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LUCAS BACKES AND DAVOR DRAGIČEVIĆ

Abstract. We prove that Lipschitz perturbations of nonautonomous con-
tracting or expanding linear dynamics are Lipschitz shadowable provided that

the Lipschitz constants are small on average. This is in sharp contrast with

previous results where the Lipschitz constants are assumed to be uniformly
small. Moreover, we show by means of an example that a natural extension

of these results to the context of linear dynamics admitting an exponential

dichotomy does not hold in general.

1. Introduction

Let X = (X, ∥ ·∥) be an arbitrary Banach space, (An)n∈N a sequence of bounded
linear operators on X and fn : X → X, n ∈ N a sequence of arbitrary maps. We
consider the associated (possibly) nonlinear and nonautonomous difference equation
given by

xn+1 = Anxn + fn(xn), n ∈ N. (1.1)

We recall that (1.1) is said to exhibit Lipschitz shadowing (or Hyers-Ulam stability)
if there exists L > 0 with the property that for each ε > 0 and any sequence
(yn)n∈N ⊂ X with

sup
n∈N

∥yn+1 −Anyn − fn(yn)∥ ≤ ε,

there exists a solution (xn)n∈N ⊂ X of (1.1) satisfying

sup
n∈N

∥xn − yn∥ ≤ Lε.

It is proved in [1] that (1.1) is Lipschitz shadowable provided that the following
holds:

(a) the sequence (An)n∈N admits an exponential dichotomy (see Definition 4.1);
(b) there exists a sufficiently small c > 0 such that

∥fn(x)− fn(y)∥ ≤ c∥x− y∥, x, y ∈ X, n ∈ N. (1.2)

For related results which deal with the case when fn ≡ 0 and the sequence (An)n∈N
is either constant or periodic, we refer to [5, 7, 8, 9] and references therein. More-
over, in [2, 14] one can find related results without any periodicity assumptions on
(An)n∈N and without the requirement that maps fn vanish. Finally, Lipschitz shad-
owing of nonlinear and nonautonomous difference equations with delay is discussed
in [4, 10]. For a detailed survey on shadowing in the context of smooth dynamics
we refer to [12, 13].

It is natural to ask whether it is possible to ensure that (1.1) exhibits Lipschitz
shadowing by relaxing condition (b), i.e. without requiring that nonlinearities fn
are uniformly Lipschitz with a sufficiently small Lipschitz constant.
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The main objective of the present paper is to formulate positive results in this
direction. More precisely, we prove (see Theorems 2.4 and 3.2) that (1.1) exhibits
Lipschitz shadowing provided that the sequence (An)n∈N is either exponentially
stable or expanding, and that each fn is a Lipschitz map with a Lipschitz constant
pn, where the sequence (pn)n∈N ⊂ (0,∞) satisfies only certain smallness in average
condition (see (2.4) and (3.3)). These conditions allow that for some values of n,
pn can attain arbitrary large values.

In fact, our results are more general and deal with the case when the sequence
(An)n∈N is nonuniformly exponentially stable or expanding, yielding shadowing
results in the spirit of those discussed in [2]. In addition, by constructing an explicit
example (see Example 4.3) we illustrate that our assumptions on the sequence
(An)n∈N cannot be relaxed. More precisely, in the case when (An)n∈N admits an
exponential dichotomy (with both stable and unstable subspaces being nontrivial),
it is impossible to deduce Lipschitz shadowability of (1.1) under only “smallness in
average” condition for the sequence (pn)n∈N.

Consequently, in comparison with our previously described results from [1] we
are able to substantially relax the condition (1.2). On the other hand, we impose a
more restrictive condition on the sequence (An)n∈N by requiring that it admits an
exponential dichotomy with either stable or unstable subspaces being trivial.

Finally, we stress that besides considering the case of discrete time, we also deal
with the case of continuous time (see Theorems 2.7 and 3.7).

Besides our previous work, our arguments are inspired by the work of Nam [11]
who obtained similar results in the one-dimensional case (i.e. X = R or X = C).

2. The contracting on average case

In this section we consider the case of dynamics that is contracting on average.
All throughout the paper, letX = (X, ∥·∥) be an arbitrary Banach space and denote
by B(X) the space of all bounded linear operators equipped with the operator norm
which we also denote by ∥ · ∥.

2.1. The discrete time case. Given a sequence (An)n∈N in B(X), let us consider
the associated linear difference equation

xn+1 = Anxn, n ∈ N. (2.1)

For m,n ∈ N, the evolution operator associated to (2.1) is given by

A(m,n) =

{
Am−1 · · ·An m > n;

Id m = n,

where Id denotes the identity operator on X.

Definition 2.1. Let ν = (νn)n∈N be a sequence of positive numbers. We say that
(2.1) or that the sequence (An)n∈N ⊂ B(X) is ν-nonuniformly exponentially stable
if there exist D,λ > 0 such that

∥A(m,n)∥ ≤ Dνne
−λ(m−n), m ≥ n. (2.2)

Remark 2.2. We note that the classical concept of (uniform) exponential stability
corresponds to the choice ν = (νn)n∈N, where νn = 1 for each n ∈ N.

