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Abstract. The main objective of the present paper is to formulate suffi-

cient conditions under which a nonautonomous dynamics acting on a arbitrary
Fréchet space exhibits shadowing property and (partial) linearization. These

conditions require that the linear part is hyperbolic (in the sense of the concept

recently introduced by Aragão Costa) and that the nonlinear part is Lipschitz.
Our results extend those previously known in the setting of nonautonomous

dynamics acting on Banach space. We consider both the case of discrete and

continuous time dynamics.

1. Introduction

In general, a dynamical system is said to be stable if certain dynamical properties
are preserved under small perturbations of a system. Clearly, we have several
notions of stability depending, for instance, on which dynamical properties we want
to be preserved and how do we measure the smallness of the perturbations. In the
present work we are interested in two such notions: shadowing and linearization.
More precisely, given a dynamical system of the form

xn`1 “ Anxn ` fnpxnq, n P Z, (1.1)

where An : X Ñ X, n P Z, is sequence of linear maps acting on a Fréchet space
X and fn : X Ñ X, n P Z, is a sequence of nonlinear maps, we are interested in
describing sufficient conditions under which the system (1.1) and its continuous
time counterpart have the shadowing property and are linearizable.

The shadowing theory deals with the problem of finding exact trajectories of
a dynamical system close to pseudo-orbits. In the case of the dynamical system
generated by (1.1), for instance, a pseudo-orbit is a sequence of points pynqnPZ in X
which is almost an orbit of the system: for each n P Z, the difference yn`1 ´Anyn ´

fnpynq does not need to be zero (as it is in the case of an actual orbit) but must, on
the other hand, be small. We say that a dynamical system exhibits the shadowing
property if close to a pseudo-orbit we can find an exact orbit. This theory has a
long history starting with the seminal work of Bowen [10, 11]. Afterwards, many
authors have given several interesting and deep contributions to broadening its
scope of applicability and also obtaining important dynamical consequences arising
from shadowing. We refer to the excellent monographs of Palmer [25], Pilyugin [26]
and Pilyugin-Sakai [28] for a thorough overview of these results. We just mention
that initially the theory was developed for autonomous systems defined on compact
spaces and, more recently, was extended to both autonomous and nonautonomous
context for infinite dimensional Banach spaces. See, for instance, [2, 3, 6, 8, 9, 12,
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13, 27] and the references therein for an overview of these later developments. In this
work we go one step further and study the shadowing property for nonautonomous
dynamics acting on Frećhet spaces. In the sequel we explain the importance of
considering this setting but first let us turn our attention to the other stability
property that we are going to explore.

We start by recalling that the system (1.1) is said to be linearizable if there exists
a sequence of homeomorphisms Hn : X Ñ X sending the trajectories of (1.1) into
the trajectories of the linear system

xn`1 “ Anxn, n P Z. (1.2)

In particular, whenever this happens, many important dynamical properties of the
nonlinear system (1.1) can be obtained by studying the linear system (1.2), which in
general is much easier to deal with. Although this is a nice property, it is also a very
strong one and, in particular, may fail to be true in many interesting situations.
A weaker version of this property is what we call partial linearization: instead of
looking for a transformation that sends all the trajectories of (1.1) to trajectories
of (1.2), we restrict ourselves to trajectories starting in some special invariant sub-
spaces of (1.2). This notion will be made more precise when we are going to state
our results in Section 4. Probably the first and most well-known results regarding
linearization are due to Grobman [18, 19] and Hartman [20, 21, 22] in the context of
autonomous dynamics and by Palmer [24] in the context of nonautonomous dynam-
ics. Following the lead of these precursors, many authors have worked to expand
the reach of applicability of these type of results by considering, for instance, more
general dynamics acting on very general phase spaces, by weakening the notions of
linearization and also by improving the regularity of the conjugacy maps Hn. We
refer to the introductions of [4, 5, 7, 14, 15, 16, 23] for a more thorough revision of
the literature regarding this subject.

As already mentioned, our main objective in this work is to present sufficient
conditions under which a system of the form (1.1) together with its continuous
time counterpart have the shadowing property and are (partially) linearizable. Our
major assumption is that the linear system (1.2) admits a type of exponential
dichotomy (introduced by Aragão Costa [1]) and that the nonlinear perturbations
fn, n P Z, are Lipschitz with small Lipschitz constant. These are somehow classical
assumptions when dealing with this kind of problems but the main novelty of this
work with respect to previous ones is that here we work on Fréchet spaces. This
level of generality allows us to apply our results, for instance, to dynamics defined
via differential operators. This type of linear operators, when thought as operators
acting on a Banach space, are, in general, not bounded and, in particular, previously
available results can not be applied to them. On the other hand, they may fit into
our framework as observed in Example 3. This example deals with the Laplace
operator acting on the space of tempered distributions and satisfies, for instance,
the hypothesis of Theorems 1 and 3. In particular, small perturbations of it have
the shadowing property and are partially linearizable.

The paper is organized as follows: in Section 2 we recall some notions regarding
Fréchet spaces and introduce the notions of exponential dichotomy in this setting
for both discrete and continuous time dynamical systems. Moreover, we present
some examples of systems satisfying this property. In Sections 3 and 4 we present
sufficient conditions under which the system (1.1) and its continuous time counter-
part have the shadowing property and are (partially) linearizable, respectively.



STABILITY OF NONAUTONOMOUS SYSTEMS ON FRÉCHET SPACES 3

2. Preliminaries

In this section we recall some important notions that are going to be used in the
paper.

2.1. Fréchet spaces. A complete Hausdorff topological vector space whose topol-
ogy is generated by a countable family of seminorms is called a Fréchet space.
Throughout this paper X will denote an arbitrary Fréchet space whose topology is
generated by a sequence ppjqjPN of seminorms on X. Then, we have (see [17, 5.16
Proposition]) that

x “ 0 in X ðñ pjpxq “ 0 for all j P N. (2.1)

We recall that B Ă X is said to be bounded if for every j P N, the set tpjpxq :
x P Bu Ă R is bounded. By LpXq, we will denote the set of all linear operators
A : X Ñ X with the property that ApBq is a bounded set for each bounded B Ă X.
One can easily check (see [17]) that if A : X Ñ X is a linear operator then the
following conditions are equivalent:

‚ A P LpXq;
‚ A is continuous;
‚ for each j P N there exists kj P N and Cj ą 0 such that

pjpAxq ď Cj

kj
ÿ

i“1

pipxq for every x P X.

Example 1. Every Banach space pX, } ¨ }q is a Fréchet space with pjp¨q “ } ¨ }, j P N,
and in this case we obviously have that LpXq is just the space of bounded linear
operators on pX, } ¨ }q.

Example 2. Let X “ C8pr0, 1sq be the space of all infinitely differentiable functions
f : r0, 1s Ñ R and, for each j P N, consider the seminorm

pjpfq “ sup

"
ˇ

ˇ

ˇ

ˇ

dj

dxj
fpxq

ˇ

ˇ

ˇ

ˇ

: x P r0, 1s

*

.

Then, it is not difficult to check that pX, ppjqjPNq is a Fréchet space and d
dx P LpXq.

On the other hand, there is no norm in X with respect to which d
dx is bounded. In

particular, this example show us that the notion of Fréchet space is an important
generalization of the notion of Banach space.

2.2. Exponential dichotomy. In this section we present versions of the notion
of exponential dichotomy in the setting of Fréchet spaces.

2.2.1. The discrete time case. For a sequence pAnqnPZ Ă LpXq, we denote by
Apm,nq the associated linear cocycle defined by

Apm,nq “

#

Am´1 ¨ ¨ ¨An m ą n;

Id m “ n,

where Id denotes the identity operator on X. We now recall the notion of expo-
nential dichotomy introduced in [1, Definition 2.13.].

Definition 1. We say that a sequence pAnqnPZ Ă LpXq admits an exponential
dichotomy if there exist two sequences pMjqjPN and pwjqjPN of positive numbers, as
well as a sequence pQnqnPZ Ă LpXq of projections such that the following conditions
hold:
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‚ for n P Z,
AnQn “ Qn`1An;

‚ for every n P Z, An|RpQnq : RpQnq Ñ RpQn`1q is an isomorphism, where
RpQnq denotes the range of Qn;

‚ for m ě n, j P N and x P X,

pjpApm,nqpId ´ Qnqxq ď Mje
´wjpm´nqpjpxq; (2.2)

‚ for m ď n, j P N and x P X,

pjpApm,nqQnxq ď Mje
´wjpn´mqpjpxq, (2.3)

where

Apm,nq :“

ˆ

Apn,mq|RpQmq

˙´1

: RpQnq Ñ RpQmq, m ă n.

