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Abstract: The eigenvalue embedding problem addressed
in this paper is the one of reassigning a few troublesome
eigenvalues of a finite element model to some suitable chosen
ones, in such a way that the updated model keeps its symme-
try properties and the remaining large number of eigenval-
ues and eigenvectors of the original model is to remain un-
changed. This problem naturally arises in the process of sta-
bilizing large-scale system where dangerous vibrations had
been detected, and which can be responsible for undesired
phenomena such as resonance. The model matrices are up-
dated using low rank updates that keep their structure regard-
ing symmetry. Algorithm and numerical examples are pro-
vided. Numerical experimentation with real-life data, com-
ing from a well-known matrix web repository, have been pre-
sented.
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1. INTRODUCTION

Vibrating structures such as bridges, highways, buildings,
automobiles, air and space crafts, and others, are very often
modelled by using finite-element methods. These methods
generate structured systems of matrix second-order differen-
tial equations of the form

Mẍ + Cẋ + Kx = 0, (1)

where the coefficient matrices M , C and K are called, re-
spectively, the mass, damping and stiffness matrices. In most
applications, these matrices have very special exploitable
properties such as the symmetry, positive definiteness, spar-
sity and others. The matrix M is often symmetric positive
definite and denoted by M > 0; and K is usually symmet-
ric positive semi-definite, denoted by K ≥ 0. The damping
matrix C is hard to determine in practice; however, very of-
ten, it is regarded either as symmetric (CT = C) or skew-
symmetric (gyroscopic) (CT = −C), and there are impor-
tant applications for both cases in literature.

It is critical and very important that these properties are
preserved while solving a vibration problem or updating a
finite element model to achieve important design objectives.

The classical approach [18] is to use separation of vari-
ables, accounting for a solution x(t) = yeλt to (1), where y
is a constant vector. This leads to the quadratic matrix eigen-
value problem

F (λk)yk = 0, k = 1, 2, . . . , 2n,

where
F (λ) = λ2M + λC + K (2)

is the so-called associated quadratic matrix pencil. The quan-
tities (λk, yk), k = 1, . . . , 2n are the eigenpairs of the pencil
(2).

It is well-known [18] that the dynamical behavior of a vi-
brating system, which can show undesired phenomena such
as instability and resonance, is determined by their natu-
ral frequencies and corresponding mode shapes, that is, the
eigenvalues and eigenvectors of the pencil F (λ). It is de-
sirable that such behaviors are altered by making minimal
changes in the system and keeping the structural properties
invariant, as much as possible. Realistically, while dealing
with a large system, it is often found in practice that only
a small number of eigenvalues are “troublesome”. Thus, it
makes sense to reassign to suitable locations, chosen by the
designer, only these troublesome eigenvalues, while keeping
the remaining large number of eigenvalues unchanged.

In several recent papers [4–6, 8, 10] numerically effec-
tive methods have been developed for both partial pole-
placement and eigenstructure assignment problems. These
methods are designed directly in matrix second order setting
without resorting to first order transformations and without
requiring complete knowledge of the spectrum of the pen-
cil F (λ), as needed by the IMSC approach [18]. Although
they satisfy control design requirements and are practical for
control applications, unfortunately, they are not capable of
preserving the symmetry of the original model.

In a recent paper [2], a novel symmetry preserving partial
spectrum assignment method for vibrating system (1) was
proposed. Specifically, the following problem was solved:



Given system matrices M , C, and K of the model (1)
with M = MT > 0 and K = KT > 0, and C is sym-
metric, a part of the spectrum {λ1, ..., λr}, r ≤ 2n of
F (λ), and a set of r complex numbers {µ1, . . . , µr};
both the sets {λ1, . . . , λr} and {µ1, . . . , µr} closed
under complex conjugation, find real symmetric matri-
ces Mnew, Knew and Cnew such that the spectrum of Fnew =
λ2Mnew +λCnew +Knew is {µ1, . . . , µr, λr+1, . . . , λ2n}.

To distinguish the problem above from the partial pole-
placement problem in control theory, this problem was called
“Eigenvalue Embedding" Problem (EEP).

In this paper, we address the solution of the EEP for a gy-
roscopic second order system, meaning that its mass ,stiffness
and damping matrices satisfy M = MT > 0,K = KT > 0
and CT = −C, respectively.

Our major contributions to EEP in the gyroscopic setup,
presented in this paper are as follows:

(i) An algorithm and associated theories are developed, us-
ing low-rank updates that are symmetric for M and K,
but skew-symmetric for C.