Example 2.3. Let X = R, choose ω < 0 and ε ≥ 0, and set

An := eω+ε[(−1)nn−1/2], n ∈ N.

Then, (2.1) is ν-nonuniformly exponentially stable with νn = eεn, n ∈ N. Moreover,
if ε > 0 then (2.1) is not (uniformly) exponentially stable. We refer to [6, Example
1] for details.
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Theorem 2.4. Let (An)n∈N ⊂ B(X) be a sequence that is ν-nonuniformly stable.
Moreover, let (fn)n∈N be a sequence of maps fn : X → X with the property that
there is a sequence (pn)n∈N ⊂ (0,∞) such that

∥fn(x)− fn(y)∥ ≤ pn
νn+1

∥x− y∥ for n ∈ N and x, y ∈ X. (2.3)

Finally, we assume that

lim
n→∞

(
n−1∏
i=0

(
e−λ +Dpi

)) 1
n

= ρ for some ρ ∈ (0, 1), (2.4)

where D,λ > 0 are such that (2.2) holds. Then, there exists a constant L > 0 such
that for each ε > 0 and any sequence (yn)n∈N ⊂ X satisfying

∥yn+1 −Anyn − fn(yn)∥ ≤ ε

νn+1
n ∈ N, (2.5)

there exists a sequence (xn)n∈N ⊂ X with the properties that

xn+1 = Anxn + fn(xn) n ∈ N, (2.6)

and

sup
n∈N

∥xn − yn∥ ≤ Lε. (2.7)

In particular, when supn∈N νn < ∞ we have that (2.6) is Lipschitz shadowable.

Proof. For n ∈ N and x ∈ X, let

∥x∥n := sup
m≥n

(
∥A(m,n)x∥eλ(m−n)

)
.

By (2.2) we have that

∥x∥ ≤ ∥x∥n ≤ Dνn∥x∥, for n ∈ N and x ∈ X. (2.8)

Observe that

∥A(m,n)x∥m = sup
k≥m

(
∥A(k,m)A(m,n)x∥eλ(k−m)

)
= e−λ(m−n) sup

k≥m

(
∥A(k, n)x∥eλ(k−n)

)
≤ e−λ(m−n) sup

k≥n

(
∥A(k, n)x∥eλ(k−n)

)
≤ e−λ(m−n)∥x∥n,

for m ≥ n and x ∈ X. We conclude that

∥A(m,n)x∥m ≤ e−λ(m−n)∥x∥n, for m ≥ n and x ∈ X.

In particular,

∥Anx∥n+1 ≤ e−λ∥x∥n, for n ∈ N and x ∈ X. (2.9)

Let (yn)n∈N ⊂ X be a sequence satisfying (2.5) for some ε > 0. We define a sequence
(xn)n∈N ⊂ X recursively. Namely, we set x0 := y0 and xn+1 = Anxn + fn(xn) for
n ∈ N.

We claim that

∥xn − yn∥n ≤ Dε

n−1∑
j=0

n−1∏
i=j+1

(e−λ +Dpi), n ∈ N, (2.10)
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with the convention that
∏j

i := 1 if j < i. For n = 0 there is nothing to prove.
Suppose that (2.10) holds for n ∈ N. By (2.3), (2.5), (2.8) and (2.9) we have that

∥xn+1 − yn+1∥n+1

= ∥Anxn + fn(xn)− yn+1∥n+1

≤ ∥An(xn − yn) + fn(xn)− fn(yn)∥n+1 + ∥Anyn + fn(yn)− yn+1∥n+1

≤ e−λ∥xn − yn∥n + ∥fn(xn)− fn(yn)∥n+1 + ∥Anyn + fn(yn)− yn+1∥n+1

≤ e−λ∥xn − yn∥n +Dνn+1∥fn(xn)− fn(yn)∥+Dνn+1∥Anyn + fn(yn)− yn+1∥

≤ e−λ∥xn − yn∥n +Dpn∥xn − yn∥+Dε

≤ (e−λ +Dpn)∥xn − yn∥n +Dε

≤ Dε(e−λ +Dpn)

n−1∑
j=0

n−1∏
i=j+1

(e−λ +Dpi) +Dε

= Dε

n−1∑
j=0

n∏
i=j+1

(e−λ +Dpi) +Dε

= Dε

n∑
j=0

n∏
i=j+1

(e−λ +Dpi),

yielding (2.10). On the other hand, in the proof of [11, Theorem 2.4] it is proved
that (2.4) implies that there exists c > 0 such that

n∑
j=0

n∏
i=j+1

(e−λ +Dpi) ≤ c, n ∈ N.

Hence, (2.8) combined with (2.10) gives that

∥xn − yn∥ ≤ ∥xn − yn∥n ≤ cDε n ∈ N.

Therefore, setting L := cD > 0 we conclude that (2.7) holds. □

Remark 2.5. We note that (2.4) is trivially satisfied if pn = c with c ≥ 0 and
e−λ +Dc < 1. In this case, Theorem 2.4 follows from [1, Theorem 5] when νn = 1,
n ∈ N.