The following interesting example is taken from [1, Example 3.5].

Example 3. Let us denote by SpRnq the space of Schwartz functions or rapidly
decreasing functions f : Rn Ñ C (see [17]). Then, a tempered distribution on Rn

is just a continuous linear functional on SpRnq. Let S 1pRnq denote the set of all
tempered distributions on Rn and Ω be an open subset of Rn. On S 1pRnq we
consider the equivalence relation given by

u „Ω v ðñ û|Ω “ v̂|Ω,

where ĝ denotes the Fourier transform of g P S 1pRnq.
Let uΩ denote the equivalence class of u P S 1pRnq with respect to ‘„Ω’ and

consider

EΩ “ tuΩ : û|Ω P L2
locpΩq for some u P uΩu.

Then, EΩ is a vector space. Now, given a sequence pKjqjPN of compact sets such
that Kj Ă Kj`1 for every j P N and Ω “

Ť

jPN Kj , let us consider the sequence of
seminorms on EΩ given by

p˚
j puΩq “

˜

ż

Kj

|ûpξq|2 dξ

¸1{2

(2.4)

for every j P N, u P uΩ and uΩ P EΩ. It is not difficult to check that pp˚
j qjPN is

indeed a separating sequence of seminorms on EΩ and, consequently,

dpuΩ, vΩq “

`8
ÿ

j“1

p˚
j puΩ ´ vΩq

2jp1 ` p˚
j puΩ ´ vΩqq

is a metric on EΩ.
Let us consider now FL2

locpΩq the completion of the metric space pEΩ, dq. Here
we think of the completion as the quotient space of all Cauchy sequences in EΩ by
the equivalence relation given by

puΩ,lqlPN „ pvΩ,lqlPN ðñ lim
lÑ`8

dpuΩ,l, vΩ,lq “ 0.

One can check that the seminorms given in (2.4) have natural extensions to FL2
locpΩq

and that this space endowed with these seminorms is a Fréchet space.
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Given rus P FL2
locpΩq, we may define its Fourier transform as follows: for any

puΩ,lqlPN P rus we have that pûΩ,lqlPN is a Cauchy sequence in L2
locpΩq and, therefore,

there exists a unique w P L2
locpΩq such that ûΩ,l Ñ w in L2

locpΩq. We then define

xrus “ w.

It is easy to check that this definition does not depend on the representative puΩ,lqlPN
of rus and, moreover, when restricted to elements of EΩ this Fourier transform

coincide with the ordinary one in EΩ. Finally, if rus P FL2
locpΩq and xrus “ w then

we define wq“ rus as the inverse Fourier transform, which is well defined as one can
easily check.

Let us now specialize our example to the case when Ω “ Rnzt0u. Denoting

by ∆ “
řn

j“1
B
2

Bx2
j
the Laplace operator on Rnzt0u, let us consider the operator

T : ERnzt0u Ñ ERnzt0u given by

Tu “ e∆u :“
´

e´4π2
|ξ|

2

û
¯

q.

This operator has a natural extension to FL2
locpRnzt0uq given by T : FL2

locpRnzt0uq Ñ

FL2
locpRnzt0uq,

T rus :“ rpT puRnzt0u,lqqlPNs

for puRnzt0u,lqlPN P rus P FL2
locpRnzt0uq. In this case we have that

zT rus “ e´4π2
|ξ|

2

w

where w “ xrus P L2
locpRnzt0uq.

Considering now Kj “ tx P Rn : 1{j ď |x| ď ju we have that

p˚
j pT rusq2 “

ż

1{jď|ξ|ďj

|e´4π2
|ξ|

2

wpξq|2 dξ.

Thus, for every n P N it follows that

p˚
j pTnrusq “

˜

ż

1{jď|ξ|ďj

|e´4nπ2
|ξ|

2

wpξq|2 dξ

¸

ď e´4nπ2
{j2p˚

j prusq.

Consequently, the sequence pAnqnPZ “ pT qnPZ “ pe∆qnPZ admits an exponential
dichotomy with constants Mj “ 1 and ωj “ 4π2{j2 for every j P N. On the other
hand, we recall that, as observed in [1, Introduction], pAnqnPZ “ pe∆qnPZ does not
admit an exponential dichotomy when thought of as acting, for instance, in the
Banach space L2pRnq.

2.2.2. The continuous time case.

Definition 2. Let T pt, sq, t ě s be a two parameter family of linear operators on
X. We say that T pt, sq is an evolution family if the following properties hold:

‚ T pt, tq “ Id for t P R;
‚ for t ě s ě r,

T pt, sqT ps, rq “ T pt, rq;

‚ for ps, xq P R ˆ X, t ÞÑ T pt, sqx is continuous on rs,8q;
‚ for each j P N, there exist Kj , aj ą 0 such that

pjpT pt, sqxq ď Kje
ajpt´sqpjpxq, for t ě s. (2.5)

Remark 1. Observe that (2.5) implies that T pt, sq P LpXq for t ě s.
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We now introduce the notion of exponential dichotomy for evolution families.

Definition 3. We say that an evolution family T pt, sq admits an exponential di-
chotomy if there exist two sequences pMjqjPN and pwjqjPN of positive numbers, as
well as a family Qpsq P LpXq, s P R of projections such that the following conditions
hold:

‚ for t ě s,

T pt, sqQpsq “ QptqT pt, sq;

‚ for t ě s, T pt, sq|RpQpsqq : RpQpsqq Ñ RpQptqq is an isomorphism;
‚ for t ě s, j P N and x P X,

pjpT pt, sqpId ´ Qpsqqxq ď Mje
´wjpt´sqpjpxq; (2.6)

‚ for t ď s, j P N and x P X,

pjpT pt, sqQpsqxq ď Mje
´wjps´tqpjpxq, (2.7)

where T pt, sq for t ă s denotes the inverse of T ps, tq|RpQptqq.

As in the discrete time case, it is not difficult to present examples of evolution
families admitting an exponential dichotomy. For instance, we can consider the
continuous time version of Example 3 given by T pt, sq “ ept´sq∆, t ě s. Now, pro-
ceeding as in the above mentioned example one can check that T pt, sq is actually an
evolution family that admits an exponential dichotomy. An even simpler example
is the following.

Example 4. Consider the ‘annulus’ A “ tx P Rn; |x| ě 1{2u and L1
locpAq endowed

with the sequence of seminorms

pjpfq “

ż

tξPA; |ξ|ďju

|fpξq|dξ, j P N.

Then, pL1
locpAq, ppjqjPNq is a Fréchet space. Set X :“ L1

locpAq ˆ L1
locpAq and

pXj ppf, gqq :“ maxtpjpfq, pjpgqu, j P N, pf, gq P X.

Then, pX, ppXj qjPNq is also a Fréchet space. For t ě s, we define T pt, sq : X Ñ X by

T pt, sqpf, gqpξ1, ξ2q “ pe´pt´sq|ξ1|fpξ1q, ept´sq|ξ2|gpξ2qq,

for pξ1, ξ2q P A ˆ A and pf, gq P X. Moreover, let Qpsq : L1
locpAq ˆ L1

locpAq Ñ

L1
locpAq ˆ L1

locpAq be given by Qpsqpf, gq “ p0, gq for every s P R. Then, it is
not difficult to see that T pt, sq is an evolution family that admits an exponential
dichotomy with family of projections Qpsq, s P R.

3. The shadowing property

In this section we are going to present sufficient conditions under which a cer-
tain type of dynamical systems defined on a Fréchet space exhibit the shadowing
property.



STABILITY OF NONAUTONOMOUS SYSTEMS ON FRÉCHET SPACES 7

3.1. The discrete time case. In what follows, for a sequence pAnqnPZ Ă LpXq

we will consider the associated linear nonautonomous dynamics given by

xn`1 “ Anxn, n P Z. (3.1)

Furthermore, let fn : X Ñ X, n P Z be a sequence of (nonlinear) maps. We consider
the nonlinear nonautonomous dynamics given by

xn`1 “ Anxn ` fnpxnq, n P Z. (3.2)

The following is our first result.

Theorem 1. Assume that a sequence pAnqnPZ Ă LpXq admits an exponential
dichotomy with sequences of constants pMjqjPN and pwjqjPN. Let pcjqjPN Ă r0,8q

be such that

cjMj
1 ` e´wj

1 ´ e´wj
ă 1, for j P N. (3.3)

Moreover, set

Cj :“
Mj

1`e´wj

1´e´wj

1 ´ cjMj
1`e´wj

1´e´wj

ą 0, j P N.

