—1 + fe—1(Yk—1 + 26-1) — Yi),
k=n+1
for n € Z. Then,
Zn+1l — Anzn
n+1
= Z An 4+ 1,k)(Id — Qr)(Ar—1yr—1 + fr—1(Yr—1 + 26—1) — Yx)
k=—o0
- Z A(n + 1, E)(Id — Qr)(Ap—1yr—1 + fe—1(Yr—1 + 26—1) — Y&)
k=—o0
e}
- Z A+ 1LE)Qr(Ar—1yr—1 + fr—1(Ys—1 + 26-1) — vx) (3.15)
k=n+2

0
+ > A+ 1L E)Qu(Ar—1yr—1 + fe1(Yr—1 + 2—1) — Yk)
k=n+1

= (Id = Qus1)(Anyn + fr(Yn + 2n) — Ynt1)
+ Qn+1(Anyn + folYn + 20) — Ynt1)
= Anyn + fn(yn + Zn) — Yn+1,
for each n € Z. Setting
Tp = Yn + 2, NEL,

we conclude readily from (3.15) that (3.2) holds. Moreover, (3.13) implies (3.6).
Finally, let (Z,,)nez < X be another sequence such that

Gt = Andin + fu(@n) nel, (3.16)
and
Pj(Zn —yn) < Cjej, for jeNand neZ.
Let
Zp i =Tpn — Yn, MNEZL. (3.17)
Thus,

pj(Zn) < Cjej, for jeNand ne Z. (3.18)
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Next, for n € Z set

Zi= Y A k) (Id = Qi) (Ak—19k—1 + fro1 (b1 + Ze1) — Ui)

k=—0o0
0
- Z A, k)Qr(Ak—1Yk—1 + fe—1(Yr—1 + Zk—1) — yi)-
k=n+1
Observe that
Pi(Ap—1Yr—1 + fo—1(Wk—1 + Zk—1) — &)
< pi(Ak—1Yr—1 + fr—1(Ye—1) — Yr)
+ P (fe—1(Yk—1 + Zk—1) — fro—1(yr—1))
<egj +¢;Ce;
= (1+¢;C))ey,
for j € N and k € Z. This together with (2.2) and (2.3) gives that
- 1+e™™i
pi(Zn) < Mjg———=-
On the other hand, we have (see (3.16) and (3.17)) that

n

(1+4¢;Cj)e;, forjeNandnelZ. (3.19)

=/

Z= >, A k)(Id = Qi) (Ap—1@x—1 — Ap—1Zk1 + fr-1(Ex—1) — Uk)

k=—o0
_ 2 _A(n’ k)Qk(Akflffkfl — Ap_1Zp—1 + fkfl(:fkfl) - yk)
k=n+1
= > A k) (Id = Q) (Fk — Ag—15k-1)
k=—o0

— D A E)Qr(Zk — Ak—1k-1),

k=n+1
for n € Z. Therefore,

n+1
o

Zo—AnZh = > A+ 1,k)(1d — Qk)(Zk — Ar—15k—1)
k=—0o0

— > A+ 1,k)(Id — Qi) (Zk — Ak—1Zk-1)

k=—00

0
- Z An 4+ 1,k)Qr(Zx — Ap—121-1)
k=n+2

0
+ Z .A(TL +1, k)Qk(gk - Ak—lzk—l)
k=n-+1
= (Id - Qn+1)(2n+1 - Angn) + Qn-}—l(gn-!—l - Angn)
= 2n+1 - Angnv

and thus

21— Zng1 = An(Z, — Z,), nel. (3.20)
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Set ry, 1= ZI, — Z,, n € Z. By (3.20), we have that r,, .1 = A,r, for n € Z. Moreover,
(3.18) and (3.19) imply that for each j € N, there exists D; > 0 such that

pi(rn) < Dj, nel.

Fix now an arbitrary j € N and n € Z. Then, for each m > 0 we have (see (2.2))
that

pi((Id = Qn)rn) = pj(A(n,n —m)(Id — Qnom)rn—m) < M;Dje” "™,

Letting m — oo, we conclude that p;((Id — @,)r,) = 0. Since j € N was arbitrary,
from (2.1) we have that (Id — @,)r, = 0 for each n € Z. Similarly, using (2.3) it
follows that @, r, = 0 for each n € Z. We conclude that r,, = 0, and thus z], = Z,
for every n € Z. Hence,

Zoi= Y, A k)1 = Qi) (Ak—1yk—1 + fe1(Ur—1 + Z-1) — Uk)

j—
[00)
- Z A, B)Qr(Ap—1Yr—1 + fro—1(Ur—1 + Zx—1) — Y),
k=n+1

for n € Z. By (2.2), (2.3), (3.4), (3.14) and (3.21), we have that

(3.21)

- 14+e7 -
sup p; (2, — zn) < Mjc; Py supp;(Zn, — zn),
n —€e I pn

for each j € N. Thus, it follows from (3.3) that p;(Z, — 2,) = 0 for every j € N and
n € Z. Hence, (2.1) implies that Z, = z, for n € Z. We conclude that &, = x,, for
every n € Z. The proof of the theorem is completed. ([l

Remark 3. In the case when X is a Banach space, Theorem 1 follows from [3,
Theorem 3].

