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Processes with correlated errors have been widely used in economic time
series. The fractionally integrated autoregressive moving-average processes—
ARFIMA(p, d, q)—(Hosking, 1981) have been explored to model stationary and non
stationary time series with long-memory property. This work uses the Monte
Carlo simulation method to evaluate the performance of some parametric and
semiparametric estimators for long and short-memory parameters of the ARFIMA
model with conditional heteroskedastic (ARFIMA-GARCH model). The comparison
is based on the empirical bias and the mean squared error of each estimator.
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1. Introduction

Recently, the analysis of time series with long memory has been widely argued
in the literature. Since the ARFIMA(p, d, g) model was introduced by Granger
and Joyeux (1980) and Hosking (1981), many estimation methods of the memory
parameter d have been proposed and some corrections of the estimators have
been suggested to improve their statistical properties. Amongst the usually so-
called parametric approaches we mention the works of Fox and Taqqu (1986),
Dahlhaus (1989), and Sowell (1992) which are estimation methods based on the
maximum likelihood theory. Among the semiparametric approaches we cite the
works of Geweke and Porter-Hudak (1983), Robinson (1994, 1995), Reisen (1994),
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and Lobato and Robinson (1996). Bootstrap estimation procedures for d has been
the focus of Franco and Reisen (2004) and references therein. The estimation
methods for memory parameters of seasonal fractionally ARMA models have been
discussed and investigated empirically by Reisen et al. (2006a,b). In this article, the
authors have also presented the invertibility and casual parameters conditions of the
model.

The main goal of this article is to evaluate, through a simulation study, the
bias and the robustness of six estimation methods for the fractional differencing
parameter d in ARFIMA processes with heteroskedastic errors. This research topic
has recently received considerable attention in a variety of studies in time series and
econometric areas. Ling and Li (1997), Henry (2001a,b), and Jensen (2004) have
provided a good survey of the literature. The ARFIMA-GARCH model and its
parameter estimators have been considered in Ling and Li (1997). The authors have
derived some sufficient conditions for stationarity and ergodicity, and an algorithm
for approximate maximum likelihood estimation has been also presented. Henry
(2001a) has focused his research on the estimation of the memory parameter of
a time series with long-memory conditional heteroskedasticity (ARFIMA-GARCH
model) by using the average periodogram estimator suggested in Robinson (1994).
In this context, Henry (2001a) has shown that the average periodogram estimator
remains consistent. This semiparametric memory parameter estimation method is
also considered here. The choice of the optimal bandwidth for some semiparametric
estimation methods, under a general form of the errors such as GARCH errors, has
been the focus of Henry (2001b). The author has derived optimal bandwidths and
has shown asymptotically that the estimators considered in his work are not affected
by conditional heteroskedasticity property of the innovations.

Jensen (2004) has given contributions based on Bayesian approach to
estimate the memory parameter in long-memory stochastic volatility processes. An
application of the useful ARFIMA-GARCH model in inflation data has been the
focus of Baillie et al. (1996).

The results reported here increase our understanding of the finite sample
properties of some fractional memory parameter estimators of the ARFIMA model
with heteroscedastic errors. The plan of this article is as follows. Section 2 outlines
the use of ARFIMA model with GARCH errors. Section 3 presents a summary on
the estimation methods for the parameter d. Section 4 discusses the set-up of the
Monte Carlo experiment and the results. Some conclusions are drawn in Sec. 5.

2. The ARFIMA Model with GARCH Errors

Let {X,},., be a time series presented in a set of information available at an instant
t — 1. If ,_, is a set of evaluated available information at an instant t — 1, we can
represent {X,},., by the form

X, =8, _1,b) + &, (2.1)

where g(-,-) is a function, b is a vector of the parameters to be estimated, and
g, is a random perturbation. Equation (2.1) is sufficiently general and it has been
studied and shaped by many authors. The most common specification for it is the
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autoregressive AR(p) model and the moving average MA(q) model that can be mixed
to have the ARMA(p, q) model, described hereof by

D(B)(X, —n) =0O(RB)e,, teZ, (2.2)

where @ is the backward operator such that B*X, = X, ;, ®(B) =1-37_, ¢, %/,
ORB)=1-Y",0,%, p and g are positive integers, p is the mean of the process,
and {e,},c, is a white noise process with zero mean and constant variance o2.
(%) and O(%) are polynomials with all roots outside the unit circle and share no
common factors.

Studies in economic time series have shown that the dependent variable—
returns in the interest rates, for instance—presents significant autocorrelation, even
for lags largely separated in time. Time series with this behavior is said to have
long-memory property and it may be modeled by the ARFIMA(p, d, ¢) model
described as

D(B)(1 — B (X, — p) = O(B)e,, teZ, (2.3)

where d is a real number.
When d € (—0.5, 0.5), the ARFIMA(p, d, g) process is said to be invertible and
stationary and its spectral density function fy(-, -) is given by

w -2d
fx(w,C)qu(w,é)[Min(E)} wel-mal, (24)

where f,(w, &) is the spectral density function of an ARMA(p, q) process and ¢
and { are the unknown parameter vectors of the ARMA and ARFIMA models,
respectively. Hosking (1981), Beran (1994), and Reisen (1994) have described the
ARFIMA models with more details. Engle (1982) has defined the process conditional
autoregressive heteroskedastic (ARCH) when ¢, is of the form

& = 4,04, (25)

where z, is an independent and identically distributed process with E(z,) = 0 and
Var(z,) =1 and o,, varying in time, is a function of the set y,_;. By definition,
the variables ¢, are not autocorrelated, for any ¢ € Z, but its conditional variance
depends on time, opposing to what is assumed for the usual least squares estimation
method. The ARCH(s) model or its generalization GARCH(s, r) model can be
summarized here, through the form of the innovation variance for the time 7,
according to Eq. (2.1) and with the assumption that &,|,_, ~ /(0, 6?), where

of = o+ el + ) ot (2.6)
j=1

i=1

where s and r are positive integers, o; > 0, for i € {0,1,...,s}, and B; =0, for
jef{l,2,...,r}.

