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1. Introduction to the F.E.M.U problem

Definition: The Finite-element Model Updating problem is

the problem of updating a finite-element generated second-

order model (M, D, K) described by

Mq̈(t) + Dq̇(t) + Kq(t) = Bu(t)

y(t) = C1q(t) + C2q̇(t)

using modal data acquired from a physical vibration test so

that innacurate modeling assumptions can be corrected in a

new updated model (M̃, D̃, K̃).
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Motivation:

Very often a few experimentally measured eigenvalues

and eigenvectors of a vibrating structure do not match

very well with those computed by Finite Element

techniques.

Approach:

A vibration engineer then tries to update the theoretical

Finite Element model, that is, the matrices (M, D, K).

Successful ??

YES: The updated theoretical model is valid for future use.

NO: Try a different update OR rebuild the whole model

under more realistic assumptions.
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2. Orthogonality relations for symmetric

positive-definite generalized first-order pencils

An eigenvalue-eigenvector pair (λ, x) of a pair of matrices

(A, B) (or equivalently, of a linear pencil A− λB) verifies

(A− λB)x = 0. (1)

A very simple result in Linear Algebra is that if A and B are

symmetric matrices and the matrices X and Λ are defined as

above, then

XTAX = D1 (2)

XTBX = D2. (3)

Proof: Consider the eigendecomposition AX = BXΛ. Mul-

tiplying on the left by XT gives

XTAX = XTBXΛ.

Since the left-hand side is symmetric, we have

(XTBX)Λ = Λ(XTBX) (4)

and therefore XTBX commutes with a diagonal matrix having

nonzero entries, and then XTBX is itself a diagonal matrix,

say

XTBX = D2. (5)

Therefore,

XTAX = D2Λ = D1, (6)

another diagonal matrix. �
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Consequence in L.A. theory:

The Generalized Rayleigh Quotient theorem.

If A, B ∈ R
n×n are symmetric matrices and x ∈ R

n is given,

then

λ = r(x) =
xTAx

xTBx
(7)

minimizes f (x) = ‖(A− λB)x‖B, where ‖z‖B = zTB−1z.

�

In particular, if x = xi, i = 1, 2, . . . , n, are the eigenvectors

of the pair (A, B) then

λi =
xT

i Axi

xT
i Bxi

.



1
st LNCC Meeting on Computational Modelling, August 9 - 12, 2004.

3. Applications to the Finite-element model

updating problem

The F.E.M.U problem can be mathematically defined as fol-

lows:

Given a symmetric positive semidefinite model (M, D, K)

with a set {λk, xk}, k = 1, . . . , m of eigenvalues and cor-

responding eigenvectors, and a measured set {σk, yk}, k =

1, . . . , m of natural frequencies and correspondent mode shapes,

find an updated symmetric model (M̃, D̃, K̃) such that

• the subset {λk, xk}, k = 1, . . . , m is replaced by {σk, yk}, k =

1, . . . , m as eigenvalues and corresponding eigenvectors of

the new model (M̃, D̃, K̃)

• the remaining subset of 2n−m eigenvalues and correspond-

ing eigenvectors of the new model (M̃, D̃, K̃) are the same

as those of (M, D, K).

The methods presented in the literature, so far,

cannot guarantee the second item above, that is,

the invariance of the unmeasured spectrum.

It is said that they allow “spill-over” to happen.
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In the following, we are gonna show how the results on or-

thogonality relations of a second-order pencil can be adapted

to solve the finite-element model updating problem in the

particular case that no damping forces are considered, that is,

in the case D = 0.

Theorem 3.1 : Orthogonality Relations for Symmetric

Semidefinite Undamped Quadratic Pencil

Let P (λ) = λ2M + K be a symmetric semidefinite pencil

with distinct nonzero eigenvalues and let (Λ, X) be a com-

pact representation of the finite eigenstructure of this pencil,

verifying

MXΛ2 + KX = 0 (8)

where X ∈ R
n×n and Λ ∈ C

n×n (Λ2 ∈ R
n×n is diagonal with

nonpositive entries) under the convention that every pair of

eigenvalues λ = ±i α corresponding to an eigenvector x is

represented only once when assembling in (8). This compact

representation makes the matrices X and Λ have at most n

rows and n columns, instead of their usual dimensions for the

quadratic eigenvalue problem for the pencil Q(λ) = λ2M +K.