(ii) The accuracy of the algorithm is demonstrated by using
both illustrative, and a real-life example with simulated
data from the Boeing Company.

(iii) A complete characterization of the eigenvectors of the
updated model is also given. Following the strategies
in [4] , a set of orthogonality relations between eigen-
vectors of gyroscopic second order systems is derived.
From that, we can show by mathematical proofs that the
eigenvectors corresponding to the eigenvalues which are
not reassigned also remain invariant.

The last property is highly significant from practical ap-
plications view points. It says that certain important physical
properties of the system are completely preserved by updat-
ing.

The solution proposed in this paper for EEP can be con-
sidered as a partial but meaningful solution to the Finite Ele-
ment Model Updating problem.

2. ORTHOGONALITY RELATIONS FOR THE GY-
ROSCOPIC CASE

We first observe that it can be shown, under the hypothesis
above for M , C and K, that the eigenvalues λ of the matrix
pencil defined in (2) are always purely imaginary, and there-
fore we can write λ = iβ, where β ∈ R is the so-called natu-
ral frequency. Let x be the corresponding unitary eigenvector
(it usually has complex components). Since λ̄ = −λ is also
an eigenvalue of the pencil (2), it gives a natural frequency
−β and a unitary eigenvector x̄. Consider the eigenspace
decomposition

MXΛ2 + CXΛ + KX = 0 (3)

where Λ is a block diagonal matrix containing 2 × 2 blocks,
corresponding to every purely imaginary pair of eigenvalues,
on its diagonal, while X is a block row matrix containing

n × 2 blocks containing information on the corresponding
eigenvectors.

This representation can be done in two ways: consider a
pair of purely imaginary eigenvalues ±βii and corresponding
eigenvectors yir±yii, where yir and yii are linearly indepen-
dent real vectors.

Complex representation: in this case, we use

Λi =

[

βii 0
0 −βii

]

, Xi =
[

yir + iyii yir − iyii

]

and therefore Λ = −Λ,ΛT = Λ.
Real representation: in this case, we use

Λi =

[

0 βi

−βi 0

]

, Xi =
[

yir yii

]

and therefore Λ = Λ,ΛT = −Λ.
Therefore, no matter the representation, we are sure to

have (Λ)T = −Λ.

Theorem 2.1 (Orthogonality Relations) If all the eigen-
values of the pencil (2) are nonzero, then

(i) the matrix

D1 = (XΛ)
T

M(XΛ) + X
T

KX

is block diagonal, where the size of each diagonal block cor-
responds to the multiplicity of the corresponding eigenvalue.

(ii) the matrix

D2 = (XΛ)T M(XΛ) + XT KX .

is block diagonal, where the size of each diagonal block cor-
responds to at most twice the multiplicity of the correspond-
ing eigenvalue.

Proof of (i): First, we left-multiply (3) by (XΛ)
T

to get

−(XΛ)
T

C(XΛ) = (XΛ)
T

M(XΛ)Λ + (XΛ)
T

KX. (4)

On another hand, we take the conjugate transpose of (3) and
right-multiply it by (XΛ) to get

−(XΛ)
T

CT (XΛ) = Λ
T

(XΛ)
T

M(XΛ)+X
T

KXΛ. (5)

Now, combining (4) and (5) and using CT = −C gives us

(XΛ)
T

M(XΛ)Λ + (XΛ)
T

KX =

−
[

Λ
T

(XΛ)
T

M(XΛ) + X
T

KXΛ
] (6)

and using Λ
T

= −Λ gives us
[

(XΛ)
T

M(XΛ) + X
T

KX
]

Λ = Λ
[

(XΛ)
T

M(XΛ) + X
T

KX
]

,

(7)
that is, D1Λ = ΛD1, meaning that D1 commutes with Λ.

If we assume that the eigenvalues along the diagonal of
Λ are placed so that purely imaginary eigenvalues of arbi-
trary multiplicity all group together, then we conclude that
D1 must be a block diagonal matrix, where the size r of each



block equals to the multiplicity of the corresponding eigen-
value.

In the particular case that all the eigenvalues of (1) are
distinct, D1 must be a diagonal matrix.