Let us now illustrate that Theorem 2.4 is more general. For this purpose, fix
arbitrary ρ ∈ (e−λ, 1) and C > 0. We define a sequence (pn)n∈N by

pn =

{
ρ−e−λ

D if n is not of the form 10k for k ∈ N;
C if n = 10k for some k ∈ N.

It is straightforward to verify that (2.4) holds. On the other hand, clearly, if C is
such that e−λ +DC ≥ 1, we do not have that supn∈N(e

−λ +Dpn) < 1.

2.2. The continuous time case. Let us now discuss the case of continuous time.
Let A : [0,∞) → B(X) be a continuous map and consider the associated linear
nonautonomous differential equation given by

x′ = A(t)x, t ≥ 0. (2.11)

By T (t, s) we will denote the evolution family associated to (2.11).

Definition 2.6. Let ν : [0,∞) → (0,∞) be an arbitrary function. We say that (2.11)
is ν-nonuniformly exponentially stable if there exist D,λ > 0 such that

∥T (t, s)∥ ≤ Dν(s)e−λ(t−s), t ≥ s ≥ 0. (2.12)
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Theorem 2.7. Suppose that (2.11) is ν-nonuniformly exponentially stable. More-
over, let f : [0,∞)×X → X be a continuous map with the property that there is a
locally integrable function p : [0,∞) → (0,∞) such that

∥f(t, x)− f(t, y)∥ ≤ p(t)

ν(t)
∥x− y∥, x, y ∈ X, t ≥ 0. (2.13)

Set pn :=
∫ n+1

n
p(t) dt for n ∈ N and suppose that P := supn∈N epn < +∞ and

lim
n→∞

(
n−1∏
i=0

(
e−λ +DPDpi

)) 1
n

= ρ for some ρ ∈ (0, 1), (2.14)

where D,λ > 0 are such that (2.12) holds. Then, there is a constant K > 0 such
that for each ε > 0 and any continuously differentiable function y : [0,∞) → X
satisfying

∥y′(t)−A(t)y(t)− f(t, y(t))∥ ≤ ε

ν(t)
t ≥ 0, (2.15)

there exists a function x : [0,∞) → X such that

x′(t) = A(t)x(t) + f(t, x(t)) t ≥ 0, (2.16)

and
sup
t≥0

∥x(t)− y(t)∥ ≤ Kε. (2.17)

In particular, if supt≥0 ν(t) < +∞, then the differential equation (2.16) is Lipschitz-
shadowable.

Proof. By U(t, s) we will denote the nonlinear evolution family corresponding to (2.16),
i.e. t 7→ U(t, s)v is the unique solution of (2.16) with value v at time s. By the
variation of constants formula we have that

U(t, s)x = T (t, s)x+

∫ t

s

T (t, r)f(r, U(r, s)x) dr, for t ≥ s and x ∈ X. (2.18)

Set
An := T (n+ 1, n), n ∈ N.

For s ≥ 0 and x ∈ X, let

∥x∥s := sup
t≥s

(
∥T (t, s)x∥eλ(t−s)

)
.

Then,
∥x∥ ≤ ∥x∥s ≤ Dν(s)∥x∥, for x ∈ X and s ≥ 0. (2.19)

Moreover, one can easily show that

∥T (t, s)x∥t ≤ e−λ(t−s)∥x∥s, t ≥ s ≥ 0. (2.20)

Observe that it follows from (2.13), (2.18), (2.19) and (2.20) that for x, y ∈ X and
t ≥ s ≥ 0,

∥U(t, s)x− U(t, s)y∥t ≤ ∥T (t, s)(x− y)∥t

+

∫ t

s

∥T (t, r)(f(r, U(r, s)x)− f(r, U(r, s)y))∥t dr

≤ e−λ(t−s)∥x− y∥s

+

∫ t

s

e−λ(t−r)∥f(r, U(r, s)x)− f(r, U(r, s)y)∥r dr

≤ e−λ(t−s)∥x− y∥s

+D

∫ t

s

e−λ(t−r)p(r)∥U(r, s)x− U(r, s)y∥r dr.
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By Gronwall’s lemma, we conclude that

∥U(t, s)x− U(t, s)y∥t ≤ eD
∫ t
s
p(r) dr∥x− y∥s, for t ≥ s ≥ 0 and x, y ∈ X. (2.21)

For n ∈ N and x ∈ X, set

fn(x) :=

∫ n+1

n

T (n+ 1, r)f(r, U(r, n)x) dr. (2.22)

Then, (2.13), (2.19), (2.20) and (2.21) give that

∥fn(x)− fn(y)∥n+1 ≤
∫ n+1

n

∥T (n+ 1, r)(f(r, U(r, n)x)− f(r, U(r, n)y))∥n+1 dr

≤
∫ n+1

n

e−λ(n+1−r)∥f(r, U(r, n)x)− f(r, U(r, n)y)∥r dr

≤ D

∫ n+1

n

p(r)∥U(r, n)x− U(r, n)y∥r dr

≤ D∥x− y∥neD
∫ n+1
n

p(r) dr

∫ n+1

n

p(r) dr,

which implies that

∥fn(x)− fn(y)∥n+1 ≤ DPDpn∥x− y∥n, for n ∈ N and x, y ∈ X.