We now emphasize some important special cases of Theorem 1.

Corollary 1. Assume that a sequence (Ap)nez < L(X) admits an exponential di-
chotomy with sequences of constants (M;)jen and (w;)jen. Moreover, let (2, )nez <
X be an arbitrary sequence. Then, for every two sequences (¢;)jen < (0,00) and
(Yn)nez < X such that

pj(yn+l — Apyn — 2n) < gj forne€ZandjeN,
there exists a unique sequence (Tp)nez € X satisfying
Tnt+1 = Anxn +2zn, nNE Zv

and
14 e
1—e Wi

Proof. For n € Z, we define f,,: X — X by

Pj(@n —yn) < M, gj, forneZ and je N. (3.22)

fo(x) =2,, xz€X.

Observe that (3.4) holds with ¢; = 0 for j € N. Hence, (3.3) holds true. The desired
conclusion now follows readily from Theorem 1. O
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Corollary 2. Assume that a sequence (Ap)nez, © L(X) admits an exponential
dichotomy with sequences of constants (M;)jen and (w;)jen. Then, for every two
sequences (€;)jen < (0,00) and (yn)nez € X such that

pj(yn+1 - Anyn) <€ forneZ and j € N,
there exists a unique sequence (Tn)nez C X satisfying (3.1) and (3.22).

Proof. The desired conclusion follows directly from Corollary 1 applied to the case
when z,, = 0 for n € Z. O

3.2. The continuous time case. The goal of this section is to establish a version
of Theorem 1 for the case of continuous time.

Let T'(t, s) be an evolution family and f;: X — X, ¢t € R be a family of continuous
maps. We assume that there exists a family U(t,s): X — X, t = s of continuous
maps such that

t

U(t,s)x =T(t,s)x + J T(t,7)fr(U(r,s)x)dr.

S
Moreover, we suppose that t — U(t, s)z is continuous on [s, o) for each s € R and
x € X. It is easy to verify that

Ut,s)U(s,r) =Ul(t,r), t=s=r.
Theorem 2. Let T(t,s), t = s be an evolution family that admits an exponential
dichotomy. Furthermore, let fi: X — X, t € R be a family of maps with the
property that there exists a sequence (c;)jen < (0,00) such that
pi(fi(x) — fi(y)) < c¢jpj(x—y), forteR, jeNandz,ye X. (3.23)

Then, provided that c;, j € N are sufficiently small, there exists a sequence (C})jen <
(0, 0) with the property that for each sequence () en < (0,00) and a map y: R —
X such that

pi(y(t) — U, s)y(s)) <e; forjeNands<t<s+1, (3.24)
there exists a map v: R — X such that
x(t) =U(t,8)x(s) t=s, (3.25)
and R
p;(x(t) —y(t)) < Cje;, forjeNandteR. (3.26)
Proof. Let

A, =T(n+1,n), nelk.
It follows readily from (2.6) and (2.7) that
pj(A(m,n)(Id — Q(n))z) < Mye~ ™=y (z) form=n,jeN, ze X,
and
pi(A(m,n)Q(n)z) < Mje~1=™pi(z), form <n,jeNandze X.
Hence, the sequence (A, )nez admits an exponential dichotomy with respect to the
sequence of projections Q(n), n € Z.

Moreover, for n € Z we define g,: X — X by

n+1
gn(x) = J Tn+1,7)f-(U(r,n)x)dr, zeX.

3

Before proceeding, we need the following auxiliary result.
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Lemma 1. For each j € N there exists a; > 0 such that
pi(U(t,s)z = U(t,s)y) < K;epj(z —y), (3.27)
fort=s and z,ye X.
Proof of the lemma. Observe that
U(t,s)x —U(t,s)y

t

_ T(ts)(x —y) + f T(t,7)(f (U, 8)z) — £ (U(r, 5)y)) dr.