Proof of (ii): First, we left-multiply (3) by (XΛ)T to get

−(XΛ)T C(XΛ) = (XΛ)T M(XΛ)Λ + (XΛ)T KX. (8)

On another hand, we take the transpose of (3) and right-
multiply it by (XΛ) to get

−(XΛ)T CT (XΛ) = ΛT (XΛ)T M(XΛ)+XT KXΛ. (9)

Now, combining (8) and (9) and using CT = −C gives us

(XΛ)T M(XΛ)Λ + (XΛ)T KX =
−

[

ΛT (XΛ)T M(XΛ) + XT KXΛ
]

.
(10)

Now two cases must be considered:
(a) If complex representation is being used, then ΛT = Λ,

and we conclude
[

(XΛ)T M(XΛ) + XT KX
]

Λ =
−Λ

[

(XΛ)T M(XΛ) + XT KX
] (11)

meaning that D2Λ = −ΛD2, and then D2 is block diagonal,
having 2r×2r skew-symmetric blocks on its diagonal, corre-
sponding to purely imaginary eigenvalue pairs of multiplicity
r. In particular, if all the eigenvalues of (1) are nonzero and
distinct, then D2 is a diagonal block matrix with 2×2 blocks.

(b) If real representation is being used, then ΛT = −Λ,
and we conclude

[

(XΛ)T M(XΛ) + XT KX
]

Λ =
Λ

[

(XΛ)T M(XΛ) + XT KX
] (12)

meaning that D2Λ = ΛD2, and then D2 commutes with
Λ, which is a block diagonal matrix having skew-symmetric
2× 2 blocks on its diagonal. As a consequence, it is straight-
forward to show that D2 is also block diagonal, with diagonal
blocks with size equal to the multiplycity of the correspond-
ing eigenvalue.

�

Corollary 2.1 Let (Λ1, X1) e (Λ2, X2) be any eigenpairs
coming from disjoint self-conjugated sets of eigenvalues of
the pencil (2). Then

(Y1Λ1)
T MY2Λ2 + Y T

1 KY2 = 0. (13)

Proof: Let

Λ =





Λ1

Λ2

Λ3



 , X =
[

X1 X2 X3

]

(14)

where (Λ3, X3) contains all the other eigenpairs. Now sub-

stituting (14) in the result of part (ii) of Theorem 2.1 gives




(Y1Λ1)
T

(Y2Λ2)
T

(Y3Λ3)
T



 M
[

Y1Λ1 Y2Λ2 Y3Λ3

]

+





Y T
1

Y T
2

Y T
3



 K
[

Y1 Y2 Y3

]

=

= D2 =





P11 0 0
0 P22 0
0 0 P33





(15)

where D2 has block diagonal structure and P11 has the same
size as Λ1, as a consequence of the hypothesis.

Now equating the blocks for the first row, and second col-
umn, gives the desired result.

3. EMBEDDING OF A PAIR OF PURELY IMAGI-
NARY EIGENVALUES

The strategy applied here derives from the one presented
in [2].

The main goal is to show how to compute updated sym-
metric matrices Mnew, Knew and Cnew, such that a pair of
purely imaginary eigenvalues, λ = iβ1 and λ = −iβ1 is as-
signed to the spectrum of the corresponding Fnew(λ), while
the other eigenvalues of Fnew(λ) remain the same as those
of F (λ). For simplicity, a matrix pair (Λ, Y ) satisfying

MY Λ2 + CY Λ + KY = 0 (16)

will be called an eigenpair of F (λ). The notation spec (T )
stands for spectrum of the matrix T .

Let (iβ1, y1) be an isolated eigenpair of F (λ), with β1 ∈
R, β1 6= 0, and y1 = y1r + iy1i, y1r, y1i ∈ R

n. Suppose
that y1r and y1i are linearly independent, then y1 and ȳ1 are
linearly independent, and (−iβ1, ȳ1) is also an eigenpair of
F (λ). Since (iβ1, y1) is an eigenpair of F (λ), we have

MZ1Λ
2
1 + CZ1Λ1 + KZ1 = 0, (17)

where

Λ1 =

[

0 β1

−β1 0

]

and Z1 =
[

y1r y1i

]

. (18)

Thus, (Λ1, Z1) is an eigenpair of F (λ). Since K is posi-
tive definite, Π1 = Z>

1 KZ1 is also positive definite. Thus
there exists an orthogonal matrix S1 ∈ R

2×2, and a positive
diagonal matrix

D1 =

[

d1 0
0 d2

]

,

such that
Π1 = S1D1D1S

>

1 . (19)

Therefore, the definitions

Y1 = Z1S1D
−1

1 , (20)
Λ1 = D1S

>

1 Λ1S1D
−1

1 (21)

clearly imply



Y >
1 KY1 = I2

Λ1 =

[

d1 0
0 d2

] [

0 β1

−β1 0

] [

1

d1

0

0 1

d2

]

=
[

0 β1/d
−dβ1 0

]

,

where d = d1/d2.