Finally, let fn : X Ñ X, n P Z be a sequence of maps with the property that

pjpfnpxq ´ fnpyqq ď cjpjpx ´ yq, for n P Z, j P N and x, y P X. (3.4)

Then, for every two sequences pεjqjPN Ă p0,8q and pynqnPZ Ă X such that

pjpyn`1 ´ Anyn ´ fnpynqq ď εj for n P Z and j P N, (3.5)

there exists a unique sequence pxnqnPZ Ă X satisfying (3.2) and

pjpxn ´ ynq ď Cjεj , for n P Z and j P N. (3.6)

Remark 2. In other words, what our first result is saying is that for any pseudo-orbit
pynqnPZ of (3.2) there exists an actual solution of (3.2) that shadows pynqnPZ (con-
dition (3.6)). In particular, the system (3.2) has the so-called shadowing property
(see [25, 26]).

Proof. Let pεjqjPN Ă p0,8q and pynqnPZ Ă X be as in the statement of the theorem.
We define a sequence z1 “ pz1nqnPZ Ă X by

z1n “

n
ÿ

k“´8

Apn, kqpId ´ QkqpAk´1yk´1 ` fk´1pyk´1q ´ ykq

´

8
ÿ

k“n`1

Apn, kqQkpAk´1yk´1 ` fk´1pyk´1q ´ ykq,
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for n P Z. By (2.2), (2.3) and (3.5), we have that

pjpz1nq ď

n
ÿ

k“´8

pjpApn, kqpId ´ QkqpAk´1yk´1 ` fk´1pyk´1q ´ ykqq

`

8
ÿ

k“n`1

pjpApn, kqQkpAk´1yk´1 ` fk´1pyk´1q ´ ykqq

ď

n
ÿ

k“´8

Mje
´wjpn´kqpjpAk´1yk´1 ` fk´1pyk´1q ´ ykq

`

8
ÿ

k“n`1

Mje
´wjpk´nqpjpAk´1yk´1 ` fk´1pyk´1q ´ ykq

ď

n
ÿ

k“´8

Mje
´wjpn´kqεj `

8
ÿ

k“n`1

Mje
´wjpk´nqεj

“ Mj
1 ` e´wj

1 ´ e´wj
εj ,

and thus

pjpz1nq ď Mj
1 ` e´wj

1 ´ e´wj
εj , for n P Z and j P N. (3.7)

Next, we define a sequence z2 “ pz2nqnPZ Ă X by

z2n “

n
ÿ

k“´8

Apn, kqpId ´ QkqpAk´1yk´1 ` fk´1pyk´1 ` z1k´1q ´ ykq

´

8
ÿ

k“n`1

Apn, kqQkpAk´1yk´1 ` fk´1pyk´1 ` z1k´1q ´ ykq,

for n P Z. Observe that (3.4) and (3.7) imply that

pjpAk´1yk´1 ` fk´1pyk´1 ` z1k´1q ´ ykq

ď pjpAk´1yk´1 ` fk´1pyk´1q ´ ykq

` pjpfk´1pyk´1 ` z1k´1q ´ fk´1pyk´1qq

ď pjpAk´1yk´1 ` fk´1pyk´1q ´ ykq ` cjpjpz1k´1q

ď εj ` cjMj
1 ` e´wj

1 ´ e´wj
εj ,

for k P Z and j P N. Hence, using (2.2) and (2.3) we obtain that

pjpz2nq ď Mj
1 ` e´wj

1 ´ e´wj
εj

ˆ

1 ` cjMj
1 ` e´wj

1 ´ e´wj

˙

,

for every n P Z and j P N. Thus, the sequence z2 is well-defined. On the other
hand, observe that

z2n ´ z1n “

n
ÿ

k“´8

Apn, kqpId ´ Qkqpfk´1pyk´1 ` z1k´1q ´ fk´1pyk´1qq

´

8
ÿ

k“n`1

Apn, kqQkpfk´1pyk´1 ` z1k´1q ´ fk´1pyk´1qq,
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and consequently (using (2.2), (2.3), (3.4) and (3.7))

pjpz2n ´ z1nq ď cj

ˆ

Mj
1 ` e´wj

1 ´ e´wj

˙2

εj , for n P Z and j P N.

We proceed inductively: suppose that we have constructed zl “ pzlnqnPZ Ă X such
that

pjpzln ´ zl´1
n q ď cl´1

j

ˆ

Mj
1 ` e´wj

1 ´ e´wj

˙l

εj for n P Z and j P N, (3.8)

and

pjpzlnq ď εjMj
1 ` e´wj

1 ´ e´wj

l´1
ÿ

i“0

ˆ

cjMj
1 ` e´wj

1 ´ e´wj

˙i

, (3.9)

for n P Z and j P N. We define a sequence zl`1 “ pzl`1
n qnPZ Ă X by

zl`1
n “

n
ÿ

k“´8

Apn, kqpId ´ QkqpAk´1yk´1 ` fk´1pyk´1 ` zlk´1q ´ ykq

´

8
ÿ

k“n`1

Apn, kqQkpAk´1yk´1 ` fk´1pyk´1 ` zlk´1q ´ ykq,

(3.10)

for n P Z. Observe that (3.4) and (3.9) imply that

pjpAk´1yk´1 ` fk´1pyk´1 ` zlk´1q ´ ykq

ď pjpAk´1yk´1 ` fk´1pyk´1q ´ ykq

` pjpfk´1pyk´1 ` zlk´1q ´ fk´1pyk´1qq

ď εj ` cjpjpzlk´1q

ď εj ` cjεjMj
1 ` e´wj

1 ´ e´wj

l´1
ÿ

i“0

ˆ

cjMj
1 ` e´wj

1 ´ e´wj

˙i

,

for k P Z and j P N. Hence, (2.2) and (2.3) give that

pjpzl`1
n q ď Mj

1 ` e´wj

1 ´ e´wj

ˆ

εj ` cjεjMj
1 ` e´wj

1 ´ e´wj

l´1
ÿ

i“0

ˆ

cjMj
1 ` e´wj

1 ´ e´wj

˙i˙

“ εjMj
1 ` e´wj

1 ´ e´wj

l
ÿ

i“0

ˆ

cjMj
1 ` e´wj

1 ´ e´wj

˙i

,

for n P Z and j P N. In particular, the sequence zl`1 is well-defined. Moreover,

zl`1
n ´ zln “

n
ÿ

k“´8

Apn, kqpId ´ Qkqpfk´1pyk´1 ` zlk´1q ´ fk´1pyk´1 ` zl´1
k´1qq

´

8
ÿ

k“n`1

Apn, kqQkpfk´1pyk´1 ` zlk´1q ´ fk´1pyk´1 ` zl´1
k´1qq.

Hence, (2.2), (2.3), (3.4) and (3.8) imply that

pjpzl`1
n ´ zlnq ď clj

ˆ

Mj
1 ` e´wj

1 ´ e´wj

˙l`1

εj , for n P Z and j P N. (3.11)
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Thus, we have constructed a sequence pzlqlPN, z
l “ pzlnqnPZ Ă X satisfying (3.11)

and

pjpzlnq ď Cjεj , for n P Z and j, l P N. (3.12)

By (3.3) and (3.11), we conclude that pzlnqlPN is a Cauchy sequence in X for each
n P Z. Let

zn :“ lim
lÑ8

zln, n P Z.

It follows from (3.12) that

pjpznq ď Cjεj , for n P Z and j P N. (3.13)

Moreover, (3.10) implies that

zn “

n
ÿ

k“´8

Apn, kqpId ´ QkqpAk´1yk´1 ` fk´1pyk´1 ` zk´1q ´ ykq

´

8
ÿ

k“n`1

Apn, kqQkpAk´1yk´1 ` fk´1pyk´1 ` zk´1q ´ ykq,

(3.14)

for n P Z. Then,
zn`1 ´ Anzn

“

n`1
ÿ

k“´8

Apn ` 1, kqpId ´ QkqpAk´1yk´1 ` fk´1pyk´1 ` zk´1q ´ ykq

´

n
ÿ

k“´8

Apn ` 1, kqpId ´ QkqpAk´1yk´1 ` fk´1pyk´1 ` zk´1q ´ ykq

´

8
ÿ

k“n`2

Apn ` 1, kqQkpAk´1yk´1 ` fk´1pyk´1 ` zk´1q ´ ykq

`

8
ÿ

k“n`1

Apn ` 1, kqQkpAk´1yk´1 ` fk´1pyk´1 ` zk´1q ´ ykq

“ pId ´ Qn`1qpAnyn ` fnpyn ` znq ´ yn`1q

` Qn`1pAnyn ` fnpyn ` znq ´ yn`1q

“ Anyn ` fnpyn ` znq ´ yn`1,

(3.15)

for each n P Z. Setting
xn :“ yn ` zn n P Z,

we conclude readily from (3.15) that (3.2) holds. Moreover, (3.13) implies (3.6).
Finally, let px̃nqnPZ Ă X be another sequence such that

x̃n`1 “ Anx̃n ` fnpx̃nq n P Z, (3.16)

and

pjpx̃n ´ ynq ď Cjεj , for j P N and n P Z.
Let

z̃n :“ x̃n ´ yn, n P Z. (3.17)

Thus,

pjpz̃nq ď Cjεj , for j P N and n P Z. (3.18)
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Next, for n P Z set

z̃1
n :“

n
ÿ

k“´8

Apn, kqpId ´ QkqpAk´1yk´1 ` fk´1pyk´1 ` z̃k´1q ´ ykq

´

8
ÿ

k“n`1

Apn, kqQkpAk´1yk´1 ` fk´1pyk´1 ` z̃k´1q ´ ykq.

