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Abstract

In this paper we present bijective proofs of several identities involving partitions by making use
of a new way for representing partitions as two-line matrices. We also apply these ideas to give a
combinatorial proof for an identity related to three-quadrant Ferrers graphs.
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1 Introduction

In this paper we present a number of results by making use of a new way of representing partitions as
two-line matrices introduced in [8]. As one will see, one of the new notations for unrestricted partitions
has more explicit information on the conjugate partition than what is given by the well-known Frobenius’
symbol.

In Section 2, we present basically three distinct notations for unrestricted partitions that are given
in [8]. In Section 3, we construct a bijection between the set of partitions into distinct odd parts with
no parts equal to 1 and the set of self-conjugate three-quadrant Ferrers graphs. In the fourth section,
we present combinatorial proofs for three identities and we establish bijections between several classes
of partitions. One of the results resembles the Euler Pentagonal Number Theorem and another one is
related to Ramanujan’s partial theta function. In the final section, we provide a new bijective proof for
the Lebesgue Identity based on the two-line matrix representation for partitions.

2 Representation of partitions by two-line matrices

A very well-known representation of a partition by a two-line matrix is by means of the Frobenius’ symbol.
The purpose of this section is to recall three different ways of representing partitions given in [8]. The
main motivation for these representations comes from results obtained in [8].



Theorem A. (Theorem 8, [8]) The number of unrestricted partitions of n is equal to the number of
two-line matrices of the form (

c1 c2 c3 · · · ck

d1 d2 d3 · · · dk

)
, (2.1)

where

ck = 0 , dk 6= 0,

ct = ct+1 + dt+1, for any t < k,

n =
∑

ct +
∑

dt.

(2.2)

A natural bijection between the two sets is given in [8]. Indeed, there are two different natural bijections
between unrestricted partitions and two-line matrices satisfying (2.2). Perhaps the best way to describe
them is by an example.

First bijection. The number k of columns of the matrix corresponds to the number of parts of the
partition.

Consider, for example, the partition λ = (6, 5, 2, 2) of 15. We associate to λ a 2 × 4 matrix A of the
form given in Theorem A in such a way that the sum of the entries in each column of A are the parts of
λ. We have no choice for the fourth column, but to pick c4 = 0 and d4 = 2. Since c3 must be 2 and the
entries of the third column must add up to 2, then d3 = 0. By the same argument, we must have c2 = 2
and d2 = 3. Also, c1 = 5 and d1 = 1. The representation is

λ = 6 + 5 + 2 + 2 =
(

5 2 2 0
1 3 0 2

)
.

To go from the matrix to the partition, we only have to add the entries in each column. As explained in
[8], the second line of the matrix provides a complete description of the partition λ′ conjugate to λ. In
the above example, the second row (1, 3, 0, 2) indicates that λ′ contains one 1, three 2’s, no 3’s and two
4’s.

Second bijection. The number k of columns of the matrix corresponds to the largest part of the
partition.

To any positive integer j, we associate a 2× j matrix with the first j− 1 entries equal to 1 in the first
row, the last entry in the second row equal to 1, and the remaining entries equal to 0. For example, we
have

1 =
(

0
1

)
, 2 =

(
1 0
0 1

)
, 3 =

(
1 1 0
0 0 1

)
, · · ·

If j ≤ k, given a 2× j matrix A and a 2×k matrix B, we perform the sum A+B as if k− j zero columns
were added to the right of A. To the partition λ = (6, 5, 2, 2) considered before, for instance, we associate
the matrix

6 + 5 + 2 + 2 =
(

1 1 1 1 1 0
0 0 0 0 0 1

)
+
(

1 1 1 1 0 0
0 0 0 0 1 0

)
+
(

1 0 0 0 0 0
0 1 0 0 0 0

)
+
(

1 0 0 0 0 0
0 1 0 0 0 0

)
=
(

4 2 2 2 1 0
0 2 0 0 1 1

)
.

Note that if we now add up the columns of the matrix obtained, we get the conjugate partition and, as
before, the second line contains a description of the given partition, saying that there is no 1’s, two 2’s,
no 3’s, no 4’s, one 5 and one 6.

We now present two new bijections between unrestricted partitions of n and certain classes of two-line
matrices. It is shown in [8] that these sets have the same number of elements, but a natural bijection
between them is not presented there.
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In [8], for positive integers k and j, a set of nonnegative integers is defined by

Ak,j = {ck + dj | c, d ≥ 0}.

Theorem B. (Theorem 11, [8]) Let f(n) be the number of partitions of n of the form λ1 + λ2 + · · ·+ λs,
with λr ∈ Ak,j, cs 6= 0 and such that for ctk+dtj and ct+1k+dt+1j consecutive parts, ct ≥ 2+ct+1+dt+1.
Then,

∞∑
n=0

f(n)qn =
∞∑

n=0

qkn2

(qj ; q)n(qk; q)n
. (2.3)

In the particular case k = j = 1, denoting by p(n) the number of partitions of n, since

∞∑
n=0

qn2

(q; q)2n
=
∞∏

n=1

1
(1− qn)

=
∞∑

n=0

p(n)qn , (2.4)

the following corollary is obtained.

Corollary C. (Corollary 12, [8]) The number of unrestricted partitions of n is equal to the number of
two-line matrices of the form (2.1) where

ck 6= 0 ,

ct ≥ 2 + ct+1 + dt+1, for any t < k,

n =
∑

ct +
∑

dt.