Bollerslev (1986) has shown that a GARCH process is stationary if a(l) +
B(1) < 1, where a(1) = 3°}_, o; and B(1) = 3_'_, B;, whenever E(g,) =0, Var(e,) =
o/[1 — (1) — B(1)] and the innovation process is not autocorrelated. We remark
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here that if one excludes the last sum in Eq. (2.6), one has the simplest model, an
ARCH(s) model.

The combination of models in expressions (2.3), (2.5), and (2.6) yields to the
ARFIMA (p, d, q)-GARCH(r, s) model. Under the parameter conditions for ®(%),
O(9%), a(1), and (1), as previously described, the ARFIMA(p, d, q)-GARCH(r, s)
process is stationary and invertible if —0.5 < d < 0.5, see Theorem 2.3 in Ling
and Li (1997). The authors have also demonstrated the condition for ergodicity
and derived the existence of higher-order moments. To estimate the parameters,
an algorithm for approximate maximum likelihood (ML) estimation has been also
presented by the authors.

The autocorrelation function of ARFIMA(p, d, g)-GARCH(r, s) model
behaves asymptotically with the similar form of the stationary ARFIMA model.
This means that the dependency between observations decays hyperbolically as a
function of d. Based on this autocorrelation behavior, we are here interested in
studying the estimation of the parameter d for some parameter order specifications
of the ARFIMA(p, d, 9)-GARCH(r, s) model. This empirical study will provide
an evidence whether the memory estimators are robust or not under conditional
heteroskedasticity. It is worth noting that all estimation methods focused here have
been previously implemented to the estimation of the stationary and non stationary
ARFIMA processes see, for instance, Lopes et al. (2004) and Reisen et al. (2001a)
for an overview.

3. Estimation of d

We consider six estimators for the parameter d and provide a summary of each
method below. The first four approaches are based on the linear regression method
built from Eq. (2.4) and are considered semiparametric methods. The averaged
periodogram estimator also belongs to the semiparametric class. The remaining two
estimators are the parametric methods proposed by Fox and Taqqu (1986) and
Sowell (1992). .

The first estimator, denoted hereafter by dp,,, has been proposed by Geweke
and Porter-Hudak (1983). They use the periodogram function /(-) as an estimator
for the spectral density function, presented in Eq. (2.4). The number of regressors
used in the regression equation is a function of the sample size n and it is denoted
here by g(n) = n*, for 0 < o« < 1. A

The second estimator, denoted by d,,, s, has been proposed by Reisen (1994).
The author has made a modification in the regression equation, substituting the
periodogram function by its smoothing version based on the Parzen lag window. In
this estimator the function g(n) = n®, for 0 < o < 1, is also chosen to represent the
number of regressors in the regression equation. The truncation point in the Parzen
lag window is denoted by m = n, for 0 < < 1. The appropriate choices of « and
p values had been investigated by Geweke and Porter-Hudak (1983) and Reisen
(1994), respectively, among several other authors.

The third estimator, denoted hereafter by d,,, has been considered by
Robinson (1994) and Lobato and Robinson (1996). It is a weighted average of the
logarithm of the periodogram function. This estimator is based on a number of
frequencies t and on a constant ¢ € (0.0, 1.0). Lobato and Robinson (1996) have
presented a Monte Carlo simulated experiment to investigate the sensitivity on the
choice of t and ¢ values.
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The fourth estimator, denoted by dp,,, has been introduced by Robinson
(1995). This method is also a modified version of the Geweke and Porter-Hudak’s
estimator. This estimator regresses In{/(w;)} on In{2sin(w;/2)}?, for j=11+
1,..., g(n), where [ is the smallest truncated point that tends to infinity smoother
than g(n). Robinson (1995) has developed some asymptotic results for &Rob, when
d € (0.0, 0.5), and has showed that this estimator is asymptotically less efficient than
the Gaussian maximum likelihood estimator and in this situation the efficiency is
considered to be zero. The number of regressors g(n) can take different forms and
its appropriate choice has been studied by several authors, such as Robinson (1995),
Hurvich et al. (1998), and Hurvich and Deo (1999), to name just a few.

The fifth estimator, hereafter denoted by d,,, is a parametric procedure that
has been considered by Fox and Taqqu (1986), based on the work of Whittle (1953).
The estimates are obtained by minimizing the finite and discrete form given by

2,0 = —Z{lnfx<w,,c>+ (( )C)} (3.1)

where { denotes the vector of unknown parameters and fy(w, () is the spectral
density function (see Dahlhaus, 1989; Fox and Taqqu, 1986).

