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Abstract. For a large class of nonautonomous semilinear impul-
sive differential equations, we formulate sufficient conditions under
which in a vicinity of each approximate solution, we can construct
an exact solution. An important feature of our result is that it is
applicable to situations when the linear part is not hyperbolic. In
addition, we establish analogous result in the case of discrete time.

1. Introduction

It is well known that, in general, it is either complicated or even
impossible to explicitly solve a given differential equation. Nowadays,
a variety of numerical schemes for approximating solutions (over large
intervals of time) of many classes of differential equations are available.
Naturally, any numerical scheme will in general result with only an
approximate solution of a given differential equation. The information
given by an approximate solution will be useful only in situations when
in a vicinity of this approximate solution, there exists an exact solution
of our differential equation. The differential equations exhibiting this
property are said to have the shadowing property (see [15, 16]). We
note that this notion includes the notion of the Hyers-Ulam stability
(see [7]) as a particular case. Indeed, the latter notion requires a precise
estimate for the deviation of an approximate solution from an exact
solution in terms of the error in the approximation.

In their recent paper [4], the first two authors investigated the shad-
owing property of semilinear differential equations of the form

x′ = A(t)x+ f(t, x) t ≥ 0, (1.1)

where A is a continuous map taking values in the space of all bounded
linear operators on some Banach space X and f : [0,+∞) × X → X
is continuous. It is proved in [4, Corollary 3.3] that if x′ = A(t)x
admits the so-called (µ, ν)-dichotomy and if f(t, ·) is Lipschitz with a
suitable Lipschitz constant for each t ≥ 0, then (1.1) has the shadowing
property. In fact, it was showed (see [4, Theorem 3.1]) that under
some weaker assumptions for the linear part x′ = A(t)x, (1.1) exhibits
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a certain milder form of the shadowing property. We stress that the
arguments in [4] build on the works [2, 3], where the particular case
when x′ = A(t)x admits a (generalized) exponential dichotomy was
studied. We emphasize that related results have been obtained earlier
(either for discrete or continuous time) under assumptions that the
linear part A is constant or periodic and that the nonlinear part f
vanishes [5, 6, 8, 9, 12, 20, 21].

The main objective of the present paper is to study the shadowing
property for a class of semilinear impulsive differential equations of the
form

x′ = A(t)x+ f(t, x), t 6= τi,

∆x|t=τi : = x(τi+)− x(τi−) = Cix(τi−) + pi(x(τi−)).
(1.2)

Here, (τn)n∈Z is an arbitrary sequence in R such that

lim
n→−∞

τn = −∞ and lim
n→∞

τn =∞.

Moreover, A(t) and Ci are bounded linear operators acting on a Banach
space X, f : R×X → X, pi : X → X are nonlinear terms, while x(t+)
and x(t−) denote the limit from the right and from the left of x in t,
respectively. In Theorem 1, we formulate sufficient conditions under
which (1.2) exhibits the shadowing property. The main novelty with
respect to results in [4] (besides considering equations with impulses) is
that our Theorem 1 requires no assumptions related to the asymptotic
behaviour for the linear part of (1.2) (see Subsection 2.4). In the
particular case, when the linear part of (1.2) admits an exponential
dichotomy, Theorem 1 gives sufficient conditions under which (1.2)
exhibits the Hyers-Ulam stability property (see Theorem 2). While
there are several important works related to the Hyers-Ulam stability
for different classes of impulsive equations (see for example [11, 18,
19] and references therein), we stress that even our Theorem 2 is a
completely new result.

In Section 3, we prove the version of Theorem 1 in the case of discrete
time. We note that our arguments are inspired by those developed
in [1, 2, 3, 4, 10], which in turn are inspired by the analytic proofs of
the shadowing lemma in the context of smooth dynamics [13, 14].

2. A continuous time case

2.1. Preliminaries. Consider a Banach space (X, | · |) and the space
of all bounded linear operators on X, denoted by B(X). We denote the
operator norm on B(X) by ‖ · ‖. Let (τn)n∈Z be a strictly increasing
sequence such that

lim
n→−∞

τn = −∞ and lim
n→∞

τn =∞.
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Moreover, let A : R → B(X) be locally integrable. Furthermore, let
(Cn)n∈Z be a sequence in B(X) such that Id +Cn is an invertible oper-
ator for each n ∈ Z. We consider a linear impulsive differential equation
given by,

x′ = A(t)x, t 6= τi,

∆x|t=τi := x(τi+)− x(τi−) = Cix(τi−),
(2.1)

where for any h : R → X by h(x+) and h(x−) we denote the limit of
h in x from right and left, respectively.