Observe that

pjpAk´1yk´1 ` fk´1pyk´1 ` z̃k´1q ´ ykq

ď pjpAk´1yk´1 ` fk´1pyk´1q ´ ykq

` pjpfk´1pyk´1 ` z̃k´1q ´ fk´1pyk´1qq

ď εj ` cjCjεj

“ p1 ` cjCjqεj ,

for j P N and k P Z. This together with (2.2) and (2.3) gives that

pjpz̃1
nq ď Mj

1 ` e´wj

1 ´ e´wj
p1 ` cjCjqεj , for j P N and n P Z. (3.19)

On the other hand, we have (see (3.16) and (3.17)) that

z̃1
n “

n
ÿ

k“´8

Apn, kqpId ´ QkqpAk´1x̃k´1 ´ Ak´1z̃k´1 ` fk´1px̃k´1q ´ ykq

´

8
ÿ

k“n`1

Apn, kqQkpAk´1x̃k´1 ´ Ak´1z̃k´1 ` fk´1px̃k´1q ´ ykq

“

n
ÿ

k“´8

Apn, kqpId ´ Qkqpz̃k ´ Ak´1z̃k´1q

´

8
ÿ

k“n`1

Apn, kqQkpz̃k ´ Ak´1z̃k´1q,

for n P Z. Therefore,

z̃1
n`1 ´ Anz̃

1
n “

n`1
ÿ

k“´8

Apn ` 1, kqpId ´ Qkqpz̃k ´ Ak´1z̃k´1q

´

n
ÿ

k“´8

Apn ` 1, kqpId ´ Qkqpz̃k ´ Ak´1z̃k´1q

´

8
ÿ

k“n`2

Apn ` 1, kqQkpz̃k ´ Ak´1z̃k´1q

`

8
ÿ

k“n`1

Apn ` 1, kqQkpz̃k ´ Ak´1z̃k´1q

“ pId ´ Qn`1qpz̃n`1 ´ Anz̃nq ` Qn`1pz̃n`1 ´ Anz̃nq

“ z̃n`1 ´ Anz̃n,

and thus

z̃1
n`1 ´ z̃n`1 “ Anpz̃1

n ´ z̃nq, n P Z. (3.20)
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Set rn :“ z̃1
n´ z̃n, n P Z. By (3.20), we have that rn`1 “ Anrn for n P Z. Moreover,

(3.18) and (3.19) imply that for each j P N, there exists Dj ą 0 such that

pjprnq ď Dj , n P Z.

Fix now an arbitrary j P N and n P Z. Then, for each m ě 0 we have (see (2.2))
that

pjppId ´ Qnqrnq “ pjpApn, n ´ mqpId ´ Qn´mqrn´mq ď MjDje
´wjm.

Letting m Ñ 8, we conclude that pjppId ´ Qnqrnq “ 0. Since j P N was arbitrary,
from (2.1) we have that pId ´ Qnqrn “ 0 for each n P Z. Similarly, using (2.3) it
follows that Qnrn “ 0 for each n P Z. We conclude that rn “ 0, and thus z̃1

n “ z̃n
for every n P Z. Hence,

z̃n :“
n

ÿ

k“´8

Apn, kqpId ´ QkqpAk´1yk´1 ` fk´1pyk´1 ` z̃k´1q ´ ykq

´

8
ÿ

k“n`1

Apn, kqQkpAk´1yk´1 ` fk´1pyk´1 ` z̃k´1q ´ ykq,

(3.21)

for n P Z. By (2.2), (2.3), (3.4), (3.14) and (3.21), we have that

sup
n

pjpz̃n ´ znq ď Mjcj
1 ` e´wj

1 ´ e´wj
sup
n

pjpz̃n ´ znq,

for each j P N. Thus, it follows from (3.3) that pjpz̃n ´ znq “ 0 for every j P N and
n P Z. Hence, (2.1) implies that z̃n “ zn for n P Z. We conclude that x̃n “ xn for
every n P Z. The proof of the theorem is completed. □

Remark 3. In the case when X is a Banach space, Theorem 1 follows from [3,
Theorem 3].

We now emphasize some important special cases of Theorem 1.

Corollary 1. Assume that a sequence pAnqnPZ Ă LpXq admits an exponential di-
chotomy with sequences of constants pMjqjPN and pwjqjPN. Moreover, let pznqnPZ Ă

X be an arbitrary sequence. Then, for every two sequences pεjqjPN Ă p0,8q and
pynqnPZ Ă X such that

pjpyn`1 ´ Anyn ´ znq ď εj for n P Z and j P N,

there exists a unique sequence pxnqnPZ Ă X satisfying

xn`1 “ Anxn ` zn n P Z,

and

pjpxn ´ ynq ď Mj
1 ` e´wj

1 ´ e´wj
εj , for n P Z and j P N. (3.22)

Proof. For n P Z, we define fn : X Ñ X by

fnpxq “ zn, x P X.

Observe that (3.4) holds with cj “ 0 for j P N. Hence, (3.3) holds true. The desired
conclusion now follows readily from Theorem 1. □
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Corollary 2. Assume that a sequence pAnqnPZ Ă LpXq admits an exponential
dichotomy with sequences of constants pMjqjPN and pwjqjPN. Then, for every two
sequences pεjqjPN Ă p0,8q and pynqnPZ Ă X such that

pjpyn`1 ´ Anynq ď εj for n P Z and j P N,
there exists a unique sequence pxnqnPZ Ă X satisfying (3.1) and (3.22).

Proof. The desired conclusion follows directly from Corollary 1 applied to the case
when zn “ 0 for n P Z. □

3.2. The continuous time case. The goal of this section is to establish a version
of Theorem 1 for the case of continuous time.

Let T pt, sq be an evolution family and ft : X Ñ X, t P R be a family of continuous
maps. We assume that there exists a family Upt, sq : X Ñ X, t ě s of continuous
maps such that

Upt, sqx “ T pt, sqx `

ż t

s

T pt, τqfτ pUpτ, sqxq dτ.

Moreover, we suppose that t ÞÑ Upt, sqx is continuous on rs,8q for each s P R and
x P X. It is easy to verify that

Upt, sqUps, rq “ Upt, rq, t ě s ě r.

Theorem 2. Let T pt, sq, t ě s be an evolution family that admits an exponential
dichotomy. Furthermore, let ft : X Ñ X, t P R be a family of maps with the
property that there exists a sequence pcjqjPN Ă p0,8q such that

pjpftpxq ´ ftpyqq ď cjpjpx ´ yq, for t P R, j P N and x, y P X. (3.23)

Then, provided that cj, j P N are sufficiently small, there exists a sequence pC̃jqjPN Ă

p0,8q with the property that for each sequence pεjqjPN Ă p0,8q and a map y : R Ñ

X such that

pjpyptq ´ Upt, sqypsqq ď εj for j P N and s ď t ď s ` 1, (3.24)

there exists a map x : R Ñ X such that

xptq “ Upt, sqxpsq t ě s, (3.25)

and
pjpxptq ´ yptqq ď C̃jεj , for j P N and t P R. (3.26)

Proof. Let
An “ T pn ` 1, nq, n P Z.

It follows readily from (2.6) and (2.7) that

pjpApm,nqpId ´ Qpnqqxq ď Mje
´wjpm´nqpjpxq for m ě n, j P N, x P X,

and

pjpApm,nqQpnqxq ď Mje
´wjpn´mqpjpxq, for m ď n, j P N and x P X.

Hence, the sequence pAnqnPZ admits an exponential dichotomy with respect to the
sequence of projections Qpnq, n P Z.

Moreover, for n P Z we define gn : X Ñ X by

gnpxq “

ż n`1

n

T pn ` 1, τqfτ pUpτ, nqxq dτ, x P X.