The ML estimator (see Sowell, 1992) is the sixth method focused here. Assuming
that the process {X,} is Gaussian, the log-likelihood function may be expressed as

,(0) = — logdet T(f(w, 0) — 3XT(fy (v, )X, (32)

where ( is the parameter vector and T is the variance—covariance matrix of the
process {X,},., with (j, k)th element given by

1 m
Tulfx.0) = 5 [ fu(w. O exp(iwjk)du,

see for example Beran (1994, Sec. 5.3). The ML estimates are obtained by
maximizing (3.2), that is, { = argmax <, ({). Following the estimator notations
adopted here the ML fractional estimator is denoted by d,, .

Fractional integration has been applied in models like GARCH, including the
FIGARCH model by Chung (1999), the FIEGARCH model by Baillie et al. (1994),
and the FIAPARCH model by Tse (1998). All of them have in common some
variations in the estimation process through the maximization of the likelihood
function. The comparison among parameter estimation procedures have been widely
studied and they are sources of research for several authors. However, it is not
our main goal. This article focuses on the robustness of the estimators for the
fractional parameter d, in view of violating the normality assumption for the
innovation process and also in the study of how they are affected by the existence
of heteroskedastic errors.

4. Monte Carlo Simulation Study

In order to investigate the robustness of the estimators described previously,
in the context of ARFIMA models with GARCH errors, a number of Monte
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Carlo experiments were carried out. Realization of the Gaussian white noise
sequence z,, defined in (2.5), t=1,..., n, with unit variance, were generated by
IMSL-FORTRAN subroutine DRNNOR. The ARFIMA processes were generated
according to Hosking (1984) with errors &, given by (2.5) and ¢? by (2.6). The
models and the parameter values are specified in the tables which also give the
empirical mean and mean squared error (MSE) of the estimation methods based
on 1,000 replications of series with length n = 300. For comparison purpose, the
tables also give the estimation results when the errors of the ARFIMA process were
generated from (0, 1) distribution. In the semiparametric methods two bandwidths
were used, and their values are also specified in the tables. The trimming number
was fixed [ =2 for the dp,, estimator, and the constant ¢ = 0.5 for the averaged
periodogram estimator. Note that we did not concentrate on the sensitivity of
the estimate with the choice of the constant g. A review of this method and the
appropriated choice of ¢ are the main focus of Lobato and Robinson (1996). In
the parametric group, the estimates of dy,, were obtained by using the subroutine
DBCONF-IMSL. For the same data set, the ML estimates were obtained by using
the Ox-program (Doornik, 1999).

Here, the finite sample performance of the estimators described previously was
examined under different structures of the ARFIMA-GARCH model with two
memory parameter values: d = 0.2 (moderate long memory) and d = 0.45 (strong
long memory). The choice of d = 0.2 is motivated by the theoretical results of the
averaged periodogram estimator given in Lobato and Robinson (1996).

Results from ARFIMA(0, d, 0) model are in Tables 1a and b. From these tables
we see that all methods perform well. When the process is generated by Gaussian

Table 1a
ARFIMA(O0, d, 0) model with Gaussian GARCH errors, d = 0.2 and
sample size n = 300

&P &P s 2JL b aR b A A
Estimator < < 2 ’ dpyy dyL

g(}’l) nO,S n0.7 n0<5 n0.7 n0<7 nO.S nO.S n0.7 _ _

d = 0.2, Gaussian error
Zl(mean) 0.2042 0.2017 0.1513 0.1806 0.1676 0.1652 0.2098 0.2030 0.1960 0.1796
MSE 0.0407 0.0106 0.0267 0.0074 0.0071 0.0046 0.0689 0.0131 0.0025 0.0028

d =0.2, ARCH error, with o, =1 and o; = 0.2
d(mean) 0.1922 0.1966 0.1464 0.1814 0.1701 0.1669 0.1917 0.1973 0.1982 0.1842
MSE 0.0403 0.0101 0.0267 0.0071 0.0068 0.0047 0.0661 0.0133 0.0032 0.0032

d = 0.2, ARCH error, with o, = 1 and o; = 0.5
d(mean) 0.2016 0.2004 0.1462 0.1804 0.1662 0.1641 0.1946 0.1981 0.1939 0.1836
MSE 0.0399 0.0106 0.0258 0.0079 0.0078 0.0068 0.0670 0.0137 0.0051 0.0051

d = 0.2, ARCH error, with o, = 1 and «; = 0.9
Ei(mean) 0.1970 0.1823 0.1446 0.1648 0.1479 0.1403 0.1978 0.1800 0.1745 0.1783
MSE 0.0387 0.0177 0.0255 0.0138 0.0167 0.0170 0.0686 0.0235 0.0116 0.0132

d =0.2, GARCH error, with ¢y = 0.3, ¢, = 0.2, and f, = 0.5

d(mean)  0.2009 0.1974 0.1527 0.1807 0.1638 0.1668 0.1983 0.1960 0.1971 0.1810
MSE 0.0417 0.0118 0.0261 0.0080 0.0083 0.0053 0.0716 0.0149 0.0032 0.0034
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Table 1b
ARFIMA(O0, d, 0) model with Gaussian and GARCH errors, d = 0.45 and
sample size n = 300