Then the matrices D1 and D2 defined by

D1 = XTMX (9)

and

D2 = XTKX (10)

are diagonal and

D2 = −D1Λ
2. (11)

�
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Corollary 3.1: Suppose that the hypothesis of Theorem 5.1

holds, let the matrices X and Λ be partitioned as

X =
[

X1 X2

]

, Λ =

[

Λ1

Λ2

]

(12)

and assume that Λ1 and Λ2 do not have a common nonzero

entry. Then

XT
1 MX2 = 0 (13)

and

XT
1 KX2 = 0. (14)

�
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F.E.M.U via Direct Methods Using Modal Data

Assume that only m natural frequencies and corresponding

mode shapes vectors are to be updated and let (Λ, X) be a fi-

nite compact representation of the eigenstructure of the model;

therefore, matrices Λ and X satisfy (8) and the conventions es-

tablished before hold. Partition Λ and X as follows:

Λ =

[

Λ1

Λ2

]

, X =
[

X1 X2

]

(15)

where Λ1 ∈ C
m×m, X1 ∈ C

n×m, Λ2 ∈ C
(n−m)×(n−m), X2 ∈

C
n×(n−m), and such that

• (Λ1, X1) corresponds to the set of frequencies and mode

shapes that needs to be updated

• (Λ2, X2) corresponds to the set of frequencies and mode

shapes that is to remain unchanged.

Let Σ2
1 ∈ R

m×m denote the matrix that contains the informa-

tion about the measured frequencies and let

Y1 =

[

Y11

Y12

]

(16)

be the matrix of corresponding mode shapes, where Y11 ∈
R

m×m and Y12 ∈ R
(n−m)×m. It is assumed that only Y11 is

known; the method itself conveniently constructs Y12.
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Theorem 3.2 : Consider the positive semidefinite model

(M, D, K) with no damping, that is, D = 0. Let matrices Λ ∈
R

n×n and X ∈ R
n×n , which represent the modal structure of

the model, satisfy (8) and be partitioned as in (15). Suppose

that the diagonal submatrices Λ1 and Λ2 do not have a common

nonzero entry. Then, for every symmetric matrix Φ ∈ R
m×m,

the updated symmetric matrix K̃ defined by

K̃ = K −MX1ΦXT
1 M (17)

satisfies

MX2Λ
2
2 + K̃X2 = 0. (18)

�
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In other words, Theorem 3.2 states that the symmetric updat-

ing of K by (17) is guaranteed to produce no spill-over.

We now show how the symmetric matrix Φ can be chosen so

that the measured eigenvalues and eigenvectors are contained

in the updated model; that is, with such choice of Φ, the matrix

K̃ is such that

MY1Σ
2
1 + K̃Y1 = 0. (19)

Substituting the expressions of Y1 from (16) and K̃ from (17)

in (19), we have

M

[

Y11

Y12

]

Σ2
1 + K

[

Y11

Y12

]

= MX1ΦXT
1 M

[

Y11

Y12

]

. (20)

Assume that MX1 has full rank. Then the QR factorization

of this product defines orthogonal matrices U1 ∈ R
n×m and

U2 ∈ R
n×(n−m) and an upper triangular matrix Z ∈ R

m×m

satisfying

MX1 =
[

U1 U2

]

[

Z

0

]

. (21)

Let M =
[

M1 M2

]

and K =
[

K1 K2

]

, where M1, K1 ∈
R

n×m and M2, K2 ∈ R
n×(n−m).