S

Fix an arbitrary j € N. It follows from (2.5) and (3.23) that
pj(U(t7 S).T - U(tv S)y)

t
< Kje " pi(x—y) + K; f e p i (f(U (T, 8)x) — f-(U(7,8)y)) dr

t
< Kje" ") pi(z —y) + ¢ K; J e (= p,(U(r,8)x — Ul(r, s)y) dr,

for t = s and x,y € X. From Gronwall’s lemma we conclude that (3.27) holds with
dj 1= CLj‘FCjKj jeN.
The proof of the lemma is completed. O
We are now in a position to estimate the Lipschitz norm of g,, for n € N.
Lemma 2. We have that
Pi(9n(2) — gn(y)) < Epj(z — ),
formeZ, jeN and x,y € X, where
&= Kicje® 4, jeN. (3.28)
Proof of the lemma. By (2.5), (3.23) and (3.27), we have that
Pi(gn(x) — gn(y))
n+1
<K [ ety (U e) — (U n)y) dr
+1

n
n

<Ko [ ey Un e - Ulrny) dr
" n+1 -
< KZcjpj(z —y) J e (MH1=T) i (1=1) g

n
< szcjeaﬁajpj(x —9),
for neZ, j € Nand x,y € X. The proof of the lemma is completed. (]

Now, provided that ¢; is sufficiently small so that ¢; satisfies (3.3) for each j € N,
it follows from Theorem 1 that there exists a sequence (C;) en < (0,00) such that
for each two sequences (£;)jen < (0,00) and (Y )nez € X satisfying

D (Yn+1 — AnYn — gn(yn)) <e; for jeNand neZ, (3.29)
there exists a sequence (z,,)nez € X such that

Tnt1 = App + gn(z,) for neZ, (3.30)
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and
pj(@n —yn) < Cjej, for jeNand neZ. (3.31)
Let y: R — X be such that (3.24) holds. Then,
pi(y(n+1) = Any(n) — gn(y(n)) <ej,
for j € N and n € Z. Hence, the sequence (y(n))nez satisfies (3.29). Thus, there

exists a sequence (zn)nez < X such that (3.30) and (3.31) hold (with y, = y(n)).
In particular, (3.30) implies that

Tne1 =Un+1,n)z,, nel. (3.32)

We now define z: R — X in the following way: take t € R, choose n € Z such that
n<t<n+1, and set

x(t) :=U(t,n)xn,.
By (3.32), we have that (3.25) holds. Finally, take an arbitrary ¢ € R and choose
n € Z such that n <t < n + 1. Then, for each j € N we have that

pi(z(t) = y(t)) = p; (UL, n)zn — y(t))
pi(U(t, n)ayn = U(t,n)y(n)) + p; (Ut n)y(n) - y(t))
Kje®pj(zn —y(n) +¢;
< K;Cje%ej +¢;.
We conclude that (3.26) holds with
Cj:= K;Cje" +1, jeN.

NN

The proof of the theorem is completed. O

4. PARTIAL LINEARIZATION

In this section we will be interested in formulating sufficient conditions under
which certain nonlinear systems defined on a Fréchet space are topologically con-
jugated or, more generally, partially conjugated to its linear part.

4.1. The discrete time case. Given a sequence of (A4, )nez of operators in £L(X)
and a sequence of nonlinear maps f,: X — X, in this subsection we are going to
present sufficient conditions under which the nonlinear dynamics given by

Tp4+1 = Anxn + fn(qf'n)v nez (41)
is topologically conjugated or, more generally, partially conjugated to its linear part
Tpi1 = Ant,, mneZ. (4.2)

We start by considering the more general case of partial linearization.

Theorem 3. Assume that the sequence (Ap)nez © L(X) admits an exponential
dichotomy with sequences of constants (M;)jen and (wj)jen. Let (¢j)jen < [0, 00)
be such that
1+ e wi
chj% <1, forjeN. (4.3)
— e~ Wj
Finally, let f,: X — X, n € Z, be a sequence of maps for which there exists a

sequence (€;)jen < [0,00) such that
pi(fa(2)) < g (4.4)
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and

pi(fn(x) = fu(y)) < ¢ipi(z —y) (4.5)
for every x,y € X, n € Z and j € N. Then, there exists a sequence of one-to-one
continuous maps H,: R(Q,) — X, n € Z, satisfying

Hoia(Au2) = (A + i) (Ha(2)) (16)
for every x € R(Q,,) and n € Z and, moreover,

sup sup p,;(Hp(z) —x) < 400 for every j € N. (4.7)
n€Z zeR(Qn)
Remark 4. In other words what this result is saying is that when restricted to the
unstable direction of (A, )nen given by R(Q,,), the system (4.1) is conjugated to its
linear part. In particular, the system (4.1) is partially linearizable.

Proof. Let ) denote the space of all sequences h = (h,,)nez of continuous maps
hpn: R(Q,) — X such that

py (h):=sup sup p;(hn(z)) < +oo for every j € N.
n€Z zeR(Qy)

It is easy to verify that (), (pf°)jen) is a Fréchet space. The sequence of maps
(H,)nez that we are looking for will have the form
H, = IdR(Qn) + hy,

with h = (hn)nez € Y, where Idgq, ) is the identity map on R(Q,). The construc-
tion of these maps will be done inductively in a similar manner to the arguments
in the proof of Theorem 1.