Let T (t, s) denote the evolution operator associated to (2.1). Assume
that P : R→ B(X) is a measurable map and set

G(t, s) =

{
T (t, s)P (s) t ≥ s;

−T (t, s)(Id− P (s)) t ≤ s.

Finally, let f : R×X → X and pn : X → X, n ∈ Z, be such that:

• t 7→ f(t, x) is locally integrable for each x ∈ X;
• there exists a Borel measurable c : R→ (0,+∞) such that

|f(t, x)− f(t, y)| ≤ c(t)|x− y| for t ∈ R and x, y ∈ X (2.2)

and

|pn(x)− pn(y)| ≤ dn|x− y| for n ∈ Z and x, y ∈ X, (2.3)

for some sequence (dn)n∈Z ⊂ (0,+∞) satisfying

sup
n∈Z

(dn‖(Id + Cn)−1‖) < 1. (2.4)

Now, we consider the associated impulsive semilinear differential equa-
tion given by

x′ = A(t)x+ f(t, x), t 6= τi,

∆x|t=τi = Cix(τi−) + pi(x(τi−)).
(2.5)

The above conditions ensure the existence and the uniqueness (with
the prescribed initial condition) of global right-continuous solutions
of (2.5). We note that (2.4) is needed to ensure continuability of solu-
tions of (2.5) in the negative direction. We refer to [17] for details.

2.2. A shadowing type result. We are now in a position to formu-
late our first result.

Theorem 1. Assume that

q := sup
t∈R

(∫ ∞
−∞

c(s)‖G(t, s)‖ ds+
∑
i∈Z

di‖G(t, τi)‖
)
< 1. (2.6)

Furthermore, let ε : R→ (0,+∞) be a measurable function and (εi)i∈Z
a sequence in (0,+∞) such that

L := sup
t∈R

(∫ ∞
−∞

ε(s)‖G(t, s)‖ ds+
∑
i∈Z

εi‖G(t, τi)‖
)
< +∞. (2.7)
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Then, for each map z : R→ X differentiable on each interval (τn, τn+1),
n ∈ Z, satisfying

|z′(t)− A(t)z(t)− f(t, z(t))| ≤ ε(t) for t 6= τi, (2.8)

and

|∆z|t=τi − Ciz(τi−)− pi(z(τi−))| ≤ εi, for i ∈ Z, (2.9)

there exists a solution x : R→ X of (2.5) such that

|x(t)− z(t)| ≤ L

1− q
, for every t ∈ R. (2.10)

Moreover, if (2.1) admits no non-trivial bounded solution then the so-
lution x : R→ X given above is unique.

Proof. Let Y denote the space of all x : R → X that are continuous
on each [τi, τi+1) for each i ∈ Z having only discontinuities of the first
kind in τi and such that

‖x‖∞ := sup
t∈R
|x(t)| < +∞.

Then, (Y , ‖ · ‖∞) is a Banach space. For y ∈ Y , we define T y by

(T y)(t) =

∫ ∞
−∞
G(t, s)(A(s)z(s) + f(s, y(s) + z(s))− z′(s)) ds

+
∑
i∈Z

G(t, τi)(Ciz(τi−)− z(τi+) + z(τi−) + pi(z(τi−) + y(τi−))),

(2.11)

for t ∈ R. We first claim that T is well-defined. Take y ∈ Y . It follows
from (2.2) and (2.8) that

|A(s)z(s) + f(s, y(s) + z(s))− z′(s)|
≤ |A(s)z(s) + f(s, z(s))− z′(s)|+ |f(s, y(s) + z(s))− f(s, z(s))|
≤ ε(s) + c(s)|y(s)|,

for each s 6= τi, i ∈ Z. Hence, by (2.6) and (2.7) we have that

sup
t∈R

∣∣∣∣ ∫ ∞
−∞
G(t, s)(A(s)z(s) + f(s, y(s) + z(s))− z′(s)) ds

∣∣∣∣
≤ sup

t∈R

(∫ ∞
−∞

ε(s)‖G(t, s)‖ ds
)

+ ‖y‖∞ · sup
t∈R

(∫ ∞
−∞

c(s)‖G(t, s)‖ ds
)

≤ L+ q‖y‖∞.