. dPer dPer N dLob dRob ~ ~
Estimator Aoy dyp

g(n) nO.S n0.7 nO.S n0.7 n0.7 nO.S n0.5 n0.7 _ _

d = 0.45, Gaussian error
d(mean)  0.4623 0.4592 0.4008 0.4394 0.3487 0.3552 0.4594 0.4581 0.4869 0.4194
MSE 0.0405 0.0101 0.0294 0.0070 0.0125 0.0105 0.0631 0.0128 0.0038 0.0024

d =0.45, ARCH error, with oy =1 and «; =0.2
d(mean) 0.4595 0.4608 0.4009 0.4384 0.3479 0.3540 0.4661 0.4627 0.4770 0.4178
MSE 0.0409 0.0092 0.0281 0.0066 0.0126 0.0107 0.0670 0.0114 0.0038 0.0028

d = 0.45, ARCH error, with o, =1 and «; = 0.5
El(mean) 0.4491 0.4605 0.3961 0.4394 0.3474 0.3542 0.4509 0.4628 0.4663 0.4155
MSE 0.0387 0.0115 0.0293 0.0086 0.0132 0.0112 0.0636 0.0150 0.0057 0.0041

d = 0.45, ARCH error, with o, =1 and «; = 0.9
El(mean) 0.4502 0.3945 0.4393 0.4196 0.3325 0.3354 0.4575 0.4396 0.4377 0.3959
MSE 0.0418 0.0300 0.0176 0.0136 0.0189 0.0188 0.0722 0.0229 0.0136 0.0100

d = 0.45, GARCH error, with ¢y = 0.3, ; = 0.2, and ;, = 0.5

d(mean)  0.4729 0.4592 0.4116 0.4388 0.3483 0.3559 0.4662 0.4551 0.4884 0.4178
MSE 0.0413 0.0118 0.0280 0.0086 0.0132 0.0106 0.0654 0.0148 0.0049 0.0029

errors, the biases are generally small, specially for d = 0.2. In the semiparametric
class, the regression methods are very competitive where d pers 18 @n estimator with
smaller MSE. In general, the estimates from d,,, present the largest biases, but
with the smallest MSE among all semiparametric estimation methods. The MSE is
small due to the substantial reduction of its sample variance. The increase of the
bandwidth leads to estimates with small MSE. These findings are in accordance
with other published works as in Lopes et al. (2004) and Reisen et al. (2001a,b)
among others. The estimator d,, has typically smaller absolute bias than d,, and
their MSE are nearly identical. These results are consistent with the findings in
Cheung and Diebold (1994). These authors have presented a comprehensive analysis
comparing both parametric methods with unknown mean, see also Baillie et al.
(1996). When d = 0.45 (Table 1b), the methods perform similarly to the case d =
0.2 (Table 1a) except for the average periodogram estimator. The absolute bias of
this later method increased substantially and it may be explained by the fact that its
asymptotic Normal distribution is only guarantied when 0 < d < 0.25.

In general, it seems that there is no significant change in the estimates when
considering the ARCH and GARCH error types. This evidences that the estimators
are robust in the presence of heteroskedastic errors. For a process where the
correlation of the squares are very strong (ARCH model with o; =0.9), there
is an empirical evidence that the bias and the MSE of the parametric estimates
increase substantially. By increasing the bandwidth, independently of the error type,
the semiparametric estimates become more precise by presenting smaller MSE and
are very competitive with the parametric methods. These empirical results reveal
that the asymptotic normality results for the investigated estimation methods still
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hold for heteroskedastic errors. Similar findings using the average periodogram and
parametric estimators are, respectively, in Henry (2001a) and Baillie et al. (1996).

Reisen et al. (2001a) have studied the robustness of these estimators when the
errors come from a non normal distribution. Their empirical investigation have
evidenced that the estimators have no influence with the violation of normality
assumption, and have called the attention of the good performance of the
parametric estimator d,, under correct model specification.

Tables 2-6 present the simulation results when short-memory parameters
were introduced in the ARFIMA-ARCH model. Here we present the ARMA
combinations (+0.7, 0), (0, £0.7), (0.2, £0.7), and (0.7, £0.2). Other parameter
values produced similar behavior and are available upon request. The values of the
true and the estimated short-memory parameters are also given in the tables. The
d Fox and d 4. methods estimates all parameters simultaneously. The estimates from
the semiparametric methods were obtained from two steps: first the long-memory
parameter estimate d was obtained then, the filter (1 — B)? was applied to the series
to obtain the short-memory parameter estimates. From the results we observe that
the short-memory parameter affects in the parameter estimates. This is directly
related to the type of ARMA model and to the sign and magnitude of the short-
memory coefficients. The estimates are also affected by the size of the bandwidth.
In general, the estimators seem to be unaffected by the presence of ARCH errors.

For the ARFIMA(1, d, 0) model (see Tables 2 and 3) the study revels that the
bias of d is affected by the sign and the value of the AR coefficient. Results for

Table 2
ARFIMAC(1, d, 0) model with Gaussian and ARCH errors, d = 0.2,
¢, = —0.7,0.7, and sample size n = 300

d d d, dgo . .
Estimator Per PerS Lob Rob d]:”x dML

g(l’l) nO.S n0.7 n0.5 n0.7 n0.7 n0.8 nO.S n0.7 _ _

Gaussian error, d = 0.2 and ¢; = —0.7
d(mean) 0.1960  0.1567 0.1422 0.1373  0.1224 —0.0182 0.1924 0.1486 0.1991 0.1754

MSE 0.0429 0.0120 0.0281 0.0107 0.0132 0.0540 0.0708 0.0158 0.0040 0.0036
b, —0.6579 —0.6707 —0.6484 —0.6643 —0.6554 —0.5514 —0.6229 —0.6630 —0.7117 —0.6863
MSE 0.0278 0.0058 0.0157 0.0053 0.0067 0.0329 0.0667 0.0081 0.0093 0.0026