Theorem 3.1 Given a nonzero real number σ1, there is a
real diagonal matrix EM such that µ1 = iσ1 and µ1 =
−iσ1 are eigenvalues of the matrix par (Λ1Λ

T
1 −EM ,ΛT

1 +
EMΘ1Λ

T
1 ), where Θ1 = Y T

1 MY1 and Λ1, Y1 are given by
(20) and (21), respectively.

Proof: Let

Θ1 = Y T

1 MY1 =

[

θ11 θ12

θ12 θ22

]

and EM =

[

ξ 0
0 η

]

∈ R
2×2,

(22)
where ξ, η are two unknowns. By expanding det(iσ1B −
A), where A = Λ1Λ

T
1 − EM , B = ΛT

1 + EMΘ1Λ
T
1 , and

matching real and imaginary parts to zero, we conclude that
ξ, η satisfy a system of two real two degree polynomials

{

p0 + p1ξ + p2η + p3ξη = 0
q0 + q1ξ + q2η + q3ξη = 0

(23)

where

p0 = 0 p1 = β2
1

p2 = −β2
1d p3 = 1 − d2

q0 = β2
1(β2

1 − σ2
1) q1 = −β2

1(1/d2 + θ11σ
2
1)

q2 = −β2
1(d2 + θ22σ

2
1) q3 = 1 − σ2

1β2
1 det(Θ1)

(24)

Theorem 3.2 (Embedding Purely Imaginary Eigenvalues)
Let Y1 and Λ1 be the same as those defined in (20) and (21).
Let EM be the same as in Theorem 3.1. Define

Mnew = M + MY1EMY T
1 M

Cnew = C + MY1ECY T
1 K − KY1E

T

C
Y T

1 M
Knew = K − KY1EKY T

1 K
(25)

where

EK = Λ−1

1 EMΛ−>

1 , EC = EMΛ−>

1 . (26)

Then the real symmetric pencil Fnew(λ) = λ2Mnew +
λCnew + Knew, has the following properties

(i) The eigenvalues of the matrix pencil Fnew(λ) are the
same as those of F (λ) except that the purely imaginary
eigenvalues λ1 = iβ1, λ̄1 = −iβ1 of F (λ) are replaced
by the purely imaginary numbers µ1 = iσ1, µ̄1 = −iσ1

(ii) The eigenvectors associated with the other eigenvalues
remain the same as those of the original pencil.

(iii) After the updating, the eigenvector matrix Z1, associ-
ated with λ1 and λ1 and which satisfies (17), , gets
changed into a matrix W1 given by W1 = Y1U1, where
Y1 is defined by (20) and for some matrix U1 ∈ R

2×2.

Proof of (i). From (17) and the definitions of Y1 and Λ1, we
see that (Λ1, Y1) is an eigenpair of F (λ) and therefore,

MY1Λ
2
1 + CY1Λ1 + KY1 = 0.

Now, letting Λ = λI2, we have

F (λ)Y1 = (λ2M + λC + K)Y1

= MY1Λ
2 + CY1Λ − MY1Λ

2
1 − CY1Λ1 =

= (MY1(Λ + Λ1) + CY1)(Λ − Λ1).
(27)

From (25)-(27), we obtain

Fnew(λ) = λ2Mnew + λCnew + Knew

= F (λ) + λ2MY1EMY >

1 M − λKY1E
>

C Y >

1 M

+λMY1ECY >

1 K − KY1EKY >

1 K

= F (λ) + λ(λMY1Λ1 − KY1)EKΛT

1 Y T

1 M +

+(λMY1Λ1 − KY1)EKY T

1 K

= F (λ) + (λMY1Λ1 − KY1)EK(Y T

1 K + λΛT

1 Y T

1 M) =

F (λ) + (MY1(Λ + Λ1) + CY1)Λ1EK(Y T

1 K + λΛT

1 Y T

1 M)

= F (λ) + F (λ)Y1(Λ − Λ1)
−1Λ1EK(Y T

1 K + λΛT

1 Y T

1 M)

= F (λ)
[

In + Y1(Λ − Λ1)
−1Λ1EK(Y T

1 K + λΛT

1 Y T

1 M)
]

and therefore

det(Fnew(λ)) = det(F (λ)) ×

det
[

In + Y1(Λ − Λ1)
−1Λ1EK(Y T

1 K + λΛT

1 Y T

1 M)
]

= det(F (λ)) det
[

I2 + (Λ − Λ1)
−1Λ1EK(Y T

1 KY1+

λΛT

1 Y T

1 MY1)
]

= det(F (λ)) det
[

(Λ − Λ1)
−1

]