(2.12)
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Similarly, it follows from (2.3) and (2.9) that

|Ciz(τi−)− z(τi+) + z(τi−) + pi(z(τi−) + y(τi−))|
≤ |Ciz(τi−)− z(τi+) + z(τi−) + pi(z(τi−))|

+ |pi(z(τi−) + y(τi−))− pi(z(τi−))|
≤ εi + di|y(τi−)|
≤ εi + di‖y‖∞,

for each i ∈ Z. Consequently, by (2.6) and (2.7) we have that

sup
t∈R

∣∣∣∣∑
i∈Z

G(t, τi)(Ciz(τi−)− z(τi+) + z(τi−) + pi(z(τi−) + y(τi−)))

∣∣∣∣
≤ sup

t∈R

(∑
i∈Z

εi‖G(t, τi)‖
)

+ ‖y‖∞ · sup
t∈R

(∑
i∈Z

di‖G(t, τi)‖
)

≤ L+ q‖y‖∞.

The above estimate together with (2.12) implies that T y ∈ Y . Thus,
T is well-defined. Moreover, by (2.7), (2.8) and (2.9), we have that

‖T 0‖∞ ≤ L. (2.13)

Take now arbitrary y1, y2 ∈ Y . It follows from (2.2) and (2.3) that

|T y1(t)− T y2(t)|

≤
∫ ∞
−∞
|G(t, s)

(
f(s, y1(s) + z(s))− f(s, y2(s) + z(s))

)
| ds

+
∑
i∈Z

|G(t, τi)
(
pi(z(τi−) + y1(τi−))− pi(z(τi−) + y2(τi−))

)
|

≤
∫ ∞
−∞

c(s)‖G(t, s)‖ · |y1(s)− y2(s)| ds

+
∑
i∈Z

di‖G(t, τi)‖ · |y1(τi−)− y2(τi−)|,

for t ∈ R. Therefore, using (2.6),

‖T y1 − T y2‖∞ ≤ q‖y1 − y2‖∞, for y1, y2 ∈ Y . (2.14)

Set C := L
1−q > 0, and

D := {y ∈ Y : ‖y‖∞ ≤ C}. (2.15)

We claim that T (D) ⊂ D. To see this, take an arbitrary y ∈ D. Then,

‖T y‖∞ ≤ ‖T 0‖∞ + ‖T y − T 0‖∞
≤ L+ q‖y‖∞
≤ L+ qC

= C,
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and thus T y ∈ D. Therefore, T |D : D → D is a contraction map. In
particular, it has a unique fixed point y ∈ D such that T y = y. Hence,
for t ≥ τ we have that

y(t)− T (t, τ)y(τ) (2.16)

=

∫ t

−∞
T (t, s)P (s)(A(s)z(s) + f(s, z(s) + y(s))− z′(s)) ds

−
∫ τ

−∞
T (t, s)P (s)(A(s)z(s) + f(s, z(s) + y(s))− z′(s)) ds

−
∫ ∞
t

T (t, s)(Id− P (s))(A(s)z(s) + f(s, z(s) + y(s))− z′(s)) ds

+

∫ ∞
τ

T (t, s)(Id− P (s))(A(s)z(s) + f(s, z(s) + y(s))− z′(s)) ds

+
∑
τi≤t

T (t, τi)P (τi)(Ciz(τi−)− z(τi) + z(τi−) + pi(z(τi−) + y(τi−)))

−
∑
τi≤τ

T (t, τi)P (τi)(Ciz(τi−)− z(τi) + z(τi−) + pi(z(τi−) + y(τi−)))

−
∑
τi>t

T (t, τi)(Id− P (τi))(Ciz(τi−)− z(τi) + z(τi−) + pi(z(τi−) + y(τi−)))

+
∑
τi>τ

T (t, τi)(Id− P (τi))(Ciz(τi−)− z(τi) + z(τi−) + pi(z(τi−) + y(τi−)))

=

∫ t

τ

T (t, s)(A(s)z(s) + f(s, z(s) + y(s))− z′(s)) ds

+
∑
τ<τi≤t

T (t, τi)(Ciz(τi−)− z(τi) + z(τi−) + pi(z(τi−) + y(τi−))).