Before proceeding, we need the following auxiliary result.
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Lemma 1. For each j P N there exists ãj ą 0 such that

pjpUpt, sqx ´ Upt, sqyq ď Kje
ãjpt´sqpjpx ´ yq, (3.27)

for t ě s and x, y P X.

Proof of the lemma. Observe that

Upt, sqx ´ Upt, sqy

“ T pt, sqpx ´ yq `

ż t

s

T pt, τqpfτ pUpτ, sqxq ´ fτ pUpτ, sqyqq dτ.

Fix an arbitrary j P N. It follows from (2.5) and (3.23) that

pjpUpt, sqx ´ Upt, sqyq

ď Kje
ajpt´sqpjpx ´ yq ` Kj

ż t

s

eajpt´τqpjpfτ pUpτ, sqxq ´ fτ pUpτ, sqyqq dτ

ď Kje
ajpt´sqpjpx ´ yq ` cjKj

ż t

s

eajpt´τqpjpUpτ, sqx ´ Upτ, sqyq dτ,

for t ě s and x, y P X. From Gronwall’s lemma we conclude that (3.27) holds with

ãj :“ aj ` cjKj , j P N.

The proof of the lemma is completed. □

We are now in a position to estimate the Lipschitz norm of gn for n P N.

Lemma 2. We have that

pjpgnpxq ´ gnpyqq ď c̃jpjpx ´ yq,

for n P Z, j P N and x, y P X, where

c̃j :“ K2
j cje

aj`ãj , j P N. (3.28)

Proof of the lemma. By (2.5), (3.23) and (3.27), we have that

pjpgnpxq ´ gnpyqq

ď Kj

ż n`1

n

eajpn`1´τqpjpfτ pUpτ, nqxq ´ fτ pUpτ, nqyqq dτ

ď Kjcj

ż n`1

n

eajpn`1´τqpjpUpτ, nqx ´ Upτ, nqyq dτ

ď K2
j cjpjpx ´ yq

ż n`1

n

eajpn`1´τqeãjpτ´nq dτ

ď K2
j cje

aj`ãjpjpx ´ yq,

for n P Z, j P N and x, y P X. The proof of the lemma is completed. □

Now, provided that cj is sufficiently small so that c̃j satisfies (3.3) for each j P N,
it follows from Theorem 1 that there exists a sequence pCjqjPN Ă p0,8q such that
for each two sequences pεjqjPN Ă p0,8q and pynqnPZ Ă X satisfying

pjpyn`1 ´ Anyn ´ gnpynqq ď εj for j P N and n P Z, (3.29)

there exists a sequence pxnqnPZ Ă X such that

xn`1 “ Anxn ` gnpxnq for n P Z, (3.30)
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and

pjpxn ´ ynq ď Cjεj , for j P N and n P Z. (3.31)

Let y : R Ñ X be such that (3.24) holds. Then,

pjpypn ` 1q ´ Anypnq ´ gnpypnqq ď εj ,

for j P N and n P Z. Hence, the sequence pypnqqnPZ satisfies (3.29). Thus, there
exists a sequence pxnqnPZ Ă X such that (3.30) and (3.31) hold (with yn “ ypnq).
In particular, (3.30) implies that

xn`1 “ Upn ` 1, nqxn, n P Z. (3.32)

We now define x : R Ñ X in the following way: take t P R, choose n P Z such that
n ď t ă n ` 1, and set

xptq :“ Upt, nqxn.

By (3.32), we have that (3.25) holds. Finally, take an arbitrary t P R and choose
n P Z such that n ď t ă n ` 1. Then, for each j P N we have that

pjpxptq ´ yptqq “ pjpUpt, nqxn ´ yptqq

ď pjpUpt, nqxn ´ Upt, nqypnqq ` pjpUpt, nqypnq ´ yptqq

ď Kje
ãjpjpxn ´ ypnqq ` εj

ď KjCje
ãjεj ` εj .

We conclude that (3.26) holds with

C̃j :“ KjCje
ãj ` 1, j P N.

The proof of the theorem is completed. □

4. Partial linearization

In this section we will be interested in formulating sufficient conditions under
which certain nonlinear systems defined on a Fréchet space are topologically con-
jugated or, more generally, partially conjugated to its linear part.

4.1. The discrete time case. Given a sequence of pAnqnPZ of operators in LpXq

and a sequence of nonlinear maps fn : X Ñ X, in this subsection we are going to
present sufficient conditions under which the nonlinear dynamics given by

xn`1 “ Anxn ` fnpxnq, n P Z (4.1)

is topologically conjugated or, more generally, partially conjugated to its linear part

xn`1 “ Anxn, n P Z. (4.2)

We start by considering the more general case of partial linearization.

Theorem 3. Assume that the sequence pAnqnPZ Ă LpXq admits an exponential
dichotomy with sequences of constants pMjqjPN and pwjqjPN. Let pcjqjPN Ă r0,8q

be such that

cjMj
1 ` e´wj

1 ´ e´wj
ă 1, for j P N. (4.3)

Finally, let fn : X Ñ X, n P Z, be a sequence of maps for which there exists a
sequence pεjqjPN Ă r0,8q such that

pjpfnpxqq ď εj (4.4)
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and

pjpfnpxq ´ fnpyqq ď cjpjpx ´ yq (4.5)

for every x, y P X, n P Z and j P N. Then, there exists a sequence of one-to-one
continuous maps Hn : RpQnq Ñ X, n P Z, satisfying

Hn`1pAnxq “ pAn ` fnqpHnpxqq (4.6)

for every x P RpQnq and n P Z and, moreover,

sup
nPZ

sup
xPRpQnq

pjpHnpxq ´ xq ă `8 for every j P N. (4.7)

Remark 4. In other words what this result is saying is that when restricted to the
unstable direction of pAnqnPN given by RpQnq, the system (4.1) is conjugated to its
linear part. In particular, the system (4.1) is partially linearizable.

Proof. Let Y denote the space of all sequences h “ phnqnPZ of continuous maps
hn : RpQnq Ñ X such that

p8
j phq :“ sup

nPZ
sup

xPRpQnq

pjphnpxqq ă `8 for every j P N.

It is easy to verify that pY, pp8
j qjPNq is a Fréchet space. The sequence of maps

pHnqnPZ that we are looking for will have the form

Hn “ IdRpQnq ` hn

with h “ phnqnPZ P Y, where IdRpQnq is the identity map on RpQnq. The construc-
tion of these maps will be done inductively in a similar manner to the arguments
in the proof of Theorem 1.

Let us consider h1 “ ph1
nqnPZ given by

h1
npxq “

n
ÿ

k“´8

Apn, kqpId ´ Qkqpfk´1pApk ´ 1, nqxqq

´

8
ÿ

k“n`1

Apn, kqQkpfk´1pApk ´ 1, nqxqq,

for every x P RpQnq and n P Z. Then, by (2.2), (2.3) and (4.4), we have that

pjph1
npxqq ď

n
ÿ

k“´8

pjpApn, kqpId ´ Qkqpfk´1pApk ´ 1, nqxqqq

`

8
ÿ

k“n`1

pjpApn, kqQkpfk´1pApk ´ 1, nqxqqq

ď

n
ÿ

k“´8

Mje
´wjpn´kqpjpfk´1pApk ´ 1, nqxqq

`

8
ÿ

k“n`1

Mje
´wjpk´nqpjpfk´1pApk ´ 1, nqxqq

ď

n
ÿ

k“´8

Mje
´wjpn´kqεj `

8
ÿ

k“n`1

Mje
´wjpk´nqεj

“ Mj
1 ` e´wj

1 ´ e´wj
εj ,
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and thus

pjph1
npxqq ď Mj

1 ` e´wj

1 ´ e´wj
εj (4.8)

for every x P RpQnq, n P Z and j P N. Consequently, h1 P Y.
Consider now h2 “ ph2

nqnPZ given by

h2
npxq “

n
ÿ

k“´8

Apn, kqpId ´ Qkqpfk´1pApk ´ 1, nqx ` h1
k´1pApk ´ 1, nqxqqq

´

8
ÿ

k“n`1

Apn, kqQkpfk´1pApk ´ 1, nqx ` h1
k´1pApk ´ 1, nqxqqq,

for every x P RpQnq. Proceeding as above it is easy to see that h2 P Y. Moreover,
using (2.2), (2.3), (4.5) and (4.8) it follows that

pjph2
npxq ´ h1

npxqq ď cj

ˆ

Mj
1 ` e´wj

1 ´ e´wj

˙2

εj

for every x P RpQnq, n P Z and j P N. Consequently,

p8
j ph2 ´ h1q ď cj

ˆ

Mj
1 ` e´wj

1 ´ e´wj

˙2

εj for every j P N.