×

det
[

Λ − Λ1 + Λ1EK(I2 + λΛT

1 Θ1)
]

=
det(F (λ)) det

[

λ(I2 + Λ1EKΛT
1 Θ1) − Λ1 + Λ1EK

]

(λ − iβ1)(λ + iβ1)

=
det(F (λ)) det

[

λ(I2 + EMΘ1) − Λ1 + EMΛ−T

1

]

(λ − iβ1)(λ + iβ1)

and finally, since det(Λ1) 6= 0, provided

det
[

λ(I2 + EMΘ1) − Λ1 + EMΛ−T

1

]

=
det

[

λ(ΛT
1 + EMΘ1Λ

T
1 ) − (Λ1Λ

T
1 − EM )

]

= 0
(28)

part (i) follows.
Proof of (ii). Let λ2 = iβ2 be another eigenvalue (distinct
from λ1) and let y2 = y2r + iy2i be the corresponding eigen-
vector. Define Y2 and Λ2 in the same way as Y1 and Λ1 have
been defined. Then (Λ1, Y1) and (Λ2, Y2) are eigenpairs of
F (λ), with Y >

1 KY1 = I2 and Y >
2 KY2 = I2. Thus

MnewY2Λ
2
2 + CnewY2Λ2 + KnewY2 =

(M + MY1EMY T
1 M)Y2Λ

2
2 + (K − KY1EKY T

1 K)Y2+
(C + MY1ECY T

1 K − KY1E
T

C
Y T

1 M)Y2Λ2

= MY1EMY T
1 MY2Λ

2
2 + MY1ECY T

1 KY2Λ2

−KY1E
T

C
Y1MY2Λ2 − KY1EKY T

1 KY2

= MY1Λ1EK(ΛT
1 Y T

1 MY2Λ2 + Y T
1 KY2)×

Λ2 − KY1EK(ΛT
1 Y T

1 MY2Λ2 + Y T
1 KY2) = 0

(29)



because the common term in parenthesis vanishes by Corol-
lary 2.1.

Proof of (iii). By Theorem 3.1, there exists a nonsingular ma-
trix V1 ∈ R

2×2 such that

(ΛT

1 + EMΘ1Λ
T

1 )V1Σ1 = (Λ1Λ
T

1 − EM )V1 (30)

and therefore

(I2 + EMΘ1)U1Σ1 = Λ1(I2 − EK)U1 (31)

where U1 = ΛT
1 V1. Now writing W1 = Y1U1 gives

MnewW1Σ
2
1 + CnewW1Σ1 + KnewW1

= (M + MY1EMY T
1 M)Y1U1Σ

2
1+

+(C + MY1ECY T
1 K − KY1E

T

C
Y T

1 M)Y1U1Σ1

+(K − KY1EKY T
1 K)Y1U1

= MY1(U1Σ
2
1 + EMΘ1U1Σ

2
1 + ECU1Σ1) + CY1U1Σ1+

KY1(−ET

C
Θ1U1Σ1 + U1 − EKU1)

= MY1(U1Σ
2
1 + EMΘ1U1Σ

2
1 + ECU1Σ1) + CY1U1Σ1+

+(−MY1Λ
2
1 − CY1Λ1)(−ET

K
ΛT

1 Θ1U1Σ1 + U1 − EKU1)
= MY1(U1Σ

2
1 + EMΘ1U1Σ

2
1 + ECU1Σ1)

−MY1Λ
2
1(−ET

K
ΛT

1 Θ1U1Σ1 + U1 − EKU1)+
+CY1 [(I2 + EMΘ1)U1Σ1 − Λ1(I2 − EK)U1]
= MY1(U1Σ

2
1 + EMΘ1U1Σ

2
1 + Λ1EKU1Σ1−

Λ2
1(−ET

K
ΛT

1 Θ1U1Σ1 − (I2 − EK)U1))+
−MY1Λ1U1Σ1 + MY1Λ1U1Σ1

= MY1 [(I2 + EMΘ1)U1Σ1 − Λ1(I2 − EK)U1] Σ1+
+MY1Λ1((EMΘ1U1Σ1 − Λ1(I2 − EK)U1 + U1Σ1)

= MY1Λ1 [(I2 + EMΘ1)U1Σ1 − Λ1(I2 − EK)U1] = 0
(32)

since all the terms in brackets vanish by (31).

4. ALGORITHM AND NUMERICAL RESULTS

In this section, we present an algorithm to accomplish the
proposed Eigenvalue Embedding strategy, as well as to illus-
trate the efficiency and reliability of the proposed method by
means of a numerical example.