Let us consider h! = (hl),ez given by

By = > Al k) — Qu)(fior (Alk — Ln)a)

k=—00

— > A k)Qk(fr-a(Ak — 1,n)x)),

k=n+1
for every x € R(Qy) and n € Z. Then, by (2.2), (2.3) and (4.4), we have that

n

pi(hh(@) < ) pi(A(n, k)(Id — Q) (fr-1(A(k — 1,n)x)))

k=—0o0
+ > pi(An, B)Qr(fr-1(A(k — 1,n))))
k=n+1
< Z Mjefwj(”fk)pj(fk—l(ﬂ(k— L,n)x))
k=—w
o ST ey (s (AG — L))
k=n+1

n 0
< Z Mjeiwj(nik)€j + Z Mjeiwj(kin)é‘j
k=—w k=n+1
1+e i
= M.

LR
T1—e w7’
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and thus
14 e
pi(hy(2)) < M; 1w, i (4.8)
for every x € R(Q,,), n € Z and j € N. Consequently, h! € ).
Consider now h? = (h2),cz given by
hip(x) = Aln,k)(1d = Qi) (Fr-1(A(k — 1, n)z + by (A(k — 1,n)x)))

k=—0

— D A E)Qr(fr-1(Ak — 1n)z + by (A(k — 1,n)1))),

k=n-+1

for every x € R(Q,,). Proceeding as above it is easy to see that h? € )). Moreover,
using (2.2), (2.3), (4.5) and (4.8) it follows that

14+ewi\?
py(R2 () — h(2) < ¢, (Mj) e

1—e Wi
for every z € R(Q,), n € Z and j € N. Consequently,

1+ e v
1—e Wi

p?o(hthl) <g¢j <Mj ) g; for every j e N.

We now proceed by induction: given [ € N, suppose that we have constructed
h! = (h!),ez € Y such that

1+e Wi
1—e Wi

!
p;o(hl —hi7h < céfl (Mj > gj, for every jeN. (4.9)

We then define the sequence h'*! = (hlt1), .z by

W) = S A K — Qo) (oo (ACk — 1m)a + By (AGk — 1,n)a))

k=—00

o¢]
= D A R)Qr(fr-1(A(k = Ln)a + hi_y (A(k — 1,n)2))),
k=n+1
for z € R(Q,) and n € Z. Using (2.2), (2.3) and (4.4) it is again easy to see that
h!*l e Y. Moreover, (2.2), (2.3), (4.5) and (4.9) imply that

T —e—wj

14 e wi\'tt
P @) o) < (M) e
for every xz € R(Q,), n € Z and j € N. In particular,

14+e i
1—e Wi

1+1
p;(h"*' —h') < ¢ (Mj ) ej, forevery jeN. (4.10)
Thus, we have constructed a sequence (h!)cyy € Y which, by (4.3) and (4.10), is
a Cauchy sequence in ) and, in particular, it converges. Let h = (h,)nez € Y be
such that
h:= lim h',

l—+00
which in particular gives that

hn(x) = llirglo hln(x), forne Z and x € R(Qy,).
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Then, given x € R(Q,,) we have that

ho(x) = >0 A(n, k)(Id = Qi) (fr-1(A(k — 1,n)z + hi_1 (A(k — 1,n)z)))

k=—0o0

— > A E)Qr(fa-1 (A(k — Ln)z + hi_1 (A(k — 1,n)x))),
k=n+1

for every n € Z. Consequently,
hn+1 (AnCC)
n+1

DA+ 1,E)(Id = Qi) (fe-1(A(k — Lin+ DAy + hi_1 (A(k — 1,n + 1) Apa)))

k=—0

— > A+ 1LE)Qi(fr-1(A(k = 1,n + 1) Az + hy_1 (A(k — 1,n + 1) A,1)))
k=n+2

(Id = Qui1) (fu(x + hn(x)))

+ A, 2"1 An, k)(Id — Qi) (fe—1(Ak — L,n)x + hg—1(A(k — 1,n)x)))

k=—00

+ Qi1 (fn(z + hn(2)))

—An > A E)Qi(fr-1(Alk — 1,n)z + hi_1 (A(k — 1,n)z)))

k=n+1
= fo(z + hp(x)) + Aphy(x).
Hence,
hnt1(Anz) = Aphy(z) + fo(z + ha(2))
for every z € R(Q,) and n € Z. Then, considering H, = I
that

dr(@,) + hn it follows

Hn+1(An-T) = Anx + hn+1(Anx)
= Apz + Aphy(2) + fr(z + hp(2))
= (An + fo)(Hn(2)),

for every x € R(Q,) and n € Z. Therefore, H, satisfies (4.6). Moreover, since
h = (hy)nez € YV, we have that

sup sup py(Ho(a) —2) =sup sup p;(ha(z)) < +o0
neZ zeR(Qn) neZ zeR(Qn)

for every j € N and, consequently, (4.7) is also satisfied. It remains to show that
each H, is an one-to-one map.