Furthermore, by (2.18) we have that An + fn = U(n+ 1, n) for every n ∈ N.
Let ε > 0 be arbitrary and choose a continuously differentiable function y : [0,∞) →

X satisfying (2.15). Fix n ∈ N arbitrary and let ȳ : [n,∞) → X be the solution
of (2.16) on [n,∞) such that ȳ(n) = y(n). Then,

y′(t)− ȳ′(t) = A(t)(y(t)− ȳ(t)) + f(t, y(t))− f(t, ȳ(t)) + z(t)

with z(t) := y′(t)−A(t)y(t)− f(t, y(t)) and, consequently,

y(t)− ȳ(t) = T (t, n)(y(n)− ȳ(n)) +

∫ t

n

T (t, r)(f(r, y(r))− f(r, ȳ(r))) dr

+

∫ t

n

T (t, r)z(r)

=

∫ t

n

T (t, r)(f(r, y(r))− f(r, ȳ(r))) dr +

∫ t

n

T (t, r)z(r)

(2.23)

for t ≥ n. Hence, by (2.13), (2.15), (2.19) and (2.20) we have that

∥y(t)− ȳ(t)∥t ≤ D

∫ t

n

e−λ(t−r)p(r)∥y(r)− ȳ(r)∥r dr +
∫ t

n

e−λ(t−r)∥z(r)∥r dr

≤ Dε+D

∫ t

n

p(r)∥y(r)− ȳ(r)∥r dr,

for n ∈ N and t ∈ [n, n+ 1]. By applying Gronwall’s lemma we conclude that

∥y(t)− ȳ(t)∥t ≤ DPDε for n ∈ N, t ∈ [n, n+ 1],

which in particular implies that (recall that An + fn = U(n+ 1, n))

∥y(n+ 1)−Any(n)− fn(y(n))∥n+1 ≤ DPDε, n ∈ N.
It follows from the proof of the previous theorem that the sequence (xn)n∈N ⊂ X
given by x0 = y(0) and xn+1 = Anxn + fn(xn) for n ∈ N satisfies

∥xn − y(n)∥n ≤ Lε n ∈ N, (2.24)

where L > 0 depends only on D,λ and the sequence (pn)n. We set

x(t) := U(t, n)xn, for n ∈ N and t ∈ [n, n+ 1). (2.25)
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Then, x is a solution of (2.16). For n ∈ N and t ∈ [n, n+ 1) we have that

x′(t)− y′(t) = A(t)(x(t)− y(t)) + f(t, x(t))− f(t, y(t))− z(t)

where z(t) is as defined above. Consequently,

x(t)− y(t) = T (t, n)(x(n)− y(n)) +

∫ t

n

T (t, r)(f(r, x(r))− f(r, y(r))) dr

−
∫ t

n

T (t, r)z(r) dr,

(2.26)

for t ∈ [n, n+ 1]. From this we get (using (2.13), (2.15), (2.19), (2.20) and (2.24))
that

∥x(t)− y(t)∥t ≤ ∥xn − y(n)∥n +Dε+D

∫ t

n

p(r)∥x(r)− y(r)∥r dr

≤ (D + L)ε+D

∫ t

n

p(r)∥x(r)− y(r)∥r dr,

for t ∈ [n, n+ 1]. Finally, Gronwall’s lemma gives us that

∥x(t)− y(t)∥ ≤ ∥x(t)− y(t)∥t ≤ (D + L)PDε,

yielding that (2.17) holds with K := (D + L)PD > 0. The proof of the theorem is
completed. □

3. The expanding on average case

In this section we consider the case of dynamics that is expanding on average.

3.1. The discrete time case. Let (An)n∈N be a sequence of invertible bounded
linear operators in B(X) and consider the associated linear difference equation (2.1).
In this case, besides considering the evolution operator A(m,n) for m ≥ n, we may
also consider

A(m,n) = A−1
m A−1

m+1 · · ·A
−1
n−1

for m < n.