Algorithm 4.1 Embedding of a Pair of Purely Imaginary
Eigenvalues in a Gyroscopic Model

Input: System matrices M , C and K such that M , and K are
symmetric (K is positive definite), and C is skew-symmetric;
quantities β1 and y1 such that (iβ1, y1) is an isolated eigen-
pair of F (λ) = λ2M + λC + K. real nonzero number σ1.

Step 1. Form matrices

Λ1 =

[

0 β1

−β1 0

]

, Z1 =
[

y1r y1i

]

where y1r and y1i are the real an imaginary parts of vector
y1, respectively.

Step 2. Form matrices Λ1, Y1 and Θ1 according to (19)-(22).

Step 3. Compute ξ and η according to Theorem 3.1.

Step 4. Form matrix EM in (22) and compute matrices EC

and EK given by

EK = Λ−1

1 EMΛ−>

1 , EC = EMΛ−>

1 .

Step 5. Compute the rank-2 updates

Mnew = M + MY1EMY T
1 M

Cnew = C + MY1ECY T
1 K − KY1E

T

C
Y T

1 M
Knew = K − KY1EKY T

1 K

Numerical Example 1. Consider the vibrating system
whose system matrices are

M =








8.894500 0.591800 −1.157400 4.837800
0.591800 16.380400 −2.453300 −1.467400
−1.157400 −2.453300 16.544200 −4.413700
4.837800 −1.467400 −4.413700 7.411900









C =








0. −4.471900 1.609200 −2.210000
4.471900 0. −0.023400 −2.422800
−1.609200 0.023400 0. −0.452700
2.210000 2.422800 0.452700 0.









K =








19.435200 −6.691200 0.268900 −1.811600
−6.691200 17.174300 −0.553300 0.338900
0.268900 −0.553300 12.054000 −4.433000
−1.811600 0.338900 −4.433000 14.356500









and whose real eigensystem decomposition 1 is given by
(Step 1)

Λ1 =

[

0. 0.792217
−0.792217 0.

]

Λ2 =
















0. .9037 0. 0. 0. 0.
−.9037 0. 0. 0. 0. 0.

0. 0. 0. 1.1275 0. 0.
0. 0. −1.1275 0. 0. 0.
0. 0. 0. 0. 0. 2.8395
0. 0. 0. 0. −2.8395 0.

















Z1 =









−0.353009 0.507066
−0.115653 0.846237
−0.062387 −0.998052
0.049946 0.061286









Z2 =








.13466 −.49704 −.07346 −.55556 .06773 −.83266

.13162 −.73825 −.03368 .44198 .15789 .22900
−.16812 −.98577 −.20703 −.09157 .02878 .22317
−.3105 −.36543 −.09940 −.99505 .07525 .99717









.

Computation in Step 2 gives

D1 =

[

4.9867 0.
0. 1.4679

]

, S1 =

[

−0.0741 0.9972
0.9972 0.0741

]

Y1 =









0.106653 −0.214219
0.170953 −0.035831
−0.198666 −0.092795
0.011514 0.037028









Λ1 =

[

0. −2.6913
0.2332 0.

]

, Θ1 =

[

1.4974 0.
0. 0.4861

]

1We remark that Λ2 and Z2 are computed just for the sake of checking
the invariance of the non-updated spectrum, at the end of the example. They
are never needed by the proposed algorithm.



After choosing σ1 = 0.67, computation is Steps 3 and 4 give

EM = 10−1

[

0.509308 0.
0. 0.119763

]

EC = 10−1

[

0. −0.189240
0.513573 0.

]

EK =

[

0.220232 0.
0. 0.007031

]

Computation in Step 5 gives

Mnew =








9.017542 0.829167 −1.394559 4.927162
0.829167 16.949983 −3.103368 −1.257067
−1.394559 −3.103368 17.333347 −4.651364
4.927162 −1.257067 −4.651364 7.489692









Cnew =








0. −4.920589 2.208825 −2.400146
4.920589 0. 0.228364 −2.474837
−2.208825 −0.228364 0. −0.488924
2.400146 2.474837 0.488924 0.









Knew =








19.160943 −7.106027 0.704376 −1.945778
−7.106027 15.966862 0.747149 −0.137838
0.704376 0.747149 10.652406 −3.916997
−1.945778 −0.137838 −3.916997 14.161612









.

Finally, it can be shown (Matlab) that the new set of eigen-
values is

Ω = {±0.6700i,±0.9037i,±1.1275i,±2.8395i}
and furthermore

‖MnewZ2Λ
2
2 + CnewZ2Λ2 + KnewZ2‖F = 6.6886 · 10−14

which shows that the embedding strategy was successful.