Now, for t 6= τi, i ∈ Z, differentiating in both sides of the equality we
get that

y′(t)− A(t)T (t, τ)y(τ)

= A(t)z(t) + f(t, z(t) + y(t))− z′(t)

+ A(t)

∫ t

τ

T (t, s)(A(s)z(s) + f(s, z(s) + y(s))− z′(s)) ds

+ A(t)
∑
τ<τi≤t

T (t, τi)(Ciz(τi−)− z(τi) + z(τi−) + pi(z(τi−) + y(τi−)))

= A(t)z(t) + f(t, z(t) + y(t))− z′(t) + A(t) (y(t)− T (t, τ)y(τ))

which implies that

y′(t) + z′(t) = A(t)y(t) + A(t)z(t) + f(t, z(t) + y(t)). (2.17)
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Similarly, given i ∈ Z and taking t = τi and τ → τi− in (2.16) we
obtain that

y(τi)− Ciy(τi−)− y(τi−)

= Ciz(τi−)− z(τi) + z(τi−) + pi(z(τi−) + y(τi−)),

which implies that

y(τi) + z(τi)− y(τi−)− z(τi−)

= Ciy(τi−) + Ciz(τi−) + pi(z(τi−) + y(τi−)).
(2.18)

Thus, combining (2.17) and (2.18) we conclude that x := y + z is a
solution of (2.5). Finally, recalling that y ∈ D, we have that (2.10)
holds completing the proof of the first claim in the theorem.

Assume now that (2.1) admits no non-trivial bounded solution and
suppose x̃ : R→ X is a solution of (2.5) such that

|x̃(t)− z(t)| ≤ L

1− q
, for every t ∈ R. (2.19)

Set ỹ := x̃− z. Observe that

(T ỹ)(t) =

∫ ∞
−∞
G(t, s)(A(s)z(s) + f(s, ỹ(s) + z(s))− z′(s)) ds

+
∑
i∈Z

G(t, τi)(Ciz(τi−)− z(τi+) + z(τi−) + pi(z(τi−) + ỹ(τi−)))

=

∫ ∞
−∞
G(t, s)(A(s)x̃(s)− A(s)ỹ(s) + f(s, x̃(s))− z′(s)) ds

+
∑
i∈Z

G(t, τi)(Cix̃(τi−)− Ciỹ(τi−)− z(τi+) + z(τi−) + pi(x̃(τi−)))

=

∫ ∞
−∞
G(t, s)(x̃′(s)− A(s)ỹ(s)− z′(s)) ds

+
∑
i∈Z

G(t, τi)(∆x̃|t=τi − Ciỹ(τi−)− z(τi+) + z(τi−))

=

∫ ∞
−∞
G(t, s)(ỹ′(s)− A(s)ỹ(s)) ds

+
∑
i∈Z

G(t, τi)(∆ỹ|t=τi − Ciỹ(τi−)).

Now, given t ≥ τ and proceeding as in (2.16), we obtain that

(T ỹ)(t)− T (t, τ)(T ỹ)(τ) =

∫ t

τ

T (t, s)(ỹ′(s)− A(s)ỹ(s)) ds

+
∑
τ<τi≤t

T (t, τi)(∆ỹ|t=τi − Ciỹ(τi−))),
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which implies that{
(T ỹ)′(t)− A(t)(T ỹ)(t) = ỹ′(t)− A(t)ỹ(t), t 6= τi,

∆(T ỹ)|t=τi − Ci(T ỹ)(τi−) = ∆ỹ|t=τi − Ciỹ(τi−), i ∈ Z.

Therefore, w(t) := (T ỹ)(t)−ỹ(t) is a solution of (2.1) such that ‖w‖∞ <
+∞. Consequently, by our hypothesis it follows that w = 0 and thus
T ỹ = ỹ. Finally, observe that (2.19) implies that ỹ ∈ D. Therefore,
x̃− z is the unique fixed point of T in D. The proof of the theorem is
completed. �

Remark 1. We would like to point out that the uniqueness cannot hold,
in general, if (2.1) has non-trivial bounded solutions. Indeed, assume
that x0 is a non-trivial bounded solution of (2.1). Then, z = 0 can be
regarded as an approximate solution of (2.1) which can be shadowed
by itself and any scalar multiple of x0.

The rest of this section is devoted to present some settings to which
Theorem 1 may be applied.