Definition 3.1. Let ν = (νn)n∈N be a sequence of positive numbers. We say
that (2.1) or that the sequence (An)n∈N ⊂ B(X) is ν-nonuniformly exponentially
expanding if there exist D,λ > 0 such that

∥A(m,n)∥ ≤ Dνne
−λ(n−m) for m ≤ n. (3.1)

Theorem 3.2. Let (An)n∈N ⊂ B(X) be a sequence which is ν-nonuniformly ex-
ponentially expanding. Moreover, let (fn)n∈N be a sequence of maps fn : X → X
such that An + fn is surjective for every n ∈ N and with the property that there is
a sequence (pn)n∈N ⊂ (0,∞) such that

∥fn(x)− fn(y)∥ ≤ pn
νn+1

∥x− y∥ for n ∈ N and x, y ∈ X. (3.2)

Finally, we assume that

lim
n→∞

(
n−1∏
i=0

(
eλ −Dpi

)) 1
n

= ρ for some ρ ∈ (1,∞), (3.3)

where D,λ > 0 are such that (3.1) holds. Then, there exists a constant L > 0 such
that for each ε > 0 and any sequence (yn)n∈N ⊂ X satisfying

∥yn+1 −Anyn − fn(yn)∥ ≤ ε

νn+1
n ∈ N, (3.4)



8 LUCAS BACKES AND DAVOR DRAGIČEVIĆ

there exists a sequence (xn)n∈N ⊂ X with the properties that

xn+1 = Anxn + fn(xn) n ∈ N, (3.5)

and
sup
n∈N

∥xn − yn∥ ≤ Lε. (3.6)

In particular, if supn∈N νn < +∞, then the difference equation (3.5) is Lipschitz
shadowable.

Proof. For x ∈ X and n ∈ N, set

∥x∥n := sup
m≤n

(
∥A(m,n)x∥eλ(n−m)

)
.

Then, using (3.1), we get that for every x ∈ X and n ∈ N,
∥x∥ ≤ ∥x∥n ≤ Dνn∥x∥. (3.7)

Moreover,

∥A(m,n)x∥m ≤ e−λ(n−m)∥x∥n,
for m ≤ n and x ∈ X. In particular,

∥x∥n ≤ e−λ∥Anx∥n+1

for every n ∈ N and x ∈ X. Furthermore, we observe that

∥fn(x)− fn(y)∥n+1 ≤ Dνn+1∥fn(x)− fn(y)∥ ≤ Dpn∥x− y∥ ≤ Dpn∥x− y∥n,

for x, y ∈ X and n ∈ N. Hence, making Fn := An+fn and qn := eλ−Dpn we have
that

∥Fn(x)− Fn(y)∥n+1 ≥ ∥Anx−Any∥n+1 − ∥fn(x)− fn(y)∥n+1

≥
(
eλ −Dpn

)
∥x− y∥n

= qn∥x− y∥n,
for x, y ∈ X and n ∈ N. That is,

∥Fn(x)− Fn(y)∥n+1 ≥ qn∥x− y∥n, (3.8)

for x, y ∈ X and n ∈ N.
Given ε > 0, let (yn)n∈N ⊂ X be a sequence satisfying (3.4). For each n ∈ N, let

us take zn ∈ X such that

Fn−1 ◦ . . . ◦ F0(zn) = yn.

We claim that the sequence (zn)n∈N is a Cauchy sequence. Indeed, given n, k ∈ N,
it follows by (3.8) that

∥zn − zn+k∥0 ≤

n−1∏
j=0

1

qj

 ∥yn − Fn−1 ◦ . . . ◦ F0(zn+k)∥n.

Now, combining (3.7), (3.8) and (3.4), we obtain that

∥yn − Fn−1 ◦ . . . ◦ F0(zn+k)∥n
≤ ∥yn − wn∥n + ∥wn − Fn−1 ◦ . . . ◦ Fn(zn+k)∥n

≤ Dε

qn
+

1

qn
∥yn+1 − Fn ◦ . . . ◦ F0(zn+k)∥n+1,

where wn ∈ X is such that Fn(wn) = yn+1. Using this fact and proceeding recur-
sively we get that

∥yn − Fn−1 ◦ . . . ◦ F0(zn+k)∥n ≤ Dε

n+k−1∑
j=n

(
j∏

i=n

1

qi

)
. (3.9)
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Consequently, combining these observations we conclude that

∥zn − zn+k∥0 ≤ Dε

n−1∏
j=0

1

qj

 n+k−1∑
j=n

(
j∏

i=n

1

qi

)

= Dε

n+k−1∑
j=n

(
j∏

i=0

1

qi

)

≤ Dε

+∞∑
j=n

(
j∏

i=0

1

qi

)
.

(3.10)

Finally, observe that condition (3.3) is equivalent to

lim
n→+∞

(
n∏

i=0

1

qi

) 1
n

< 1.

Thus, by the root test we have that the series
∑+∞

j=0

(∏j
i=0

1
qi

)
converges and, in

particular,
+∞∑
j=n

(
j∏

i=0

1

qi

)
n→+∞−−−−−→ 0.

Then, it follows by (3.10) that (zn)n∈N is indeed a Cauchy sequence as claimed
and, in particular, since X is a Banach space, there exists x0 ∈ X such that
x0 = lim

n→+∞
zn.

Let us consider now the sequence (xn)n∈N defined by xn+1 = Fn(xn) for n ∈ N.
We claim that there exists C > 0 (independent on (yn)n) such that

sup
n∈N

∥xn − yn∥ ≤ Cε.