Numerical Example 2. Consider the vibrating system
whose system matrices M ∈ R

66×66 and K ∈ R
66×66 come

from the Harwell-Boeing BSSTRUC01 matrix set, precisely
from BCSSTM02 and BCSSTK02, which concern an Stati-
cally Condensed Oil Rig Model. Besides, the damping ma-
trix (whose measurement is not available) is set to be

C = µ

















0 1 0 . . . . . . . . .
−1 0 1 0 . . . . . .

0 −1 0 1 0 . . .
. . . . . . . . . . . . . . . . . .
. . . . . . 0 −1 0 1
. . . . . . . . . 0 −1 0

















66×66

where µ = 1.23 × 100.
This model has eigenvalues of smallest magnitude λ1 =

2.806226507i and λ1 = −2.806226507i which lie in a dan-
gerous region, so that we want to replace them by σ1 = 9.6i
and σ1 = −9.6i.

Following the algorithm, steps 1 and 2 give

Λ1 =

[

0.0000 2.8062
−2.8062 0.0000

]

Π1 =

[

63.974839 −0.039463
−0.039463 63.894879

]

D1 =

[

7.999440 0.
0. 7.992414

]

Z1 =

2
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6
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−0.712678 −0.640962

0.697330 −0.701307

0.001697 0.120621

−0.720456 −0.648229

0.657928 −0.665183

−0.117963 0.006934

−0.673474 −0.690735

0.704843 −0.709364

0.118349 0.004167

−0.666154 −0.682851

0.650700 −0.657982

−0.001221 −0.109944

−0.663761 −0.607552

0.649824 −0.663301

0.001686 0.099905

−0.668279 −0.611717

0.611432 −0.629070

−0.097642 0.010653

−0.625771 −0.652075

0.654052 −0.667944

0.098388 0.008623

−0.621624 −0.647971

0.607390 −0.625457

−0.000834 −0.081517

−0.608429 −0.557101

0.596319 −0.606919

0.001671 0.086054

−0.607471 −0.556032

0.558396 −0.570370

−0.075429 0.012929

−0.570690 −0.588627

0.595130 −0.605864

0.076504 0.011540

−0.571720 −0.590047

0.559419 −0.572072

−0.000465 −0.061173

−0.548375 −0.509627

0.538044 −0.553315

0.001617 0.071769

−0.551016 −0.511257

0.509209 −0.526643

−0.062326 0.014805

−0.519874 −0.540708

0.540441 −0.555214

0.063685 0.013743

−0.517445 −0.539094

0.506775 −0.525268

−0.000182 −0.043218

−0.535866 −0.524863

0.525493 −0.539853

0.037257 0.112015

−0.490174 −0.461329

0.481269 −0.498864

0.001593 0.062557

−0.488772 −0.459543

0.454691 −0.473700

−0.048130 0.015433

−0.463565 −0.482734

0.479989 −0.496965

0.049676 0.014655

−0.464627 −0.484172

0.455865 −0.475269

0.000095 −0.031672

−0.476527 −0.473160

0.467787 −0.487389

0.037566 0.110745
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Y1 =

2
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0.051998 −0.108046

−0.113931 −0.048050

0.005529 0.014042

0.052553 −0.109257

−0.107659 −0.045741

0.013971 −0.004801

0.045102 −0.111945

−0.115182 −0.048626

−0.013489 0.006104

0.044630 −0.110685

−0.106482 −0.045250

−0.005077 −0.012784

0.047927 −0.101855

−0.106633 −0.045908

0.004547 0.011644

0.048252 −0.102552

−0.100568 −0.043769

0.011798 −0.003405

0.041420 −0.105204

−0.107342 −0.046244

−0.010969 0.005672

0.041136 −0.104532

−0.099929 −0.043543

−0.003773 −0.009475

0.043922 −0.093387

−0.097769 −0.041923

0.003891 0.010040

0.043862 −0.093218

−0.091649 −0.039494

0.009337 −0.002087

0.038062 −0.095244

−0.097582 −0.041858

−0.008300 0.004970

0.038113 −0.095457

−0.091848 −0.039643

−0.002850 −0.007103

0.039231 −0.085039

−0.088485 −0.038487

0.003219 0.008384

0.039459 −0.085353

−0.083885 −0.036769

0.007911 −0.001247

0.034459 −0.087283

−0.088853 −0.038593

−0.006713 0.004616

0.034255 −0.086981

−0.083538 −0.036726

−0.002030 −0.005011

0.037061 −0.086209

−0.086395 −0.037525

0.001008 0.014736

0.034792 −0.076684

−0.079335 −0.034881

0.002785 0.007317

0.034715 −0.076411

−0.075067 −0.033231

0.006299 −0.000500

0.030699 −0.077898

−0.079097 −0.034722

−0.005049 0.004056

0.030753 −0.078115

−0.075277 −0.033357

−0.001514 −0.003662

0.032652 −0.077405

−0.077231 −0.034193

0.000912 0.014603
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5

Also, in Step 2, we have

Λ1 =

[

0. −2.808693
2.803762 0.