After premultiplication by
[

U1 U2

]T
and using (21) with

the above partitioning of M and K, equation (20) can be

rewritten as
[

UT
1

UT
2

]

(M1Y11 + M2Y12) Σ2
1+

[

UT
1

UT
2

]

(K1Y11 + K2Y12) =

[

Z

0

]

ΦXT
1 MY1.

(22)
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Therefore, a solution Φ ∈ R
m×m to (20) exists only if

UT
2 (M1Y11 + M2Y12) Σ2

1 = −UT
2 (K1Y11 + K2Y12),

which is equivalent to

UT
2 M2Y12Σ

2
1 + UT

2 K2Y12 = −UT
2 (K1Y11 + M1Y11Σ

2
1). (23)

Once this equation is solved for Y12, we can form the matrix

Y1 using (16) and then compute Φ ∈ R
m×m from

Y T
1 MY1Σ

2
1 + Y T

1 KY1 = (Y T
1 MX1)Φ(Y T

1 MX1)
T (24)

which was obtained by premultiplying (19) by Y T
1 . In prin-

ciple, equation (24) gives just a least-squares solution of (23).

However, once (23) is satisfied, (24) gives an exact solution of

(19).

However, the symmetry of the solution Φ will only be guar-

anteed if the matrix Y1 is updated before the computation of

Φ:

Y T
1 MY1 = D1 (25)

Y T
1 KY1 = D2 (26)

(27)

where D1 and D2 are two diagonal matrices of order m.
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Algorithm 3.2 : Model Updating of an Undamped Sym-

metric Positive Semidefinite Model Using Incomplete Mea-

sured Data

Input: The symmetric matrices M, K ∈ R
n×n; the set of

m analytical frequencies and mode shapes to be updated; the

complete set of m measured frequencies and mode shapes from

the vibration test.

Output: Updated stiffness matrix K̃.

Assumption: M = MT ≥ 0 and K = KT ≥ 0.

Step 1: Form the matrices Σ2
1 ∈ R

m×m and Y11 ∈ R
m×m

from the available data. Form the corresponding matrices Λ2
1 ∈

R
m×m and X1 ∈ R

n×m.

Step 2: Compute the matrices U1 ∈ R
n×m, U2 ∈ R

n×(n−m),

and Z ∈ R
m×m from the QR factorization:

MX1 =
[

U1 U2

]

[

Z

0

]

.

Step 3: Partition M =
[

M1 M2

]

, K =
[

K1 K2

]

where

M1, K1 ∈ R
n×m.

Step 4: Solve the following matrix equation to obtain Y12 ∈
R

(n−m)×m:

UT
2 M2Y12Σ

2
1 + UT

2 K2Y12 = −UT
2 [K1Y11 + M1Y11Σ

2
1]

and form the matrix

Y1 =

[

Y11

Y12

]

.

Step 5: Compute the matrix L ∈ R
m×m and the diagonal

matrix J ∈ R
m×m such that LJLT = Y T

1 MY1 is a symmetric
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(LDLT ) factorization of Y T
1 MY1. Update the matrix Y1 by

Y1 ← Y1(L
−1)T .

Step 6: Compute Φ ∈ R
m×m by solving the following system

of equations:

(Y T
1 MX1)Φ(Y T

1 MX1)
T = Y T

1 MY1(Σ1)
2 + Y T

1 KY1 .

Step 7: Update

K̃ = K −MX1ΦXT
1 M .
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4. Numerical Example: Consider the symmetric quadratic

pencil P (λ) = λ2M + K where

• Symmetric positive definite mass matrix M ∈ R
66×66 is

the MatrixMarket matrix bcsstm02.

• Symmetric dense stiffness matrix K ∈ R
66×66 is the Ma-

trixMarket matrix bcsstk02.

The smallest 5 eigenvalues pairs were computed using Matlab

{ ±
√

43.2650i ,±
√

43.8497i ,±
√

49.4537i ,±
√

565.6758i ,±
√

570.6518i }
and therefore

(Λ1)
2 =















−43.2650 0 0 0 0

0 −43.8497 0 0 0

0 0 −49.4537 0 0

0 0 0 −565.6758 0

0 0 0 0 −570.6518















and the corresponding 5 eigenvectors (matrix X1) were fully

computed ( Matlab built-in function eig ).