Suppose there exist 1,22 € R(Q,) such that Hy,(z1) = Hy(z2) for some n € Z.
Then, using (4.6) we get that

Hy1(Apzy) = Hppq (Anaa).
Inductively, we conclude that
Hyip(An+ k,n)xy) = Hyop(A(n + k,n)xs)
for every k € N. Therefore, recalling the definition of H,,;, we get that
An+k,n)(zy — x2) = hpyrp(An + k,n)xs) — hprkg(A(n + k,n)z)
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for every k > 1 which implies that
pi(A(n + k,n)(z1 —2)) < 2p}°(h) < +c0.
On the other hand, since 1 — 22 € R(Qy), it follows by (2.3) that

pi(An + k,n)(z1 — 22)) = —€"“"pj(z1 — 22)

M;
for every k > 1 and j € N. Combining these observations with the fact that w; > 0
we conclude that

pj(x1 —x2) = 0 for every j € N.
Therefore, recalling (2.1), it follows that 1 = z9 and H,, is actually one-to-one.
This concludes the proof of the theorem. O

In the case when the sequence (Ap)nez is formed by invertible operators in
L(X) we can give a stronger version of Theorem 3 which says that systems (4.1) is
topologically conjugated to its linear part given by (4.2). In particular, the system
(4.1) is linearizable.

Theorem 4. Assume that a sequence (Ap)nez < L(X) is formed by invertible
operators in L(X) and admits an exponential dichotomy with sequences of constants
(M;)jen and (wj)jen. Let (¢;)jen < [0,00) be such that

1+e%
Moreover, let f,: X — X, n € Z be a sequence of maps such that A, + f, is

an homeomorphism for every n € Z and suppose there exists a sequence (€;)jen ©
[0,00) such that

c; M; <1, forjeN. (4.11)

pi(fn()) <¢j (4.12)
and
pi(fu() = fu(y)) < ¢jpj(z —y) (4.13)

for every x,y € X, n € Z and j € N. Then, there exists a sequence of homeomor-
phisms Hy,: X — X, n € Z, satisfying

H,i10A, = (A4, + fn)o H, for everyneZ (4.14)
and

sup sup p;(Hy(z) — x) < 400 for every j € N. (4.15)

neZ xeX

Remark 5. Suppose that A € £(X) is invertible and that Q;, j € N is a sequence
of positive numbers such that

pi(A~'z) < Q;pj(z), forre X and jeN.

Furthermore, assume that f: X — X is a nonlinear map with the property that
there exists a sequence c;, j € N of positive numbers such that

pi(f(x) = f(y)) < cjpj(x —y), forz,ye X andjeN.
Then, provided that
¢;Q; <1 foreach jeN, (4.16)

we have that A + f is a homeomorphism on X. Indeed, fix an arbitrary y € X and
define F': X — X by

F(z) =AYy — A7 f(z), zeX.
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Observe that
pi(F(x1) — F(22)) < ¢;Qjpj(x1 —x2), forzi,29€ X and jeN.

Using this together with (4.16), it is easy to show that F™(0) is a Cauchy sequence
in X. Let & = lim,_,o, F™(0). It is easy to verify that Az + f(x) = y. Since y was
arbitrary, we have that A + f is surjective.

On the other hand, suppose that there exist x1, x5 € X such that

Azy + f(w1) = Az + f(z2).

Then,
pj(w1 — x2) = pj (A7 flaa) — A" f(a1)) < ¢;Q pj (1 — 22),

for each j € N. By (4.16), we have that p;(z1 — x2) = 0 for j € N. Therefore
(see (2.1)), 1 = x9, and consequently A + f is injective. We conclude that A+ f is
a homeomorphism. In particular, this criterion can be used to verify the hypothesis
of Theorem 4.

Before we start with the proof, let us fix some notation. For every n € Z, define
F, = A, + fn. Then, let us denote by A(m,n) and F(m,n) the cocycles associated
with (A4,,)nez and (F},)nez, respectively, which are defined by

Ap 1A, m>mn;
A(m,n) =< 1d m=n;
Al AL m o<

and

Fh_10...0F, m>n,;

F(m,n) =< 1Id m=n;
F;lo...oF;_l1 m < n.