]

Θ1 = 10−1

[

0.226105 0.
0. 0.224269

]

In Step 3 from two possibilities, we choose ξ = 89.430565
and compute η = 87.603764, and hence

EM =

[

89.430565 0.
0. 87.603764

]

EC =

[

0. −31.840631
31.245080 0.

]

EK =

[

11.143985 0.
0. 11.336457

]

The matrices Mnew, Cnew and Knew cannot be shown here
because of space limitation. However, we have used Matlab
to compute original and updated set of eigenvalues, which
are shown below.



Ω =

8
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<
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>
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>

>

>

>

>

>

>

:

2.806227i

±6.927072i

±14.231601i

±15.886123i

±29.372872i

±41.868654i

±51.757022i

±59.833982i

±67.045518i

±75.336585i

±83.691327i

±84.846413i

±98.152377i

±103.743200i

±104.377662i

±120.098563i

±121.802030i

±123.536003i

±131.150184i

±139.245604i

±144.114161i

±156.264174i

±157.666560i

±159.535589i

±162.121383i

±165.793160i

±170.244514i

±171.740139i

±173.594641i

±176.495116i

±179.591564i

±188.906549i

±192.354778i

±193.903979i

±195.703015i

±201.257113i

±206.733465i

±210.922015i

±214.773292i

±217.569590i

±224.765421i

±227.419053i

±241.483031i

±255.531930i

±259.258276i

±262.774938i

±272.720454i

±281.637264i

±296.155378i

±300.539577i

±317.920243i

±318.481185i

±353.228533i

±364.170234i

±366.304868i

±372.197723i

±379.827544i

±395.189960i

±413.225785i

±439.221906i

±445.583913i

±451.677920i

±466.231731i

±474.375234i

±528.655979i

±590.156592i
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>

>

>

>

>

>

>

>

>

>

>

;

, Ωnew =

8
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:

±6.927072i

±9.600000i

±14.231601i

±15.886123i

±29.372872i

±41.868654i

±51.757022i

±59.833982i

±67.045518i

±75.336585i

±83.691327i

±84.846413i

±98.152377i

±103.743200i

±104.377662i

±120.098563i

±121.802030i

±123.536003i

±131.150184i

±139.245604i

±144.114161i

±156.264174i

±157.666560i

±159.535589i

±162.121383i

±165.793160i

±170.244514i

±171.740139i

±173.594641i

±176.495116i

±179.591564i

±188.906549i

±192.354778i

±193.903979i

±195.703015i

±201.257113i

±206.733465i

±210.922015i

±214.773292i

±217.569590i

±224.765421i

±227.419053i

±241.483031i

±255.531930i

±259.258276i

±262.774938i

±272.720454i

±281.637264i

±296.155378i

±300.539577i

±317.920243i

±318.481185i

±353.228533i

±364.170234i

±366.304868i

±372.197723i

±379.827544i

±395.189960i

±413.225785i

±439.221906i

±445.583913i

±451.677920i

±466.231731i

±474.375234i

±528.655979i

±590.156592i
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;

In Figures 1 and 2, the plot shows us the magnitude of the
changes made to all elements of matrices M and K, respec-
tively.

Figure 1 – Changes in mass matrix of Example 2 for the update.

Figure 2 – Changes in stiffness matrix of Example 2 for the up-
date.

5. CONCLUSION
The skew-symmetric eigenvalue embedding problem ad-

dressed in this paper is the one of updating a skew-symmetric
finite element generated second-order model in such a way
that the updated model remains skew-symmetric, and a small
subset of unwanted eigenvalues is replaced by a suitably
user-chosen set, while the remaining large number of eigen-
values and eigenvectors do not change. The proposed method
computes new system matrices to accomplish this task. Nu-



merical examples using real-life data from the MatrixMar-
ket repository, which show the efficiency of the method, are
given. The results of this paper contribute to progress in
the solution of the well-known finite-element model updat-
ing problem.
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