We choose

Y11 =















1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1
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(Σ1)
2 =















−80 0 0 0 0

0 −120 0 0 0

0 0 −160 0 0

0 0 0 −200 0

0 0 0 0 −240















.

The presented algorithm gives the following updating matrix

Φ:

Φ =














−114.436272 8.842767 −40.686540 −29.990338 −7.358168

8.842767 −122.943140 10.005896 7.772494 64.330458

−40.686540 10.005896 −126.878651 −13.794853 −6.919918

−29.990338 7.772494 −13.794853 394.208825 −5.427779

−7.358168 64.330458 −6.919918 −5.427779 442.945273















.

The corresponding updated matrix K̃ can be shown to verify

‖MY1(Σ1)
2 + K̃Y1‖F = 1.4062× 10−9

‖MX2(Λ2)
2 + K̃X2‖F = 1.8533× 10−10

and therefore

• the eigenstructure (Σ1, Y1) was accurately assigned.

• The unmeasured eigenvalues and eigenvectors remained

unchanged, that is, no spill over occurred.

The next figure shows the magnitudes of the differences be-

tween the entries of the original and updated stiffness matrices.
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5. What about non-conservative S.O. systems ?

Datta, Elhay and Ram (1997): Orthogonality Re-

lations for the Symmetric Quadratic Pencil

Let P (λ) = λ2M + λD + K be a symmetric pencil having

distinct generalized eigenvalues and let (Λ, X) be a finite repre-

sentation of the eigenstructure of this pencil. Let the matrices

D1 and D2 be defined by

D1 = (XΛ)TMXΛ−XTKX (28)

and

D2 = (XΛ)TDXΛ + (XΛ)TKX + XTKXΛ (29)

and

D3 = (XΛ)TMX + XTMXΛ + XTDX. (30)

are diagonal matrices.
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Consequence in theory:

Rayleigh Quotient-like expressions

λi =
xT

i (λ2
iM −K)xi

xT
i (2λiM + D)xi

(31)

−λi =
xT

i (λ2
iD + 2λiK)xi

xT
i (λ2

iM −K)xi

(32)

−λ2
i =

xT
i (λ2

iD + 2λiK)xi

xT
i (2λiM + D)xi

(33)

for i = 1, 2, . . . , n.
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Theorem 5.1:

Consider a positive semidefinite model (M, D, K) and let

Λ ∈ R
n×n and X ∈ R

n×n satisfy

MXΛ2 + DXΛ + KX = 0 (34)

and be partitioned as

Λ =

[

Λ1

Λ2

]

, X =
[

X1 X2

]

(35)

where Λ1 ∈ C
m×m, X1 ∈ C

n×m, Λ2 ∈ C
(n−m)×(n−m), X2 ∈

C
n×(n−m).

Suppose that Λ1 and Λ2 do not have a common eigenvalue.

Let Φ ∈ C
m×m be any symmetric matrix. Define

M̃ = M −MX1Λ1Φ(X1Λ1)
TM

D̃ = D + MX1Λ1ΦXT
1 K + KX1Φ(X1Λ1)

TM

K̃ = K −KX1ΦXT
1 K.

(36)

Then the updated model (M̃, D̃, K̃) is symmetric and the un-

measured frequencies and mode shapes of the original model

remain unchanged; that is

M̃X2Λ
2
2 + D̃X2Λ2 + K̃X2 = 0 .
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6. Conclusion

• A method for Finite Element Model Updating of conserva-

tive second order systems is presented.

• This method is able to fit the vibration test data in the

model the best way (least-squares sense) and is also guar-

anteed to preserve the frequencies and mode shapes that

were not measured.

• The corresponding algorithm is rich in BLAS-3 compu-

tations, which brings high-performance strategies for its

computational solution.

• Some insight for the solution in the damped case was also

developed and further research is on the way.
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