We now proceed by induction: given l P N, suppose that we have constructed
hl “ phl

nqnPZ P Y such that

p8
j phl ´ hl´1q ď cl´1

j

ˆ

Mj
1 ` e´wj

1 ´ e´wj

˙l

εj , for every j P N. (4.9)

We then define the sequence hl`1 “ phl`1
n qnPZ by

hl`1
n pxq “

n
ÿ

k“´8

Apn, kqpId ´ Qkqpfk´1pApk ´ 1, nqx ` hl
k´1pApk ´ 1, nqxqqq

´

8
ÿ

k“n`1

Apn, kqQkpfk´1pApk ´ 1, nqx ` hl
k´1pApk ´ 1, nqxqqq,

for x P RpQnq and n P Z. Using (2.2), (2.3) and (4.4) it is again easy to see that
hl`1 P Y. Moreover, (2.2), (2.3), (4.5) and (4.9) imply that

pjphl`1
n pxq ´ hl

npxqq ď clj

ˆ

Mj
1 ` e´wj

1 ´ e´wj

˙l`1

εj ,

for every x P RpQnq, n P Z and j P N. In particular,

pjphl`1 ´ hlq ď clj

ˆ

Mj
1 ` e´wj

1 ´ e´wj

˙l`1

εj , for every j P N. (4.10)

Thus, we have constructed a sequence phlqlPN P Y which, by (4.3) and (4.10), is
a Cauchy sequence in Y and, in particular, it converges. Let h “ phnqnPZ P Y be
such that

h :“ lim
lÑ`8

hl,

which in particular gives that

hnpxq “ lim
lÑ8

hl
npxq, for n P Z and x P RpQnq.
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Then, given x P RpQnq we have that

hnpxq “

n
ÿ

k“´8

Apn, kqpId ´ Qkqpfk´1pApk ´ 1, nqx ` hk´1pApk ´ 1, nqxqqq

´

8
ÿ

k“n`1

Apn, kqQkpfk´1pApk ´ 1, nqx ` hk´1pApk ´ 1, nqxqqq,

for every n P Z. Consequently,
hn`1pAnxq

“

n`1
ÿ

k“´8

Apn ` 1, kqpId ´ Qkqpfk´1pApk ´ 1, n ` 1qAnx ` hk´1pApk ´ 1, n ` 1qAnxqqq

´

8
ÿ

k“n`2

Apn ` 1, kqQkpfk´1pApk ´ 1, n ` 1qAnx ` hk´1pApk ´ 1, n ` 1qAnxqqq

“ pId ´ Qn`1qpfnpx ` hnpxqqq

` An

n
ÿ

k“´8

Apn, kqpId ´ Qkqpfk´1pApk ´ 1, nqx ` hk´1pApk ´ 1, nqxqqq

` Qn`1pfnpx ` hnpxqqq

´ An

8
ÿ

k“n`1

Apn, kqQkpfk´1pApk ´ 1, nqx ` hk´1pApk ´ 1, nqxqqq

“ fnpx ` hnpxqq ` Anhnpxq.

Hence,

hn`1pAnxq “ Anhnpxq ` fnpx ` hnpxqq

for every x P RpQnq and n P Z. Then, considering Hn “ IdRpQnq ` hn it follows
that

Hn`1pAnxq “ Anx ` hn`1pAnxq

“ Anx ` Anhnpxq ` fnpx ` hnpxqq

“ pAn ` fnqpHnpxqq,

for every x P RpQnq and n P Z. Therefore, Hn satisfies (4.6). Moreover, since
h “ phnqnPZ P Y, we have that

sup
nPZ

sup
xPRpQnq

pjpHnpxq ´ xq “ sup
nPZ

sup
xPRpQnq

pjphnpxqq ă `8

for every j P N and, consequently, (4.7) is also satisfied. It remains to show that
each Hn is an one-to-one map.

Suppose there exist x1, x2 P RpQnq such that Hnpx1q “ Hnpx2q for some n P Z.
Then, using (4.6) we get that

Hn`1pAnx1q “ Hn`1pAnx2q.

Inductively, we conclude that

Hn`kpApn ` k, nqx1q “ Hn`kpApn ` k, nqx2q

for every k P N. Therefore, recalling the definition of Hn`k we get that

Apn ` k, nqpx1 ´ x2q “ hn`kpApn ` k, nqx2q ´ hn`kpApn ` k, nqx1q
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for every k ě 1 which implies that

pjpApn ` k, nqpx1 ´ x2qq ď 2p8
j phq ă `8.

On the other hand, since x1 ´ x2 P RpQnq, it follows by (2.3) that

pjpApn ` k, nqpx1 ´ x2qq ě
1

Mj
ewjkpjpx1 ´ x2q

for every k ě 1 and j P N. Combining these observations with the fact that wj ą 0
we conclude that

pjpx1 ´ x2q “ 0 for every j P N.
Therefore, recalling (2.1), it follows that x1 “ x2 and Hn is actually one-to-one.
This concludes the proof of the theorem. □

In the case when the sequence pAnqnPZ is formed by invertible operators in
LpXq we can give a stronger version of Theorem 3 which says that systems (4.1) is
topologically conjugated to its linear part given by (4.2). In particular, the system
(4.1) is linearizable.

Theorem 4. Assume that a sequence pAnqnPZ Ă LpXq is formed by invertible
operators in LpXq and admits an exponential dichotomy with sequences of constants
pMjqjPN and pwjqjPN. Let pcjqjPN Ă r0,8q be such that

cjMj
1 ` e´wj

1 ´ e´wj
ă 1, for j P N. (4.11)

Moreover, let fn : X Ñ X, n P Z be a sequence of maps such that An ` fn is
an homeomorphism for every n P Z and suppose there exists a sequence pεjqjPN Ă

r0,8q such that
pjpfnpxqq ď εj (4.12)

and
pjpfnpxq ´ fnpyqq ď cjpjpx ´ yq (4.13)

for every x, y P X, n P Z and j P N. Then, there exists a sequence of homeomor-
phisms Hn : X Ñ X, n P Z, satisfying

Hn`1 ˝ An “ pAn ` fnq ˝ Hn for every n P Z (4.14)

and
sup
nPZ

sup
xPX

pjpHnpxq ´ xq ă `8 for every j P N. (4.15)

Remark 5. Suppose that A P LpXq is invertible and that Qj , j P N is a sequence
of positive numbers such that

pjpA´1xq ď Qjpjpxq, for x P X and j P N.
Furthermore, assume that f : X Ñ X is a nonlinear map with the property that
there exists a sequence cj , j P N of positive numbers such that

pjpfpxq ´ fpyqq ď cjpjpx ´ yq, for x, y P X and j P N.
Then, provided that

cjQj ă 1 for each j P N, (4.16)

we have that A ` f is a homeomorphism on X. Indeed, fix an arbitrary y P X and
define F : X Ñ X by

F pxq “ A´1y ´ A´1fpxq, x P X.
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Observe that

pjpF px1q ´ F px2qq ď cjQjpjpx1 ´ x2q, for x1, x2 P X and j P N.

Using this together with (4.16), it is easy to show that Fnp0q is a Cauchy sequence
in X. Let x “ limnÑ8 Fnp0q. It is easy to verify that Ax ` fpxq “ y. Since y was
arbitrary, we have that A ` f is surjective.

On the other hand, suppose that there exist x1, x2 P X such that

Ax1 ` fpx1q “ Ax2 ` fpx2q.

Then,

pjpx1 ´ x2q “ pjpA´1fpx2q ´ A´1fpx1qq ď cjQjpjpx1 ´ x2q,

for each j P N. By (4.16), we have that pjpx1 ´ x2q “ 0 for j P N. Therefore
(see (2.1)), x1 “ x2, and consequently A`f is injective. We conclude that A`f is
a homeomorphism. In particular, this criterion can be used to verify the hypothesis
of Theorem 4.

Before we start with the proof, let us fix some notation. For every n P Z, define
Fn “ An ` fn. Then, let us denote by Apm,nq and Fpm,nq the cocycles associated
with pAnqnPZ and pFnqnPZ, respectively, which are defined by

Apm,nq “

$

’

&

’

%

Am´1 ¨ ¨ ¨An m ą n;

Id m “ n;

A´1
m ¨ ¨ ¨A´1

n´1 m ă n;

and

Fpm,nq “

$

’

&

’

%

Fm´1 ˝ . . . ˝ Fn m ą n;

Id m “ n;

F´1
m ˝ . . . ˝ F´1

n´1 m ă n.