Proof. Let Y denote the space of all sequences h = (hy)nez of continuous maps
h,: X — X such that

p; (h) := sup sup p;(hy(x)) < +o0 for every j € N.

nezZ reX

Then, (Y, (p}°)jen) is a Fréchet space. Now, under the hypothesis of Theorem 4, it
is easy to see that the constructions done in the proof of Theorem 3 can be carried
out for every z € X and not just for z € R(Q,). This give rise to a sequence of
maps h = (hy)nen € YV such that H, = Id + h,, satisfies (4.14) and (4.15) as one
can easily observe. It remains to show that each H, is an homeomorphism. This
will be proved by constructing the inverse of H,, explicitly.
Let us consider h = (h,,),ez given by
hu(e) = = 3 Al k)(1d = Q) (foor (F(k — 1,n)a))

k=—0

+ > A E)Qk(fr-1 (F(k —1,n)x)),

k=n-+1
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for each z € X and n € Z. Proceeding as in the proof of Theorem 3 it is easy to see
that h € ). Moreover,

n+1

hs1 (Fa(2)) = = 3 Aln+ 1,k)(1d = Qi) (frr (F(k = 1, + 1) Fy(2)))

k=—00

+ i An + 1L k)Qr(fr—1(F(k — 1,n+ 1) Fy(2)))

k=n+2

= —(Id = Qn+1)(fu(z))
—Ap Y, A, k)(Id = Qk)(fr-1(F(k — 1,n)z))

k=—00

— Quar(fu(@) + A0 Y, AW K)Qu(fer(F(k — Ln)z))

k=n+1
= —fu(z) + Aphy(2).
Thus,
Bn+1(Fn(x)) = —fu(z) + Anﬁn(x)’
for every € X and n € Z. Then, considering H,, = Id + h,, it is easy to verify that

Hyi10 (A, + fn) = Ap o Hy, for every n € Z. (4.17)
We now claim that
H,oH, =H,oH, =1d for every n € Z. (4.18)
Indeed, using (4.14) and (4.17) it follows that
Ho(Aln,m)z) = F(n,m) Hn(a) (4.19)

and
H,(F(n,m)z) = A(n,m)H,,(z), (4.20)

for every m,n € N and € X. Recalling the definitions of H,, and H,, we get that
for every ne Z and z € X,

Z A, K)Qk (fr1 (A(k — 1,m)a + by (A(k — 1,n)2))) (4.21)
k=n+1

S A, )1 — Qo)1 (F(k — 1,m) ()
k=—0o0

+ > A E)Qk(fr-1(F(k —1,n)Hy(2))).

k=n+1
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Now, by (4.19) it follows that
Fk—1,n)H,(x) = H—1(A(k — 1,n)x)
= Ak —1,n)x + hg—1(A(k — 1,n)x),

which combined with (4.21) implies that H, (H,(z)) = « for every z € X and n € Z.
Our objective now is to show that H, (H,(z)) = x for every z € X and n € Z.
We start by observing that

H,(H,(z)) = Hy(2) + ho(H,(z))
= & + hy(2) + b (H, (2)).

Consequently,
H,(H,(z)) — 2 = hy(z) + hy(Hp (). (4.22)
By analyzing the right-hand side of (4.22) we have that
Fne) + o (o ()
=S Al R - Q) (fea (S — 1))

k=—00

+ > A k) Qi(fr-1 (F(k — 1,n)x))
k=n+1

+ Zn] A(n, k)(Ad — Q) (fe—1(Alk — 1,n)Hy(2) + hy—1 (A(k — 1,n) Ho(2))))
k=—

S A, Qe (fer (A — 1, m) () + by (A — 1,n)Ho (1)),

k=n+1
for z € X and n € N. On the other hand, by using (4.20) we have that
Al = 1,0) B (2) + b1 (A — 1,0) A (2)) = Hy 1 (A(k — 1,m) F (1)
= Hy_1(Hg—1(F(k — 1,n)z)).

Thus, by combining the previous observations and using (2.2), (2.3) and (4.13) we
get that

Pj(hn (@) + ho (Hn ()))

Z Mje= =R p(fr oy (Hyy (Hi 1 (F(k — 1,1)2))) — o1 (F(k — 1,n)x))

k=—0
+ ) Myem S (f 1 (F(k = 1,n)x) — fror (Her (Hy—1(F(k — 1,n)2))))
k=n+1

2 M;e™s (n— kcjpj(kal(kal(]:(k_1vn)x)))_]:(k_1’n)x)

k=—00

+ Z Mjevik=m) cop (Hy o (Hy—1 (F(k — 1,n)x))) — F(k — 1,n)z)
k=n+1
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for every j € N. Therefore, using (4.22), it follows that
pi(Hn(Hy(x)) — )

< kﬁw Mje= iR eip (Hy 1 (Hy_1(F(k —1,n)x))) — F(k — 1,n)z) (4.23)

o8]
+ > Miem M ep s (Hy oy (He—1 (F(k — 1,n)x))) — F(k — 1,n)x)
k=n+1

for every j € N. Now, since h = (hy,)nen € y and~f1 = (hn)nen € Y, it follows
from (4.22) that HoH —1d := (H,, o H,, — Id),,en € ), which combined with (4.23)
implies that
P(HoH -1 M e HoH T
Pj( oH-1d) <¢ jmpj( oH —1Id).