In fact, given n ∈ N, by (3.7) and (3.9) it follows that for any k ∈ N,
∥xn − yn∥ ≤ ∥xn − Fn−1 ◦ . . . ◦ F0(zn+k)∥+ ∥Fn−1 ◦ . . . ◦ F0(zn+k)− yn∥

≤ ∥xn − Fn−1 ◦ . . . ◦ F0(zn+k)∥+ ∥Fn−1 ◦ . . . ◦ F0(zn+k)− yn∥n

≤ ∥xn − Fn−1 ◦ . . . ◦ F0(zn+k)∥+Dε

n+k−1∑
j=n

(
j∏

i=n

1

qi

)
.

Now we need the following auxiliary result.

Lemma 3.3. There exists C̃ > 0 such that
∑n+k−1

j=n

(∏j
i=n

1
qi

)
≤ C̃ for every

n, k ∈ N.

Proof. The proof of this result can be obtained by proceeding as in the proof of [11,
Theorem 3.4]. In fact, from Eq. (3.3) on, the proof of the aforementioned result

consists precisely in showing that
∑+∞

j=n

(∏j
i=n

1
qi

)
≤ C̃ for some C̃ > 0 and every

n ∈ N. □

Thus, taking C̃ > 0 as in Lemma 3.3 and C = C̃D it follows that

∥xn − yn∥ ≤ ∥xn − Fn−1 ◦ . . . ◦ F0(zn+k)∥+ Cε (3.11)

for every k ∈ N. Moreover,

∥xn − Fn−1 ◦ . . . ◦ F0(zn+k)∥
= ∥Fn−1 ◦ . . . ◦ F0(x0)− Fn−1 ◦ . . . ◦ F0(zn+k)∥.
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Therefore, since each Fj is continuous and lim
k→+∞

zn+k = x0, it follows that

∥xn − Fn−1 ◦ . . . ◦ F0(zn+k)∥
k→+∞−−−−−→ 0.

Consequently, taking k → +∞ in (3.11) we conclude that

sup
n∈N

∥xn − yn∥ ≤ Cε

as claimed. The proof of the theorem is complete. □

Remark 3.4. We observe that whenever An is invertible and pn ≤ ∥A−1
n ∥−1 we

have that An + fn is a homeomorphism and, in particular, is surjective (see [3,
Remark 3.1]). On the other hand, this is obviously not a necessary condition to
guarantee that An + fn is surjective. For instance, again if An is invertible, then
taking fn = cAn for any c ̸= −1 we see that An + fn is surjective while, in this
case, pn = |c|∥An∥ can be arbitrary large.

Remark 3.5. As in Remark 2.5, we observe that (3.3) is trivially satisfied if pn = c
with c ≥ 0 and eλ −Dc > 1. In this case, Theorem 3.2 follows from [1, Theorem 5]
when νn = 1, n ∈ N. Moreover, similarly to what we did in the above-mentioned
remark we can also construct an example that satisfies (3.3) which does not satisfy
infn∈N(e

λ −Dpn) > 1.

3.2. The continuous time case. In this section we obtain a continuous time ver-
sion of the results from Section 3.1. For this purpose, let us consider the differential
equation (2.11) and, as before, denote by T (t, s) the evolution family associated to
it.

Definition 3.6. Let ν : [0,∞) → (0,∞) be an arbitrary function. We say that (2.11)
is ν-nonuniformly exponentially expanding if there exist D,λ > 0 such that

∥T (t, s)∥ ≤ Dν(s)e−λ(s−t), 0 ≤ t ≤ s. (3.12)

Theorem 3.7. Suppose that (2.11) is ν-nonuniformly exponentially expanding, and
that there exist D′ > 0 and a ≥ λ such that

∥T (t, s)∥ ≤ D′ν(s)ea(t−s), t ≥ s ≥ 0. (3.13)

Moreover, let f : [0,∞)×X → X be a continuous map with the property that there
is a locally integrable function p : [0,∞) → (0,∞) such that

∥f(t, x)− f(t, y)∥ ≤ p(t)

ν(t)
∥x− y∥, x, y ∈ X, t ≥ 0. (3.14)

Set pn :=
∫ n+1

n
p(t) dt for n ∈ N and suppose that P := supn∈N epn < +∞ and

lim
n→∞

(
n−1∏
i=0

(
2eλ − 4D′′e2aP2D′′

pi

)) 1
n

= ρ for some ρ ∈ (1,∞), (3.15)

where D′′ := D + D′ and D,λ > 0 are such that (3.12) holds. Then, there is
a constant K > 0 such that for each ε > 0 and any continuously differentiable
function y : [0,∞) → X satisfying

∥y′(t)−A(t)y(t)− f(t, y(t))∥ ≤ ε

ν(t)
t ≥ 0, (3.16)

there exists a function x : [0,∞) → X such that

x′(t) = A(t)x(t) + f(t, x(t)) t ≥ 0, (3.17)

and
sup
t≥0

∥x(t)− y(t)∥ ≤ Kε. (3.18)
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In particular, if supt≥0 ν(t) < +∞, then the differential equation (2.16) is Lipschitz
shadowable.