Proof. Let Ỹ denote the space of all sequences h “ phnqnPZ of continuous maps
hn : X Ñ X such that

p8
j phq :“ sup

nPZ
sup
xPX

pjphnpxqq ă `8 for every j P N.

Then, pỸ, pp8
j qjPNq is a Fréchet space. Now, under the hypothesis of Theorem 4, it

is easy to see that the constructions done in the proof of Theorem 3 can be carried
out for every x P X and not just for x P RpQnq. This give rise to a sequence of

maps h “ phnqnPN P Ỹ such that Hn “ Id ` hn satisfies (4.14) and (4.15) as one
can easily observe. It remains to show that each Hn is an homeomorphism. This
will be proved by constructing the inverse of Hn explicitly.

Let us consider h̄ “ ph̄nqnPZ given by

h̄npxq “ ´

n
ÿ

k“´8

Apn, kqpId ´ Qkqpfk´1pFpk ´ 1, nqxqq

`

8
ÿ

k“n`1

Apn, kqQkpfk´1pFpk ´ 1, nqxqq,
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for each x P X and n P Z. Proceeding as in the proof of Theorem 3 it is easy to see
that h̄ P Ỹ. Moreover,

h̄n`1pFnpxqq “ ´

n`1
ÿ

k“´8

Apn ` 1, kqpId ´ Qkqpfk´1pFpk ´ 1, n ` 1qFnpxqqq

`

8
ÿ

k“n`2

Apn ` 1, kqQkpfk´1pFpk ´ 1, n ` 1qFnpxqqq

“ ´pId ´ Qn`1qpfnpxqq

´ An

n
ÿ

k“´8

Apn, kqpId ´ Qkqpfk´1pFpk ´ 1, nqxqq

´ Qn`1pfnpxqq ` An

8
ÿ

k“n`1

Apn, kqQkpfk´1pFpk ´ 1, nqxqq

“ ´fnpxq ` Anh̄npxq.

Thus,

h̄n`1pFnpxqq “ ´fnpxq ` Anh̄npxq,

for every x P X and n P Z. Then, considering H̄n “ Id` h̄n it is easy to verify that

H̄n`1 ˝ pAn ` fnq “ An ˝ H̄n for every n P Z. (4.17)

We now claim that

Hn ˝ H̄n “ H̄n ˝ Hn “ Id for every n P Z. (4.18)

Indeed, using (4.14) and (4.17) it follows that

HnpApn,mqxq “ Fpn,mqHmpxq (4.19)

and

H̄npFpn,mqxq “ Apn,mqH̄mpxq, (4.20)

for every m,n P N and x P X. Recalling the definitions of H̄n and Hn we get that
for every n P Z and x P X,

H̄npHnpxqq

“ Hnpxq ` h̄npHnpxqq

“ x ` hnpxq ` h̄npHnpxqq

“ x `

n
ÿ

k“´8

Apn, kqpId ´ Qkqpfk´1pApk ´ 1, nqx ` hk´1pApk ´ 1, nqxqqq

´

8
ÿ

k“n`1

Apn, kqQkpfk´1pApk ´ 1, nqx ` hk´1pApk ´ 1, nqxqqq

´

n
ÿ

k“´8

Apn, kqpId ´ Qkqpfk´1pFpk ´ 1, nqHnpxqqq

`

8
ÿ

k“n`1

Apn, kqQkpfk´1pFpk ´ 1, nqHnpxqqq.

(4.21)



22 LUCAS BACKES AND DAVOR DRAGIČEVIĆ

Now, by (4.19) it follows that

Fpk ´ 1, nqHnpxq “ Hk´1pApk ´ 1, nqxq

“ Apk ´ 1, nqx ` hk´1pApk ´ 1, nqxq,

which combined with (4.21) implies that H̄npHnpxqq “ x for every x P X and n P Z.
Our objective now is to show that HnpH̄npxqq “ x for every x P X and n P Z.

We start by observing that

HnpH̄npxqq “ H̄npxq ` hnpH̄npxqq

“ x ` h̄npxq ` hnpH̄npxqq.

Consequently,

HnpH̄npxqq ´ x “ h̄npxq ` hnpH̄npxqq. (4.22)

By analyzing the right-hand side of (4.22) we have that

h̄npxq ` hnpH̄npxqq

“ ´

n
ÿ

k“´8

Apn, kqpId ´ Qkqpfk´1pFpk ´ 1, nqxqq

`

8
ÿ

k“n`1

Apn, kqQkpfk´1pFpk ´ 1, nqxqq

`

n
ÿ

k“´8

Apn, kqpId ´ Qkqpfk´1pApk ´ 1, nqH̄npxq ` hk´1pApk ´ 1, nqH̄npxqqqq

´

8
ÿ

k“n`1

Apn, kqQkpfk´1pApk ´ 1, nqH̄npxq ` hk´1pApk ´ 1, nqH̄npxqqqq,

for x P X and n P N. On the other hand, by using (4.20) we have that

Apk ´ 1, nqH̄npxq ` hk´1pApk ´ 1, nqH̄npxqq “ Hk´1pApk ´ 1, nqH̄npxqq

“ Hk´1pH̄k´1pFpk ´ 1, nqxqq.

Thus, by combining the previous observations and using (2.2), (2.3) and (4.13) we
get that

pjph̄npxq ` hnpH̄npxqqq

ď

n
ÿ

k“´8

Mje
´wjpn´kqpjpfk´1pHk´1pH̄k´1pFpk ´ 1, nqxqqq ´ fk´1pFpk ´ 1, nqxqq

`

8
ÿ

k“n`1

Mje
´wjpk´nqpjpfk´1pFpk ´ 1, nqxq ´ fk´1pHk´1pH̄k´1pFpk ´ 1, nqxqqqq

ď

n
ÿ

k“´8

Mje
´wjpn´kqcjpjpHk´1pH̄k´1pFpk ´ 1, nqxqqq ´ Fpk ´ 1, nqxq

`

8
ÿ

k“n`1

Mje
´wjpk´nqcjpjpHk´1pH̄k´1pFpk ´ 1, nqxqqq ´ Fpk ´ 1, nqxq
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for every j P N. Therefore, using (4.22), it follows that

pjpHnpH̄npxqq ´ xq

ď

n
ÿ

k“´8

Mje
´wjpn´kqcjpjpHk´1pH̄k´1pFpk ´ 1, nqxqqq ´ Fpk ´ 1, nqxq

`

8
ÿ

k“n`1

Mje
´wjpk´nqcjpjpHk´1pH̄k´1pFpk ´ 1, nqxqqq ´ Fpk ´ 1, nqxq

(4.23)

for every j P N. Now, since h “ phnqnPN P Ỹ and h̄ “ ph̄nqnPN P Ỹ, it follows

from (4.22) that H ˝ H̄´ Id :“ pHn ˝ H̄n ´ IdqnPN P Ỹ, which combined with (4.23)
implies that

p8
j pH ˝ H̄ ´ Idq ď cjMj

1 ` e´wj

1 ´ e´wj
p8
j pH ˝ H̄ ´ Idq.

Thus, from (4.11) it follows that p8
j pH ˝ H̄ ´ Idq “ 0 for every j P N and, conse-

quently (see (2.1)), HnpH̄npxqq “ x for every x P X and n P Z proving that (4.18)
indeed holds. Thus, since each Hn and H̄n are continuous, it follows that these are
actually homeomorphisms. The proof of Theorem 4 is completed. □

4.2. The continuous time case. The goal of this section is to establish the ver-
sions of Theorems 3 and 4 in the case of continuous time.

As in Section 3.2, let T pt, sq be an evolution family and ft : X Ñ X, t P R, be
maps for which there exists a family Upt, sq : X Ñ X, t ě s P R, of continuous
maps such that

Upt, sqx “ T pt, sqx `

ż t

s

T pt, τqfτ pUpτ, sqxq dτ. (4.24)

Moreover, we suppose that t ÞÑ Upt, sqx is continuous on rs,8q for each s P R and
x P X.

Our first result in this setting is the following.

Theorem 5. Assume that T pt, sq is an evolution family as above and that it admits
an exponential dichotomy with sequences of constants pMjqjPN and pwjqjPN. Let
pcjqjPN Ă r0,8q be such that

cjK
2
j e

aj`ãjMj
1 ` e´wj

1 ´ e´wj
ă 1, for j P N (4.25)

where aj and ãj come from (2.5) and Lemma 3.27, respectively. Moreover, let
ft : X Ñ X, t P R be a family of maps as above for which there exists a sequence
pεjqjPN Ă r0,8q such that

pjpftpxqq ď εj (4.26)

and
pjpftpxq ´ ftpyqq ď cjpjpx ´ yq (4.27)

for every x, y P X, t P R and j P N. Then, there exists a family of one-to-one
continuous maps Ht : RpQptqq Ñ X, t P R, satisfying

HtpT pt, sqxq “ Upt, sqpHspxqq (4.28)

for every t, s P R, t ě s and x P RpQpsqq and

sup
tPR

sup
xPRpQptqq

pjpHtpxq ´ xq ă `8 for every j P N. (4.29)
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Proof. We will proceed as in the proof of Theorem 2. Let

An “ T pn ` 1, nq, n P Z.