ARCH error with oy =1 and o; =0.2, d = 0.2, and ¢, = —0.7
d(mean) 0.1977 0.1571 0.1430 0.1380 0.1212 —0.0189 0.2016 0.1506 0.2043 0.1771

MSE 0.0405 0.0123 0.0276  0.0108 0.0133  0.0558 0.0641 0.0155 0.0055 0.0041
o1 —0.6585 —0.6693 —0.6471 —0.6633 —0.6538 —0.5473 —0.6342 —0.6632 —0.7371 —0.6858
MSE 0.0291  0.0065 0.0186 0.0059 0.0072 0.0357 0.0571 0.0082 0.0180 0.0028

Gaussian error, d = 0.2 and ¢; = 0.7
d(mean) 0.3226  0.5793 0.2735 0.5614 0.4016 0.4446 0.3512 0.6311 0.2754 0.1328

MSE 0.0583 0.1541 0.0292 0.1374 0.0416 0.0600 0.1011 0.1990 0.0379 0.0179
N 0.5697 0.3326 0.6179 0.3487 0.5069 0.4659 0.5388 0.2840 0.6135 0.7363
MSE 0.0521  0.1455 0.0273  0.1307 0.0396 0.0569 0.0850 0.1856 0.0396 0.0113

ARCH error with oy =1 and o; =0.2, d =0.2, and ¢, = 0.7
d(mean) 0.3380 0.5805 0.2773  0.5585 0.4009 0.4438 0.3801 0.6338 0.2517 0.1334
MSE 0.0584 0.1546 0.0304 0.1351 0.0412 0.0597 0.0960 0.2012 0.0329 0.0202
o 0.5519 0.3276 0.6098 0.3475 0.5027 0.4619 0.5118 0.2780 0.6278 0.7321
MSE 0.0565 0.1499  0.0305 0.1325 0.0420 0.0593 0.0897 0.1914 0.0335 0.0118
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Table 3
ARFIMAC(1, d, 0) model with Gaussian and ARCH errors, d = 0.45,
¢, = —0.7,0.7, and sample size n = 300

. d dp, d d . N
Estimator Per Fers Lo fob dox dyr

g(n) nO.S n0.7 nO.S n0.7 n0.7 n0.8 nO.S n0.7 _ _

Gaussian error, d = 0.45 and ¢, = —0.7
d(mean) 0.4660 0.4156 0.4079 0.3961 0.3249 0.2593 0.4580 0.4044 0.5412 0.4114

MSE 0.0428 0.0114 0.0292 0.0098 0.0186 0.0398 0.0626 0.0148 0.0126 0.0034
o —0.6531 —0.6688 —0.6354 —0.6616 —0.6177 —0.5513 —0.6225 —0.6579 —0.8905 —0.6823
MSE 0.0440 0.0068 0.0332 0.0064 0.0118 0.0336 0.0680 0.0102 0.0549 0.0024

ARCH error, with oy =1 and o; = 0.2, d =045, and ¢, = —0.7
d(mean) 0.4416  0.3993 0.3891 0.3840 0.3157 0.2437 0.4357 0.3897 0.4480 0.4137

MSE 0.0392  0.0129 0.0284 0.0140 0.0212 0.0456 0.0627 0.0170 0.0051 0.0035
N —0.6700 —0.6758 —0.6578 —0.6754 —0.6366 —0.5851 —0.6459 —0.6686 —0.7639 —0.6816
MSE 0.0624  0.0505 0.0525 0.0496 0.0496 0.0588 0.1061 0.0593 0.0708 0.0029

Gaussian error, d = 0.45 and ¢, = 0.7
d(mean) 0.5806 0.8313 0.5233 0.8122 0.4622 0.4822 0.6098 0.8824 0.8659 0.3159

MSE 0.0611 0.1557 0.0331 0.1379 0.0004 0.0011 0.1013 0.2003 0.1965 0.0250
(?)1 0.5680 0.3287 0.6267 0.3465 0.6997 0.6802 0.5375 0.2807 0.2972 0.7891
MSE 0.0567 0.1489 0.0320 0.1327 0.0019 0.0023 0.0889 0.1890 0.2062 0.0120

ARCH error with oy =1 and o, = 0.2, d = 0.45, and ¢, =0.7
d(mean) 0.5837 0.8285 0.5245 0.8109 0.4618 0.4820 0.6250 0.8821 0.7750  0.3205

MSE 0.0585 0.1538 0.0317 0.1369 0.0004 0.0011 0.0999 0.2001 0.1339 0.0245
o, 0.5687 0.3354 0.6262 0.3514 0.7007 0.6812 0.5264 0.2855 0.3955 0.7850
MSE 0.0556 0.1448 0.0314 0.1302 0.0023  0.0027 0.0887 0.1855 0.1557 0.0114

¢ = £0.2 are available upon request. By increasing the bandwidth from g(n) = n®>,
the semiparametric estimates overestimate the true parameter and the bias becomes
significantly large. This overestimation gives estimate values in the non stationary
region. There is an increasing of the MSE of AR estimates which is associated with
the large sample variance of the AR estimate. The effect of positive AR coefficient
in the estimates may be explained by the fact it produces large contribution to
the spectral density for those frequencies away from the zero frequency. In the
parametric group, positive and large AR parameter value seems to affect the
estimates specially those from the ML estimator. In this method, the absolute bias
increases substantially. For negative values of ¢, the biases of both parameters (d
and ¢) are relatively small (negative bias for d and positive for ¢) while, for positive
¢ there is a large positive bias for d and, consequently, large negative bias for ¢. In
general, for the process with strong memory (d = 0.45), there is a similar behavior
when d = 0.2, however, its estimates strongly suggest a non stationary memory
parameter value.