2.3. Exponential dichotomy. We say that (2.1) admits an exponen-
tial dichotomy if:

(1) there exists a family of projections P (t), t ∈ R, such that for
every t, s ∈ R,

T (t, s)P (s) = P (t)T (t, s);

(2) there exist C, λ > 0 such that

‖T (t, s)P (s)‖ ≤ Ce−λ(t−s) for t ≥ s,

and

‖T (t, s)(Id− P (s))‖ ≤ Ce−λ(s−t) for t ≤ s.

In particular, we have that

‖G(t, s)‖ ≤ Ce−λ|t−s|, for t, s ∈ R. (2.20)

Set
R(t) =

∑
i∈Z

e−λ|t−τi|, t ∈ R,

and suppose there exist constants c, d > 0 such that (2.2) and (2.3) are
satisfied with c(s) = c for every s ∈ R and di = d for every i ∈ Z.

The following result is an important consequence of Theorem 1. To
the best of our knowledge, it has not been established earlier in the lit-
erature. However, we stress that in the absence of impulsive behaviour,
it reduces to [3, Theorem 6].

Theorem 2. Suppose that

r := sup
t∈R

R(t) < +∞ (2.21)
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and let

L := r +
2C

λ
. (2.22)

Moreover, assume that

q :=
2cC

λ
+ dCr < 1. (2.23)

Then, for every ε > 0 and any map z : R → X differentiable on each
interval (τn, τn+1), n ∈ Z, satisfying

|z′(t)− A(t)z(t)− f(t, z(t))| ≤ ε for t 6= τi,

and

|∆z|t=τi − Ciz(τi−)− pi(z(τi−))| ≤ ε, for i ∈ Z,

there exists a unique solution x : R→ X of (2.5) such that

|x(t)− z(t)| ≤ Lε

1− q
, for every t ∈ R. (2.24)

Proof. By using (2.20) and (2.23) we can easily see that

sup
t∈R

(∫ ∞
−∞

c‖G(t, s)‖ ds+
∑
i∈Z

d‖G(t, τi)‖
)

≤ sup
t∈R

(∫ ∞
−∞

cCe−λ|t−s| ds+
∑
i∈Z

dCe−λ|t−τi|
)

≤ 2cC

λ
+ dCr = q < 1.

Similarly, using (2.22),

sup
t∈R

(∫ ∞
−∞

ε‖G(t, s)‖ ds+
∑
i∈Z

ε‖G(t, τi)‖
)

≤ ε sup
t∈R

(
C

∫ ∞
−∞

e−λ|t−s| ds+
∑
i∈Z

e−λ|t−τi|
)

≤ ε

(
2C

λ
+ r

)
= Lε < +∞.

In particular, (2.6) and (2.7) hold. Moreover, since (2.1) admits an
exponential dichotomy, it does not admit any non-trivial bounded so-
lution. Thus, the result follows readily from Theorem 1. �

Remark 2. Observe that (2.21) holds, for example, in the case when
τn = n for every n ∈ Z.
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2.4. Beyond exponential dichotomy. We now present an example
that shows that Theorem 1 can be applied to situations when (2.1) does
not admit an exponential dichotomy. Let (X, | · |) and (τi)i∈Z be as in
Subsection 2.1 and let ϕ, ψ : R → (0,+∞) be two C1 functions. For
every t ∈ R let us consider the maps A(t) and P (t) acting on X ×X
given by

A(t) =

(ϕ′(t)
ϕ(t)
− 1
)

Id 0

0
(
ψ′(t)
ψ(t)

+ 1
)

Id

 and P (t) =

(
Id 0
0 0

)
.

Finally, let

Ci =

(
0 0
0 −2 · Id

)
, i ∈ Z.

Then, denoting by τ(t, s) the number of τi’s that belong to the interval
(s, t] if s < t or to [t, s) if t < s and setting τ(t, t) = 0, we have that

T (t, s) =

(
ϕ(t)
ϕ(s)

e−(t−s)Id 0

0 (−1)τ(t,s) ψ(t)
ψ(s)

e(t−s)Id

)
.

Consequently,

G(t, s) =



(
ϕ(t)
ϕ(s)

e−(t−s)Id 0

0 0

)
t ≥ s;(

0 0

0 − (−1)τ(t,s) ψ(t)
ψ(s)

e(t−s)Id

)
t < s.

Now, let µ, ν : R → (0, D], D > 0, be any C1 functions and consider
ϕ(t) = µ(t)et and ψ(t) = ν(t)e−t. Then,

G(t, s) =



(
µ(t)
µ(s)

Id 0

0 0

)
t ≥ s;(

0 0

0 − (−1)τ(t,s) ν(t)
ν(s)

Id

)
t < s.