Thus, from (4.11) it follows that py’(H o H —Id) = 0 for every j € N and, conse-
quently (see (2.1)), H,(H,(z)) = « for every z € X and n € Z proving that (4.18)
indeed holds. Thus, since each H,, and H,, are continuous, it follows that these are
actually homeomorphisms. The proof of Theorem 4 is completed. (]

4.2. The continuous time case. The goal of this section is to establish the ver-
sions of Theorems 3 and 4 in the case of continuous time.

As in Section 3.2, let T'(¢,s) be an evolution family and f;: X — X, t € R, be
maps for which there exists a family U(t,s): X — X, t > s € R, of continuous
maps such that

t

U(t,s)z =T(t,s)z + J T(t,7)f+(U(r,s)z) dr. (4.24)

S
Moreover, we suppose that t — U(t, s)z is continuous on [s, o) for each s € R and
reX.
Our first result in this setting is the following.

Theorem 5. Assume that T(t, s) is an evolution family as above and that it admits
an exponential dichotomy with sequences of constants (M;)jen and (w;)jen. Let
(¢j)jen < [0,00) be such that
—w,
ch}e“ﬁaa‘Mj% <1, forjeN (4.25)
where a; and @; come from (2.5) and Lemma 3.27, respectively. Moreover, let
fi: X > X, t e R be a family of maps as above for which there exists a sequence
(¢j)jen < [0,00) such that
pi(fe(2)) <¢j (4.26)
and
p;(fe(x) = fe(y)) < ¢jpi(z —y) (4.27)
for every x,y € X, t € R and j € N. Then, there exists a family of one-to-one
continuous maps Hy: R(Q(t)) — X, t € R, satisfying

H(T(t,s)x) =U(t,s)(Hs(x)) (4.28)
for every t,se R, t = s and x € R(Q(s)) and

sup sup p;(Hi(z) —x) < +o0 for every j e N. (4.29)
teR zeR(Q(t))
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Proof. We will proceed as in the proof of Theorem 2. Let
A, =Tn+1,n), neZ.

Then, each A, is a linear operator in £(X) and, moreover, it follows readily
from (2.6) and (2.7) that the sequence (A, )nez admits an exponential dichotomy
with respect to the sequence of projections Q(n), n € Z. For n € Z we define
gn: X — X by

n+1
gn(z) = J Tn+1,7)f-(U(r,n)x)dr, zeX.

n

It follows from Lemma 2 that each g, satisfies

Pj(gn(z) — gn(y)) < &pj(z —y)
for every z,y € X and j € N with constant ¢; := Kfcjeai*&j. Moreover, using
(2.6), (2.7) and (4.26) it follows that

sup p;(gn(x)) <€
zeX

for every n € Z and j € N and some sequence of (£;)en < [0, +00).

Now, since ¢; satisfies (4.25), we have that that ¢; satisfies (4.3) for each j € N.
Thus, it follows from Theorem 3 that there exists a sequence of continuous one-to-
one maps H,: Q(n) — X such that

Hn-‘rl(Anx) = (An + gn>(Hn(x)) (430)
for every xz € R(Q(n)) and n € Z. Moreover,

sup sup p;(Hp(z) — ) < 400 for every j e N. (4.31)
neZ zeR(Q(n))
We now define Hy: R(Q(t)) — X in the following way: let n € Z be such that
n<t<n+1, and set
Hi(z) =U(t,n)H,(T(n,t)z) (4.32)
for every x € R(Q(t)). Then, it is easy to see that (4.28) is satisfied. Indeed, given
t,se Rwitht > s,let m,n € Z besuchthat m < s <m+1landn <t <n+1. Then,
using (4.30) we have that H,(T(n,m)y) = U(n,m)H,,(y) for every y € R(Q(m)).
Consequently, given z € R(Q(s)),

23232
=
=
;
3
=
3
=
5

as claimed.
Moreover, given t € R let n € Z be such that n < t < n + 1. Then, for every
z € R(Q(1)),
t
U(t,n)T(n,t)x =z + J T(t,7)fr(U(r,n)T(n,t)x)dr.