Then, each An is a linear operator in LpXq and, moreover, it follows readily
from (2.6) and (2.7) that the sequence pAnqnPZ admits an exponential dichotomy
with respect to the sequence of projections Qpnq, n P Z. For n P Z we define
gn : X Ñ X by

gnpxq “

ż n`1

n

T pn ` 1, τqfτ pUpτ, nqxq dτ, x P X.

It follows from Lemma 2 that each gn satisfies

pjpgnpxq ´ gnpyqq ď c̃jpjpx ´ yq

for every x, y P X and j P N with constant c̃j :“ K2
j cje

aj`ãj . Moreover, using
(2.6), (2.7) and (4.26) it follows that

sup
xPX

pjpgnpxqq ď ε̃j

for every n P Z and j P N and some sequence of pε̃jqjPN Ă r0,`8q.
Now, since cj satisfies (4.25), we have that that c̃j satisfies (4.3) for each j P N.

Thus, it follows from Theorem 3 that there exists a sequence of continuous one-to-
one maps Hn : Qpnq Ñ X such that

Hn`1pAnxq “ pAn ` gnqpHnpxqq (4.30)

for every x P RpQpnqq and n P Z. Moreover,

sup
nPZ

sup
xPRpQpnqq

pjpHnpxq ´ xq ă `8 for every j P N. (4.31)

We now define Ht : RpQptqq Ñ X in the following way: let n P Z be such that
n ď t ă n ` 1, and set

Htpxq “ Upt, nqHnpT pn, tqxq (4.32)

for every x P RpQptqq. Then, it is easy to see that (4.28) is satisfied. Indeed, given
t, s P R with t ě s, letm,n P Z be such thatm ď s ă m`1 and n ď t ă n`1. Then,
using (4.30) we have that HnpT pn,mqyq “ Upn,mqHmpyq for every y P RpQpmqq.
Consequently, given x P RpQpsqq,

HtpT pt, sqxq “ Upt, nqHnpT pn, tqT pt, sqxq

“ Upt, nqHnpT pn,mqT pm, sqxq

“ Upt, nqUpn,mqHmpT pm, sqxq

“ Upt,mqHmpT pm, sqxq

“ Upt, sqUps,mqHmpT pm, sqxq

“ Upt, sqHspxq,

as claimed.
Moreover, given t P R let n P Z be such that n ď t ă n ` 1. Then, for every

x P RpQptqq,

Upt, nqT pn, tqx “ x `

ż t

n

T pt, τqfτ pUpτ, nqT pn, tqxq dτ.
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Consequently, using (2.5) and (4.26),

pjpUpt, nqT pn, tqx ´ xq ď

ż t

n

pjpT pt, τqfτ pUpτ, nqT pn, tqxqq dτ

ď Kje
ajεj ,

for every x P RpQptqq and j P N. Combining this fact with Lemma 3.27 we get that
for each j P N and x P RpQptqq,

pjpHtpxq ´ xq “ pjpUpt, nqHnpT pn, tqxq ´ xq

ď pjpUpt, nqHnpT pn, tqxq ´ Upt, nqT pn, tqxqq

` pjpUpt, nqT pn, tqx ´ xq

ď Kje
ãjpjpHnpT pn, tqxq ´ T pn, tqxq ` Kje

ajεj .

Therefore,

sup
xPRpQptqq

pjpHtpxq ´ xq ď Kje
ãj sup

xPRpQpnqq

pjpHnpxq ´ xq ` Kje
ajεj .

Thus, using (4.31) it follows that

sup
tPR

sup
xPRpQptqq

pjpHtpxq ´ xq ă `8

for every j P N proving (4.29). Finally, if x1, x2 P RpQpsqq are such that Hspx1q “

Hspx2q, then using (4.28) we get that

HtpT pt, sqx1q “ HtpT pt, sqx2q

for every t ě s. In particular, this equality holds for t “ m with m P N. Now, by
hypothesis we have that T pm, sq|RpQpsqq is one-to-one while by Theorem 3, Hm

is also one-to-one. Therefore, x1 “ x2 and Hs is one-to-one for every s P R. This
concludes the proof of the theorem. □

As in the case of discrete time, assuming that the families T and U are invert-
ible, we can get stronger results. More precisely, suppose that for each t ě s,
T pt, sq : X Ñ X is an isomorphism and for t ă s denote T pt, sq “ T ps, tq´1. As-
sume moreover that for each t ě s the family Upt, sq : X Ñ X satisfying (4.24) is
an homeomorphism and for t ă s consider Upt, sq “ Ups, tq´1. Then we have the
following result.

Theorem 6. Let T pt, sq and Upt, sq be families of maps as above and suppose that
that T pt, sq admits an exponential dichotomy with sequences of constants pMjqjPN
and pwjqjPN. Let pcjqjPN Ă r0,8q be such that

cjK
2
j e

aj`ãjMj
1 ` e´wj

1 ´ e´wj
ă 1, for j P N (4.33)

where aj and ãj come from (2.5) and Lemma 3.27, respectively. Moreover, let
ft : X Ñ X, t P R be a family of maps such that the hypothesis about Upt, sq is
satisfied and, furthermore, suppose there exists a sequence pεjqjPN Ă r0,8q such
that

pjpftpxqq ď εj (4.34)

and

pjpftpxq ´ ftpyqq ď cjpjpx ´ yq (4.35)
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for every x, y P X, t P R and j P N. Then, there exists family of homeomorphisms
Ht : X Ñ X, t P R, satisfying

Ht ˝ T pt, sq “ Upt, sq ˝ Hs for every t, s P R (4.36)

and

sup
tPR

sup
xPX

pjpHtpxq ´ xq ă `8 for every j P N. (4.37)

Proof. As in the proof of Theorem 5, for each n P Z, let us consider
An “ T pn ` 1, nq, n P Z

and

gnpxq “

ż n`1

n

T pn ` 1, τqfτ pUpτ, nqxq dτ, x P X.

Then, each An is an invertible operator in LpXq and, moreover, as observed in
the proof of Theorem 5, we have that the sequence pAnqnPZ admits an exponential
dichotomy with respect to the sequence of projections Qpnq, n P Z. Moreover, each
gn satisfies

pjpgnpxq ´ gnpyqq ď c̃jpjpx ´ yq

for every x, y P X and j P N with constant c̃j :“ K2
j cje

aj`ãj and

sup
xPX

pjpgnpxqq ă ε̃j

for every n P Z and j P N and some sequence of pε̃jqjPN Ă r0,`8q.
Now, since cj satisfies (4.33), we have that that c̃j satisfy (4.11) for each j P N.

Thus, it follows from Theorem 4 that there exists a sequence of homeomorphisms
Hn : X Ñ X such that

Hn`1 ˝ An “ pAn ` gnq ˝ Hn for every n P Z (4.38)

and

sup
nPZ

sup
xPX

pjpHnpxq ´ xq ă `8 for every j P N. (4.39)

Then, defining Ht : X Ñ X by

Htpxq “ Upt, nqHnpT pn, tqxq (4.40)

for every x P X where n P Z is such that n ď t ă n ` 1, and proceeding as in the
proof of Theorem 5 it follows that (4.36) and (4.37) are satisfied.

Let us now consider H̄t : X Ñ X given by

H̄tpxq “ T pt, nqH´1
n pUpn, tqxq

where n P Z is such that n ď t ă n`1. Proceeding again as in the proof of Theorem
5 we can easily see that

H̄tpUpt, sqxq “ T pt, sqH̄spxq

for every x P X. Moreover,

HtpH̄tpxqq “ Upt, nqHnpT pn, tqH̄tpxqq

“ Upt, nqHnpT pn, tqT pt, nqH´1
n pUpn, tqxqq

“ Upt, nqHnpH´1
n pUpn, tqxqq

“ Upt, nqUpn, tqxq

“ x
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for every x P X, t P rn, n` 1q and n P Z. Similarly, H̄tpHtpxqq “ x for every x P X,
t P rn, n ` 1q and n P Z. This proves that each Ht : X Ñ X is an homeomorphism
completing the proof of the theorem. □
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which is stable under perturbation, Comm. Pure Appl. Anal. 18 (2019), 845–868.
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