In particular,

‖G(t, s)‖ ≤

{
D
µ(s)

t ≥ s;
D
ν(s)

t < s.

Now, if c, ε : R→ (0,+∞) and (di)i∈Z and (εi)i∈Z are such that∫ ∞
−∞

c(s)

µ(s)
ds+

∑
i∈Z

di
µ(τi)

<
1

2D
and

∫ ∞
−∞

c(s)

ν(s)
ds+

∑
i∈Z

di
ν(τi)

<
1

2D

and∫ ∞
−∞

ε(s)

µ(s)
ds+

∑
i∈Z

εi
µ(τi)

< +∞ and

∫ ∞
−∞

ε(s)

ν(s)
ds+

∑
i∈Z

εi
ν(τi)

< +∞,
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then (2.6) and (2.7) are satisfied and Theorem 1 is applicable. Finally,
observe that if we take µ and ν to be constant maps, (2.1) does not
admit an exponential dichotomy.

3. A discrete time case

3.1. Preliminaries. Let (X, | · |) and (B(X), ‖ · ‖) be as in Section 2.
Given a sequence (An)n∈Z of bounded and invertible linear operators
in B(X), we consider the associated linear difference equation given by

xn+1 = Anxn, for all n ∈ Z. (3.1)

For m,n ∈ Z, set

A(m,n) =


Am−1 · · ·An for m > n;

Id for m = n;

A−1m . . . A−1n−1 for m < n.

(3.2)

Let (Pn)n∈Z be a sequence in B(X) and define

G(m,n) =

{
A(m,n)Pn for m ≥ n;

−A(m,n)(Id− Pn) for m < n.
(3.3)

Finally, let fn : X → X, n ∈ Z, be a sequence of maps such that, for
each n ∈ Z, there exist numbers cn > 0 satisfying

|fn(x)− fn(y)| ≤ cn|x− y| for every n ∈ Z and x, y ∈ X. (3.4)

Associated to these choices, we consider the semilinear difference
equation given by

xn+1 = Anxn + fn(xn) for all n ∈ Z. (3.5)

Observe that (3.1) and (3.5) are the discrete time versions of (2.1)
and (2.5). Indeed, in this setting we have an impulse at each moment
of time n.

3.2. A shadowing type result.

Theorem 3. Assume that

q := sup
m∈Z

(∑
n∈Z

cn−1‖G(m,n)‖
)
< 1 (3.6)

and let (δn)n∈Z be a sequence in (0,+∞) such that

L := sup
m∈Z

(∑
n∈Z

δn−1‖G(m,n)‖
)
< +∞. (3.7)

Then, for each sequence (zn)n∈Z ⊂ X satisfying

|zn+1 − Anzn − fn(zn)| ≤ δn for all n ∈ Z, (3.8)
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there exists a sequence (xn)n∈Z ⊂ X satisfying (3.5) such that

|xn − zn| ≤
L

1− q
, for every n ∈ Z. (3.9)

Moreover, in the case when (3.1) admits no non-trivial bounded solution
we have that the sequence (xn)n∈Z given above is unique.

Proof. We follow closely the arguments in the proof of Theorem 1. Let

Y :=

{
y = (yn)n∈Z ⊂ X : ‖y‖∞ := sup

n∈Z
|yn| < +∞

}
.

Then, (Y , ‖ · ‖∞) is a Banach space. For y ∈ Y , we set

(T y)n =
∑
k∈Z

G(n, k)(Ak−1zk−1 + fk−1(yk−1 + zk−1)− zk),

for all n ∈ Z.
We start observing that T : Y → Y given by T y = ((T y)n)n∈Z is

well-defined. Indeed, given y ∈ Y , it follows from (3.4) and (3.8) that

|Ak−1zk−1 + fk−1(yk−1 + zk−1)− zk|
≤ |Ak−1zk−1 + fk−1(zk−1)− zk|+ |fk−1(yk−1 + zk−1)− fk−1(zk−1)|
≤ δk−1 + ck−1|yk−1|,

for every k ∈ Z. Thus, by (3.6) and (3.7) we have that

sup
n∈Z

∣∣∣∣∑
k∈Z

G(n, k)(Ak−1zk−1 + fk−1(yk−1 + zk−1)− zk)
∣∣∣∣

≤ sup
n∈Z

(∑
k∈Z

δk−1‖G(n, k)‖
)