In general, the presence of heteroskedastic errors in the ARFIMA model does
not affect the estimates. The biases seem to be intrinsically related to the AR
parameter values.

Table 4 shows the results of ARFIMA(O, d, 1) model. For negative 0, it is
observed similar behavior of the estimates from the previous model when ¢ < 0.
The biases are generally small and, the empirical values of MSE are nearly identical.
In the semiparametric methods, the values of the bandwidth does not affect
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Table 4
ARFIMA(O0, d, 1) model with Gaussian and ARCH errors, d = 0.2, 6, = —0.7, 0.7,
and sample size n = 300

dPer dPer N dLob dRob

Estimator drox dyr
a(n) 205 07 205 207 07 208 205 07 - v

Gaussian error, d = 0.2 and 0, = —0.7
Zi(mean) 0.2072 0.1567 0.2438 0.2250 0.2101 0.2857 0.2066 0.2504 0.2002 0.1806

MSE 0.0413  0.0281 0.0123 0.0076  0.0049 0.0091 0.0715 0.0158 0.0031 0.0033
0, —0.6917 —0.6805 —0.7140 —0.6890 —0.6956 —0.6659 —0.6872 —0.6778 —0.6933 —0.7086
MSE 0.0096 0.0046 0.0062 0.0033 0.0026 0.0038 0.0173 0.0053 0.0026 0.0027

ARCH error with oy =1 and «; =0.2, d =0.2, and 0, = —0.7
d(mean) 0.2149 0.2478 0.1591 0.2266  0.2109 0.2846 0.2193 0.2554 0.1981 0.1821

MSE 0.0357 0.0114 0.0249 0.0070  0.0047 0.0091 0.0598 0.0150 0.0037 0.0037
0, —0.6869 —0.6775 —0.7121 —0.6862 —0.6933 —0.6645 —0.6798 —0.6742 —0.6938 —0.7073
MSE 0.0102  0.0048 0.0060 0.0038 0.0032 0.0042 0.0179 0.0056 0.0027 0.0024

Gaussian error, d = 0.2 and 6, = 0.7
Zl(mean) 0.0688 —0.1807 0.0218 —0.1968 —0.3365 —0.5121 0.0336 —0.2333 0.1074 0.0125

MSE 0.0561 0.1555 0.0549 0.1645 0.3074 0.5200 0.0889 0.2014 0.0449 0.0656
@1 0.5507 0.2668 0.5111 0.2471 0.0353 —0.2481 0.4965 0.1901 0.6015 0.5196
MSE 0.0662 0.2074 0.0636 0.2188 0.4911 0.9466 0.1198 0.2903 0.0418 0.0632

ARCH error with ¢y =1 and o, =0.2, d =0.2, and 6, =0.7
d(mean) 0.0736 —0.1791  0.0309 —0.1953 —0.3381 —0.5139 0.0308 —0.2344 0.1020 0.0253

MSE 0.0515 0.1536 0.0506 0.1624 0.3076  0.5252 0.0894 0.2017 0.0482  0.0607
0, 0.5555 0.2635 0.5205 0.2440 0.0232 —0.2602 0.4914 0.1814 0.5982  0.5332
MSE 0.0631 0.2124 0.0588 0.2228 0.5115 0.9728 0.1262 0.3022 0.0491 0.0597

the estimates. The parametric methods presented the smallest MSE. There is no
deterioration in the performance of the estimators under ARCH errors.

When 60 > 0, the picture of the estimation results changes dramatically. The bias
of d is very large providing evidence that the biases of the parameters are directly
related to the sign of the short-memory model.

When dealing with both short-memory parameters the picture is presented in
Tables 5 and 6. The performance of the methods are very similar to the models
previously considered. The biases are directly related to the sign and magnitude of
the ARMA coefficients and the size of the bandwidth. The ML estimator loses a lot
of its superiority for some AR and MA parameter combinations. The estimates of
the ARFIMA parameters under Gaussian errors are similar to those seen elsewhere.

In general, the methods seem to be robust in the presence of ARCH errors and
the bias and MSE become large in the presence of AR and/or MA parameters with
values close to the boundary stationary conditions.

The next two tables show the estimation results from the ARFIMA(O, d, 0)
and ARFIMAC(1, d, 0) models with GARCH(1, 1) errors. For comparison purpose,
our model is the same considered by Ling and Li (1997). From Tables 7 and 8,
we notice similar performance with the previous cases. In the semiparametric class
with the smallest bandwidth, the bias and MSE are generally small. By increasing
the bandwidth, the biases of the empirical estimates increase substantially. The
parametric dp,, estimate has the smallest bias and MSE, however, its parametric
method competitor performs poorly. The dj, estimates are very close to the
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Table 5
ARFIMA(1, d, 1) model with Gaussian and GARCH(1, 0), errors, d = 0.2,
¢, =-0.7,0.7, 0, = 0.2, and n = 300

dPer dPer N dLUb anh

Estimator dox dyr
() 05 W07 205 07 W07 208 05 W07 - -

Gaussian error, d = 0.2, ¢; = —0.7, and 0, =0.2
d(mean) 0.1973 0.1151 0.1438 0.0942 0.0704 —0.1728 0.1918 0.0990 0.2167 0.1490