n
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Consequently, using (2.5) and (4.26),
t

pj(U(t,n)T(n,t)z —x) < J pi (T, 7)f-(U(r,n)T(n,t)x))dr

n
< Kjeajé‘j,

for every z € R(Q(t)) and j € N. Combining this fact with Lemma 3.27 we get that
for each j € N and x € R(Q(¢)),

pj(Hi(z) —x) = p;j(U(t,n) Ho(T(n, t)z) — )
<p;(UEt,n)Hn(T(n,t)x) — U(t,n)T(n,t)x))
+p;(U(t,n)T(n,t)x — x)
< Kje Jpj (Hp,(T(n,t)x) — T(n,t)z) + Ke%e;.
Therefore,
sup p;(Hy(w) —x) < Kje"  sup  pj(H,(x) —x) + KjeYe;.
zeR(Q(t)) zeR(Q(n))
Thus, using (4.31) it follows that
sup sup p;j(He(z) —x) < 40
teR zeR(Q(t))

for every j € N proving (4.29). Finally, if z1, 22 € R(Q(s)) are such that H(z1) =
Hg(x2), then using (4.28) we get that

H(T(t,s)x1) = H(T(t, s)x2)

for every t = s. In particular, this equality holds for t = m with m € N. Now, by
hypothesis we have that T'(m, s)|R(Q(s)) is one-to-one while by Theorem 3, H,,
is also one-to-one. Therefore, x1 = x5 and Hj is one-to-one for every s € R. This
concludes the proof of the theorem. O

As in the case of discrete time, assuming that the families 7" and U are invert-
ible, we can get stronger results. More precisely, suppose that for each ¢ > s,
T(t,s): X — X is an isomorphism and for ¢ < s denote T'(t,s) = T(s,t)~!. As-
sume moreover that for each t > s the family U(¢,s): X — X satisfying (4.24) is
an homeomorphism and for ¢ < s consider U(t,s) = U(s,t)". Then we have the
following result.

Theorem 6. Let T'(t,s) and U(t,s) be families of maps as above and suppose that
that T'(t,s) admits an exponential dichotomy with sequences of constants (M;) en
and (wj)jen. Let (¢j)jen < [0,00) be such that
1 Wi
¢; K2 445 M L_w <1, forjeN (4.33)
e j
where a; and @; come from (2.5) and Lemma 5.27, respectively. Moreover, let
fi: X = X, t € R be a family of maps such that the hypothesis about U(t,s) is
satisfied and, furthermore, suppose there exists a sequence (€;)jen < [0,00) such
that

p;(fie(z)) <¢j (4.34)
and

pi(fi(z) = fi(y)) < ¢jpj(x —y) (4.35)
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for every x,y e X, t € R and j € N. Then, there exists family of homeomorphisms
H;: X - X, teR, satisfying

H,oT(t,s) =U(t,s)o Hg for every t,s € R (4.36)
and

sup sup p;(H¢(z) — ) < +o0 for every j € N. (4.37)

teR zeX

Proof. As in the proof of Theorem 5, for each n € Z, let us consider
A, =T(n+1,n), neZ
and

n+1
gn(x) = J Tn+1,7)f-(U(r,n)x)dr, zeX.
n
Then, each A, is an invertible operator in £(X) and, moreover, as observed in
the proof of Theorem 5, we have that the sequence (A, )nez admits an exponential
dichotomy with respect to the sequence of projections Q(n), n € Z. Moreover, each
gn satisfies
Pi(gn(x) = gn(y)) < &pi(z —y)
for every z,y € X and j € N with constant ¢; := K]?cjeai +a; and

sup p;(gn (7)) < &j
reX

for every n € Z and j € N and some sequence of (£;) en < [0, +00).

Now, since ¢; satisfies (4.33), we have that that ¢; satisfy (4.11) for each j € N.
Thus, it follows from Theorem 4 that there exists a sequence of homeomorphisms
H,, : X — X such that

H,i10A, =(A, +gn)o H, forevery neZ (4.38)
and
sup sup p;j(Hp(z) — x) < + for every j € N. (4.39)
nezZ reX
Then, defining H;: X — X by
Hy(x) =U(t,n)H,(T(n,t)x) (4.40)

for every x € X where n € Z is such that n <t < n + 1, and proceeding as in the
proof of Theorem 5 it follows that (4.36) and (4.37) are satisfied.
Let us now consider H;: X — X given by

Hy(x) = T(t,n)H, *(U(n,t)x)

where n € Z is such that n <t < n+1. Proceeding again as in the proof of Theorem
5 we can easily see that

Hy(U(t,s)x) = T(t,s)Hs(x)

for every z € X. Moreover,
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for every x € X, t € [n,n+1) and n € Z. Similarly, H;(H;(x)) = x for every v € X,
te[n,n+ 1) and n € Z. This proves that each Hy;: X — X is an homeomorphism
completing the proof of the theorem. O
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