+ ‖y‖∞ · sup
n∈Z

(∑
k∈Z

ck−1‖G(n, k)‖
)

≤ L+ q‖y‖∞,
(3.10)

which implies that T y ∈ Y . Thus, T is well-defined.
Now, given arbitrary y,w ∈ Y , it follows from (3.4) that

|(T y)n − (T w)n|

≤
∑
k∈Z

|G(n, k)
(
fk−1(yk−1 + zk−1)− fk−1(wk−1 + zk−1)

)
|

≤
∑
k∈Z

ck−1‖G(n, k)‖ · |yk−1 − wk−1|,

for every n ∈ Z. Therefore, using (3.6),

‖T y − T w‖∞ ≤ q‖y −w‖∞. (3.11)

Let C := L
1−q > 0 and consider D := {y ∈ Y : ‖y‖∞ ≤ C}. We claim

that T (D) ⊂ D. Indeed, by (3.7) and (3.8) we have that

‖T 0‖∞ ≤ L.
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Thus, given y ∈ D, inequality (3.11) implies that

‖T y‖∞ ≤ ‖T 0‖∞ + ‖T y − T 0‖∞
≤ L+ q‖y‖∞
≤ L+ qC

= C,

and thus T y ∈ D. Therefore, T |D : D → D is a contraction map.
Hence, it has a unique fixed point y ∈ D such that T y = y. Conse-
quently, for any n ∈ Z we have that

yn+1 − Anyn
=
∑
k≤n+1

A(n+ 1, k)Pk(Ak−1zk−1 + fk−1(yk−1 + zk−1)− zk)

−
∑
k≥n+2

A(n+ 1, k)(Id− Pk)(Ak−1zk−1 + fk−1(yk−1 + zk−1)− zk)

−
∑
k≤n

A(n+ 1, k)Pk(Ak−1zk−1 + fk−1(yk−1 + zk−1)− zk)

+
∑
k≥n+1

A(n+ 1, k)(Id− Pk)(Ak−1zk−1 + fk−1(yk−1 + zk−1)− zk)

= Pn+1(Anzn + fn(yn + zn)− zn+1)

+ (Id− Pn+1)(Anzn + fn(yn + zn)− zn+1)

= Anzn + fn(yn + zn)− zn+1.

Hence,

yn+1 + zn+1 = An(yn + zn) + fn(yn + zn), n ∈ Z.

Consequently, x := y + z is a solution of (3.5) and, moreover, since
y ∈ D, it also satisfies (3.9) thus completing the proof of the first part
of the theorem.

Assume now that (3.1) admits no non-trivial bounded solution and
let x̃ = (x̃n)n∈Z be a sequence satisfying (3.5) and (3.9) and consider
ỹ = (ỹn)n∈Z given by ỹn = x̃n − zn. In particular, ‖ỹ‖∞ ≤ L/(1 − q).
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Then,

(T ỹ)n =
∑
k∈Z

G(n, k)(Ak−1zk−1 + fk−1(ỹk−1 + zk−1)− zk)

=
∑
k∈Z

G(n, k)(Ak−1x̃k−1 − Ak−1ỹk−1 + fk−1(x̃k−1)− zk)

=
∑
k∈Z

G(n, k)(x̃k − Ak−1ỹk−1 − zk)

=
∑
k∈Z

G(n, k)(ỹk − Ak−1ỹk−1)

=
∑
k≤n

A(n, k)Pk(ỹk − Ak−1ỹk−1)

−
∑
k≥n+1

A(n, k)(Id− Pk)(ỹk − Ak−1ỹk−1),

which implies that

An(T ỹ)n =
∑
k≤n

A(n+ 1, k)Pk(ỹk − Ak−1ỹk−1)

−
∑
k≥n+1

A(n+ 1, k)(Id− Pk)(ỹk − Ak−1ỹk−1).

Thus,

(T ỹ)n+1 − An(T ỹ)n =
∑
k≤n+1

A(n+ 1, k)Pk(ỹk − Ak−1ỹk−1)

−
∑
k≤n

A(n+ 1, k)Pk(ỹk − Ak−1ỹk−1)

−
∑
k≥n+2

A(n+ 1, k)(Id− Pk)(ỹk − Ak−1ỹk−1)

+
∑
k≥n+1

A(n+ 1, k)(Id− Pk)(ỹk − Ak−1ỹk−1)

= Pn+1(ỹn+1 − Anỹn) + (Id− Pn+1)(ỹn+1 − Anỹn)

= ỹn+1 − Anỹn.