Proof. For s ≥ 0 and x ∈ X, let

∥x∥s := sup
t≤s

(
∥T (t, s)x∥eλ(s−t)

)
+ sup

t>s

(
∥T (t, s)x∥e−a(t−s)

)
.

Then,
∥x∥ ≤ ∥x∥s ≤ D′′ν(t)∥x∥, for s ≥ 0 and x ∈ X. (3.19)

Moreover, for 0 ≤ t ≤ s and x ∈ X we have that

∥T (t, s)x∥t = sup
r≤t

(
∥T (r, s)x∥eλ(t−r)

)
+ sup

r>t

(
∥T (r, s)x∥e−a(r−t)

)
≤ e−λ(s−t) sup

r≤t

(
∥T (r, s)x∥eλ(s−r)

)
+ e−a(s−t) sup

t<r≤s

(
∥T (r, s)x∥ea(s−r)

)
+ e−a(t−s) sup

r>s

(
∥T (r, s)x∥e−a(r−s)

)
≤ 2e−λ(s−t) sup

r≤s

(
∥T (r, s)x∥eλ(s−r)

)
+ e−λ(s−t) sup

r>s

(
∥T (r, s)x∥e−a(r−s)

)
≤ 2e−λ(s−t)∥x∥s.

Hence,

∥T (t, s)x∥t ≤ 2e−λ(s−t)∥x∥s, for 0 ≤ t ≤ s and x ∈ X.

Similarly one can show that

∥T (t, s)x∥t ≤ 2ea(t−s)∥x∥s, for t ≥ s ≥ 0 and x ∈ X. (3.20)

Let U(t, s) be given by (2.18). It follows from (3.14), (3.19) and (3.20) that for
x, y ∈ X and t ≥ s ≥ 0, we have that

∥U(t, s)x− U(t, s)y∥t ≤ ∥T (t, s)(x− y)∥t

+

∫ t

s

∥T (t, r)(f(r, U(r, s)x)− f(r, U(r, s)y))∥t dr

≤ 2ea(t−s)∥x− y∥s

+ 2

∫ t

s

ea(t−r)∥f(r, U(r, s)x)− f(r, U(r, s)y)∥r dr

≤ 2ea(t−s)∥x− y∥s

+ 2D′′
∫ t

s

ea(t−r)p(r)∥U(r, s)x− U(r, s)y∥r dr.

By Gronwall’s lemma, we conclude that

∥U(t, s)x− U(t, s)y∥t ≤ 2ea(t−s)+2D′′ ∫ t
s
p(r) dr∥x− y∥s, (3.21)

for t ≥ s ≥ 0 and x, y ∈ X. Let fn : X → X, n ∈ N be given by (2.22). Then,
(3.14), (3.20)

∥fn(x)− fn(y)∥n+1 ≤
∫ n+1

n

∥T (n+ 1, r)(f(r, U(r, n)x)− f(r, U(r, n)y))∥n+1 dr

≤ 2

∫ n+1

n

ea(n+1−r)∥f(r, U(r, n)x)− f(r, U(r, n)y)∥r dr

≤ 2D′′ea
∫ n+1

n

p(r)∥U(r, n)x− U(r, n)y∥r dr

≤ 4D′′e2a∥x− y∥ne2D
′′ ∫ n+1

n
p(r) dr

∫ n+1

n

p(r) dr,
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which implies that

∥fn(x)− fn(y)∥ ≤ 4D′′e2aP2D′′
pn∥x− y∥n, for n ∈ N and x, y ∈ X.

Denoting An = T (n + 1, n) we have that An + fn = U(n + 1, n), n ∈ N. Observe
that An + fn is invertible and (An + fn)

−1 = U(n, n+ 1) for each n ∈ N.
Let ε > 0 be arbitrary and choose a continuously differentiable function y : [0,∞) →

X satisfying (3.16). Fix n ∈ N arbitrary and let ȳ : [n,∞) → X and z : [0,∞) → X
be as in the proof of Theorem 2.7. We have (using (2.23), (3.16), (3.19) and (3.20))
that

∥y(t)− ȳ(t)∥t ≤ 2D′′
∫ t

n

ea(t−r)p(r)∥y(r)− ȳ(r)∥r dr + 2

∫ t

n

ea(t−r)∥z(r)∥r dr

≤ 2eaD′′ε+ 2eaD′′
∫ t

n

p(r)∥y(r)− ȳ(r)∥r dr,

for n ∈ N and t ∈ [n, n + 1]. Hence, by applying Gronwall’s lemma we conclude
that

∥y(t)− ȳ(t)∥t ≤ 2eaD′′εe2e
aD′′pn for n ∈ N and t ∈ [n, n+ 1].

In particular,

∥y(n+ 1)−Any(n)− fn(y(n))∥n+1 ≤ 2eaD′′P2eaD′′
ε, n ∈ N.