MSE 0.0372  0.0158 0.0275 0.0175 0.0251 0.1474 0.0694 0.0217 0.0206 0.0108
o —0.6981 —0.7152 —0.7113 —0.7180 —0.7242 —0.7537 —0.6860 —0.7202 —0.6984 —0.7033
MSE 0.0145 0.0034 0.0037 0.0036 0.0038 0.0526 0.0399 0.0034 0.0031 0.0028
@1 0.1927 0.0899 0.1259 0.0647 0.0305 —0.2969 0.1883 0.0653 0.2137 0.1484
MSE 0.0576  0.0275 0.0474 0.0302 0.0439 0.2852 0.1001 0.0393 0.0297 0.0183

ARCH error with oy =1 and «; =0.2, d =0.2, ¢, = —0.7, and 6, =0.2
d(mean) 0.1794  0.1092 0.1295 0.0906 0.0677 —0.1831 0.1834 0.0974 0.1858  0.1422

MSE 0.0397 0.0191 0.0288 0.0190 0.0265 0.1561 0.0727 0.0251 0.0151  0.0123
o, —0.7000 —0.7162 —0.7117 —0.7192 —0.7237 —0.7614 —0.6844 —0.7194 —0.7070 —0.7033
MSE 0.0132  0.0040 0.0048 0.0038 0.0045 0.0420 0.0485 0.0046 0.0070 0.0032
0, 0.1734 0.0845 0.1117 0.0623 0.0305 —0.3165 0.1828 0.0663  0.1805 0.1437
MSE 0.0611 0.0334 0.0514 0.0330 0.0471 0.3014 0.1040 0.0436 0.0265 0.0211

Gaussian error, d = 0.2, ¢, =0.7, and 6, =0.2
d(mean) 0.3232  0.5304 0.2722 0.5145 0.3854 0.4201 0.3674 0.5782 0.1649 —0.0519

MSE 0.0603 0.1196 0.0313 0.1058 0.0355 0.0489 0.1048 0.1571 0.0582 0.1138
g?)l 0.5120  0.2685 0.5826 0.2966 0.5063 0.4634 0.4675 0.1875 0.6472 0.7860
MSE 0.1031 0.2386 0.0511 0.2059 0.0554 0.0782 0.1472 0.3204 0.0681 0.0337
@)1 0.1285 0.0847 0.1504 0.0983 0.1829 0.1735 0.1244 0.0487 0.1094 0.0437
MSE 0.0313 0.0511 0.0222 0.0470 0.0249 0.0290 0.0419 0.0622 0.0380 0.0398

ARCH error with ¢y =1 and o, =0.2, d =0.2, ¢; =0.7, and 0, =0.2
d(mean) 0.3245 0.5371 0.2662 0.5172 0.3869 0.4199 0.3593 0.5828 0.1052 —0.0590

MSE 0.0581 0.1239 0.0297 0.1076  0.0361  0.0488 0.0921 0.1600 0.0674 0.1135
o, 0.5179  0.2549 0.5944 0.2961 0.5098 0.4736 0.4862 0.1792 0.6904 0.7984
MSE 0.1007  0.2589 0.0492 0.2131 0.0571 0.0763 0.1325 0.3317 0.0597 0.0314
b, 0.1386  0.0802 0.1586 0.1023  0.1899 0.1855 0.1387 0.0470 0.0984 0.0510
MSE 0.0326  0.0587 0.0244 0.0523 0.0296 0.0336  0.0389 0.0653 0.0429 0.0406

estimated parameter values given by Ling and Li (1997). In general, the estimates
by semiparametric and the d rox approaches are not affected by GARCH error type.
This result is consistent with those that have been presented in Ling and Li (1997)
and Henry (2001a).

5. Concluding Remarks

Through the simulation studies this article shows that a class of parametric
and semiparametric memory parameter estimators are robust with the presence
of ARCH and GARCH errors. These empirical results evidence that the
asymptotic normality results for the investigated estimation methods still hold for
heteroscedastic errors. The biases are a consequence of the characteristics of the
estimators and they depend on the structure of the ARFIMA model. In this context,
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Table 6
ARFIMA(1, d, 1) model with Gaussian and GARCH, errors, d = 0.2, ¢, = 0.2,
0, = —0.7,0.7, and n = 300

der dPer N dLab dR()h

Estimator dp,y, dyr
¢(n) n0s n07 n0s 707 n07 n08 00 n07 _ _

Gaussian error, d =0.2, ¢; =0.2, and 0, = —-0.7
[i(mean) 0.2141  0.2935 0.1578 0.2707 0.2487 0.3419 0.2039 0.3051 0.1035 0.0631

MSE 0.0382 0.0184 0.0261 0.0112 0.0059 0.0212 0.0677 0.0239 0.0689 0.0665
(2)1 0.1937 0.0911 0.2539 0.1155 0.1414 0.0407 0.2176 0.0803 0.2850 0.3274
MSE 0.0555 0.0281 0.0429 0.0193 0.0121 0.0309 0.0918 0.0340 0.0758 0.0703
@1 —0.7018 —0.7143 —0.6927 —0.7094 —0.7050 —0.7200 —0.7005 —0.7162 —0.6912 —0.7022
MSE 0.0041  0.0037 0.0040 0.0038 0.0036 0.0038 0.0046 0.0039 0.0038 0.0032