In particular, w = T ỹ − ỹ is a solution of (3.1) satisfying ‖w‖ <
+∞. Thus, it follows from our assumptions that w = 0 = (0n)n∈Z.
Consequently, T ỹ = ỹ. Hence, since ‖ỹ‖∞ ≤ L/(1 − q) = C, we get
that ỹ ∈ D and, therefore, ỹ = x̃− z is the unique fixed point of T in
D. The proof of the Theorem 3 is complete. �

Remark 3. Like in the continuous time setting, the uniqueness cannot
hold, in general, if (3.1) has non-trivial bounded solutions and the
reason is analogous: if (xn)n∈Z is a non-trivial bounded solution of (3.1),
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then (0n)n∈Z can be regarded as an approximate solution of (3.1) which
can be shadowed by itself and any scalar multiple of (xn)n∈Z.

3.3. Examples. As in the case of continuous time, Theorem 3 can be
easily applied to the case when the sequence (An)n∈Z admits an expo-
nential dichotomy. In this particular case, the version of Theorem 3
follows from [3, Theorem 1].

However, in the following examples we will show that Theorem 3 is
very flexible and that it can be applied to situations when the linear
part does not exhibit good asymptotic behaviour.

Example 1. Let (An)n∈Z be a sequence of isometries on a given Banach
space (X, | · |) and let (Pn)n∈Z be any sequence in B(X) satisfying
‖Pn‖ ≤ D and ‖Id−Pn‖ ≤ D for every n ∈ Z and some constantD > 0.
We note that we do not require that operators Pn are projections. In
this case we have that ‖G(m,n)‖ ≤ D for every m,n ∈ Z. Now, let
(cn)n∈Z and (δn)n∈Z be any sequences of positive numbers such that∑

n∈Z

cn <
1

D
and

∑
n∈Z

δn < +∞.

Then, conditions (3.6) and (3.7) are satisfied and Theorem 3 may be
applied.

Example 2. Let (Bn)n∈Z be a sequence of isometries acting on a Banach
space (X, | · |) and let (ρn)n∈Z be any sequence of numbers satisfying
ρn ≥ 1 for every n ∈ Z. We now consider sequences (An)n∈Z and
(Pn)n∈Z acting on X ×X given by

An =

( ρn
ρn+1

Id 0

0 Bn

)
and Pn =

(
Id 0
0 0

)
,

for n ∈ Z. Then,

G(m,n) =



(
ρn
ρm

Id 0

0 0

)
for m ≥ n;

−

(
0 0

0 B(m,n)

)
for m < n,

where

B(m,n) =


Bm−1 · · ·Bn for m > n;

Id for m = n;

B−1m . . . B−1n−1 for m < n.

Consequently,

‖G(m,n)‖ =

{
ρn
ρm

for m ≥ n;

1 for m < n.
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Therefore, since ρm ≥ 1 for every m ∈ Z, if sequences (cn)n∈Z and
(δn)n∈Z satisfy

+∞∑
n=−∞

cn−1ρn < 1 and
+∞∑

n=−∞

δn−1ρn < +∞,

then conditions (3.6) and (3.7) hold and Theorem 3 can be applied.
Finally, we observe that by taking an appropriate sequence (ρn)n∈Z (for
instance ρn = 1 + |n| or ρn = 1 + log(1 + |n|)), the difference equation
xn+1 = Anxn, n ∈ Z does not admit an exponential dichotomy.

Remark 4. We now comment on the relationship between Theorem 3
and [4, Theorem 6.2]. On the one hand, the present result is stronger
than the previous one in the sense that here the maps Pn do not need
to be projections and, moreover, they do not need to commute with the
dynamics. That is, they do not need to satisfy that AnPn = Pn+1An for
n ∈ Z (see Example 1). On the other hand, [4, Theorem 6.2] is more
general than the present result in the sense that it allows for a third
direction along which we do not have any control on the dynamics and,
moreover, the operators An do not need to be invertible. Furthermore,
[4, Theorem 6.2] holds for one-sided sequences while Theorem 3 holds
for bilateral sequences. In particular, the results complement each
other.
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