Now, it follows from the proof of the previous theorem that there exists a se-
quence (xn)n∈N ⊂ X such that xn+1 = Anxn + fn(xn), n ∈ N and

∥xn − y(n)∥n ≤ Lε n ∈ N,

where L > 0 depends only on D,D′, λ, a and the sequence (pn)n. We define
x : [0,∞) → X by (2.25). Then, x satisfies (3.17) and (2.26) holds for n ∈ N
and t ∈ [n, n+ 1]. Consequently,

∥x(t)− y(t)∥t ≤ 2ea∥xn − y(n)∥n + 2eaD′′ε+ 2eaD′′
∫ t

n

p(r)∥x(r)− y(r)∥r dr

≤ (2eaL+ 2eaD′′)ε+ 2eaD′′
∫ t

n

p(r)∥x(r)− y(r)∥r dr,

for t ∈ [n, n+ 1] and thus, by Gronwall’s lemma, we get that

∥x(t)− y(t)∥ ≤ ∥x(t)− y(t)∥t ≤ (2eaL+ 2eaD′′)P2eaD′′
ε, t ≥ 0.

Therefore, we conclude that (3.18) holds with K := (2eaL + 2eaD′′)P2eaD′′
> 0

and the proof of the theorem is completed. □

Remark 3.8. Observe that condition (3.13) is fulfilled under some very natural
assumptions. For instance, if ν(t) ≥ 1 for every t ≥ 0 (which is the case we are in
general interested in) then by Gronwall’s lemma it follows easily that condition

sup
t≥0

∥A(t)∥ < +∞

implies that (3.13) is satisfied.

4. The dichotomic case

Based on the results obtained in the previous sections, one could wonder whether
a similar result could be obtained in the case where Eq. (2.1) admits an exponential
dichotomy. In this section, we show by means of an example that this is not the
case in general. We will focus on the case of discrete-time dynamics. A similar
example can be built in the continuous-time context. We start by recalling the
following definition.
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Definition 4.1. We say that (2.1) admits an exponential dichotomy if the following
conditions are satisfied:

(1) there exists a family of projections Pn, n ∈ N, such that

AnPn = Pn+1An; (4.1)

(2) the restriction

An|KerPn
: KerPn → KerPn+1 (4.2)

is an invertible operator for each n ∈ N;
(3) there exist D,λ > 0 such that

∥A(m,n)Pn∥ ≤ De−λ(m−n) for m ≥ n (4.3)

and
∥A(m,n)(Id−Pn)∥ ≤ De−λ(n−m) for m ≤ n (4.4)

where

A(m,n) :=
(
A(n,m)|KerPm

)−1
: KerPn → KerPm,

for m ≤ n.

We have the following characterization of an exponential dichotomy which follows
from [1, Corollary 2] and [1, Proposition 4] (see also [4]).

Theorem 4.2. If dim(X) < +∞, then (2.1) admits an exponential dichotomy if
and only if (2.1) is Lipschitz shadowable.

We are now ready to construct our example.

Example 4.3. Let (An)n∈N be a sequence of 2× 2 matrices given by

An =

(
e 0
0 e−1

)
for every n ∈ N. It is easy to see that this sequence admits an exponential dichotomy
with the sequence of projections (Pn)n∈N given by

Pn =

(
0 0
0 1

)
.

Let us consider now the sequence (Bn)n∈N given by

Bn =

{
An if n is not a power of 2;

B if n is a power of 2

where

B =

(
0 1
0 1

)
.

Then, denoting by B(·, ·) the evolution operator associated to (Bn)n∈N and pro-
ceeding by induction we can show that, for every n ≥ 1,

B(2n, 0) =
(
0 en−2

0 e−(2n−n)

)
and

B(2n + 1, 0) =

(
0 e−(2n−n)

0 e−(2n−n)

)
.

In particular,
lim

n→+∞
∥B(2n + 1, 0)∥ = 0

while
lim

n→+∞
∥B(2n, 0)∥ = +∞.
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This shows that (Bn)n∈N can not admit an exponential dichotomy. In particular,
by Theorem 4.2, the difference equation

xn+1 = Bnxn, n ∈ N

is not Lipschitz shadowable.
Let us now consider fn : R2 → R2 given by

fn(x) =

{
0 if n is not a power of 2;

(B −An)x if n is a power of 2.

Then, we have that

∥fn(x)− fn(y)∥ ≤ pn∥x− y∥
for every x, y ∈ R2 and n ∈ N where

pn =

{
0 if n is not a power of 2;

q if n is a power of 2

and

q :=

∥∥∥∥(−e 1
0 1− e−1

)∥∥∥∥ .
Then,

lim
n→+∞

n−1∏
j=0

(e−λ + pi)

 1
n

< 1

and

lim
n→+∞

n−1∏
j=0

(eλ − pi)

 1
n

> 1.

In particular, conditions similar to (2.4) and (3.3) are satisfied. Now, since (2.1)
admits a uniform exponential dichotomy, a version of Theorems 2.4 and 3.2 in this
context would have to give us that

xn+1 = Anx+ fn(x), n ∈ N

is Lipschitz shadowable which we know is not the case since An+fn = Bn, for every
n ∈ N. Consequently, a version of Theorems 2.4 and 3.2 for exponential dichotomic
sequences does not hold in general.
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