ARCH error with oy =1 and o =0.2, d =0.2, ¢; =0.2, and 0, = —0.7
Zi(mean) 0.2253 0.3014 0.1744 0.2807 0.2515 0.3453 0.2183 0.3133 0.0399 0.0796

MSE 0.0378  0.0201 0.0232  0.0129 0.0064 0.0223  0.0647 0.0257 0.1191 0.0578
o 0.1893  0.0932 0.2443 0.1148 0.1478 0.0479 0.2093 0.0823 0.3549 0.3193
MSE 0.0553  0.0287 0.0399 0.0199 0.0126  0.0288 0.0886 0.0342 0.1191 0.0655
0, —0.7012 —0.7116 —0.6915 —0.7071 —0.7031 —0.7160 —0.7001 —0.7133 —0.6902 —0.6998
MSE 0.0035 0.0031 0.0036 0.0033 0.0030 0.0031 0.0040 0.0033 0.0034 0.0031

Gaussian error, d =0.2, ¢; = 0.2, and 0, =0.7
&’(mean) 0.0883 —0.1313 0.0367 —0.1509 —0.2539 —0.3310 0.0586 —0.1767 0.1741 —0.0519

MSE 0.0500 0.1197 0.0485 0.1297 0.2227 0.2931 0.0835 0.1544 0.0646 0.1138
o 0.1669  0.0667 0.1572 0.0314 0.2171 0.4149 0.1738 0.0923 0.0836  0.7860
MSE 0.0334  0.0677 0.0288 0.0716 0.1601 0.2479 0.0553  0.0922 0.0532 0.0337
0, 0.5482 0.2112 0.4879 0.1532 0.2196 0.3298 0.5204 0.1797 0.5580 0.0437
MSE 0.0879  0.2937 0.1009 0.3435 0.3426 0.2975 0.1146 0.3394 0.1486 0.0398

ARCH error with oy =1 and o; =0.2, d =0.2, ¢; =0.2, and 0, =0.7
d(mean) 0.0813 —0.1283  0.0330 —0.1492 —0.2516 —0.3328 0.0492 —0.1730 0.1313  0.0796

MSE 0.0519 0.1183 0.0497 0.1287 0.2209 0.2969 0.0864 0.1524 0.0621 0.0578
(2)1 0.1781 0.0690 0.1604 0.0362 0.2317 0.4367 0.1893 0.1038 0.0988 0.3193
MSE 0.0356 0.0625 0.0318 0.0688 0.1655 0.2634 0.0592 0.0934 0.0666 0.0655
0, 0.5530 0.2147 0.4878 0.1573  0.2310 0.3499 0.5266 0.1929 0.5342  0.6998
MSE 0.0814 0.2875 0.1026 0.3384 0.3355 0.2888 0.1076  0.3292 0.1719  0.0031
Table 7
ARFIMA(0, d, 0)-GARCH(1, 1) model, with d = 0.3 and sample size n = 300
d d d d . .

Estimator Per PerS Lob Rob d]:”x dML
g(l’l) nO.S n0.7 nO.S n0.7 n0.7 nO.S nO.S I’lO'7 _ _

GARCH error, with oy =0.4, o, = 0.3, and f;, =0.3
Zi(mean) 0.3050 0.3099 0.2565 0.2912 0.2546  0.2629 0.3067 0.3111 0.3089  0.2909
bias 0.0050 0.0099 —0.0435 —0.0088 —0.0454 —0.0371 0.0067 0.0111 0.0089 —0.1591
sd 0.1916 0.0985 0.1468 0.0816 0.0642 0.0511 0.2341 0.1055 0.0566  0.0537
MSE 0.0366 0.0098  0.0234  0.0067 0.0062 0.0040 0.0547 0.0112 0.0033  0.0282
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Table 8
ARFIMA(1, d, 0)-GARCH(1, 1) model, with d = 0.3, ¢, = 0.5, and
sample size n = 300

. d dp, d d . N
Estimator Per Fers Lo fob dox dyr

g(n) nO.S n0.7 nO.S n0.7 n0.7 n0.8 nO.S n0.7 _ _

GARCH error, with oy = 0.4, o, =0.3, and f; = 0.3
d(mean) 0.3227 0.4581 0.2734 0.4422 0.3538 0.4161 0.3247 0.4798 0.2862 0.1455

bias 0.0227  0.1581 —0.0266 0.1422 0.0538 0.1161 0.0247 0.1798 —0.0138 —0.1545
sd 0.1898 0.0949 0.1472 0.0786 0.0399 0.0205 0.2290 0.1007 0.1471  0.1652
MSE 0.0364 0.0340 0.0223  0.0264 0.0045 0.0139 0.0529 0.0424 0.0217 0.0512
$i(mean)  0.4697 0.3362 0.5179 0.3503 0.4391 0.3780 0.4702 0.3156 0.5002 0.6281
bias —0.0303 —0.1638  0.0179 —0.1497 —0.0609 —0.1220 —0.0298 —0.1844 0.0002 0.1281
sd 0.1900  0.1070  0.1556 0.0916 0.0658 0.0555 0.2281 0.1111 0.1584  0.1520
MSE 0.0369 0.0382 0.0244 0.0308 0.0080 0.0180 0.0528 0.0463 0.0250 0.0395

the positive parameters of the AR and MA components contribute to a significant
increase of the bias when their values are close to non stationary conditions. This
can be explained by the shape of the spectral density when the AR and/or MA
parameters are present in the model. Some findings presented here are in accordance
with other that have recently appeared in the literature of volatility long-memory
models.
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