(2.5)

We now construct a first new bijection for the set of unrestricted partitions, namely a bijection between
the set of matrices of the form (2.1) satisfying (2.5) and the set of unrestricted partitions of n. This
provides a direct proof of Corollary C.

Construction of a first bijection. We now construct a natural bijection between the set of unrestricted
partitions of n and the set of matrices of the form (2.1) with non-negative integer entries satisfying (2.5).

It suffices, for each k ≥ 1 fixed, to establish a bijection between the set of unrestricted partitions of n
with Durfee square with side k and the set of matrices described above with the additional requirement
that the matrix should have k columns.

For instance, a partition λ = (λ1, λ2, . . . , λr) (as usual we suppose λt ≥ λt+1) with Durfee square of
side 3 is completely characterized once we declare how many times each one of the numbers 1, 2, and
3 appears as a part of λ, and if we also know the three largest parts λ1, λ2, and λ3 of λ. We have to
associate to λ a 2× 3 matrix that gives a clue of these six numbers. Let(

c1 c2 c3

d1 d2 d3

)
(2.6)

be such a matrix. By (2.5) we can write

c3 = 1 + j3 , (2.7)

c2 = 3 + j2 + j3 + d3 (2.8)

c1 = 5 + j1 + j2 + j3 + d2 + d3. (2.9)

with j1, j2, j3 ≥ 0. Hence, the matrix (2.6) may be rewritten as(
5+j1+j2+j3+d2+d2 3+j2+j3+d3 1+j3

d1 d2 d3

)
(2.10)
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or, still, as the sum(
5 3 1
0 0 0

)
+

(
0 0 0
d1 0 0

)
+

(
d2 0 0
0 d2 0

)
+

(
d3 d3 0
0 0 d3

)

+

(
j1 0 0
0 0 0

)
+

(
j2 j2 0
0 0 0

)
+

(
j3 j3 j3

0 0 0

)
(2.11)

From the above discussion, it follows that the partition λ can be characterized by the numbers

d1 −→ the number of times that 1 is a part of λ

d2 −→ the number of times that 2 is a part of λ

d3 −→ the number of times that 3 is a part of λ, not counting here eventual parts equal to 3 contained
in the Durfee square

j1 −→ λ1 − λ2, i.e., the number of times 1 is a part of the conjugate partition λ′

j2 −→ λ2 − λ3, i.e., the number of times 2 is a part of λ′

j3 −→ λ3 − 3, i.e, the number of units that λ3 exceeds the side of the Durfee square.

Note that the first three parts are completely determined: λ3 = 3 + j3, λ2 = 3 + j2 + j3 and λ1 =
3 + j1 + j2 + j3.

Example 1. Consider the partition λ = (5, 4, 4, 2, 2, 1) of n = 18.

qqq
qqq qqq

qq qqq qqq q We decompose the Ferrers’ graph of λ as shown in the pic-
ture, taking into account the size of the Durfee square and
the number of times 1, 2, and 3 are parts of λ and of the
conjugate partition λ′. In the present example, d1 = 1,
d2 = 2, d3 = 0, j1 = 1, j2 = 0, and j3 = 1. This decompo-
sition suggests the sum of matrices below:(

5 3 1
0 0 0

)
from the Durfee square,

(
0 0 0
1 0 0

)
+
(

2 0 0
0 2 0

)
=
(

2 0 0
1 2 0

)
because 1 appears once and 2 appears twice as parts

of λ and(
1 0 0
0 0 0

)
+
(

1 1 1
0 0 0

)
=
(

2 1 1
0 0 0

)
since 3 is twice part of λ′, but appears only once

outside of the Durfee square and 1 is part of λ′ only once.

Hence, the matrix corresponding to the partition λ is(
5 3 1
0 0 0

)
+
(

2 0 0
1 2 0

)
+
(

2 1 1
0 0 0

)
=
(

9 4 2
1 2 0

)

qqq
qqq qqq

qq qqq qqq q There is an easier way of obtaining the matrix-
representation of the partition. We do not need to write
out first the sum of matrices as done above. Indeed, in the
example above, note that the sum of columns, 10, 6, and 2
are the length of the hooks shown in the picture to the left.
In the second row, the entries 1 and 2 indicate the verti-
cal displacement of the corresponding hook with respect to
the previous one, and 0 indicates the vertical displacement
of the last hook with respect to the bottom of the Durfee
square.

The matrix
(

5 3 1
0 0 0

)
corresponds to the Durfee square. Note that the entries 5, 3, and 1 of the first

row are precisely the number of elements each hook has in common with the Durfee square.
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Example 2. Determine the partition represented by the matrix
(

15 9 5 1
2 3 0 1

)
.

The Durfee square has side four and the length of the
hooks are 15 + 2 = 17, 9 + 3 = 12, 5 + 0 = 5, and
1 + 1 = 2. In addition, the second row of the matrix
indicates that the first hook starts two units below the
second hook, which in turn initiates three units below
the third hook, the third hook begins at the same level
than the fourth one, and this last hook begins one unit
below the bottom of the Durfee square. This is all we
need to know the Ferres’ graph of the partition, which
is shown in the picture to the right. The corresponding
partition is λ = (8, 7, 5, 4, 4, 2, 2, 2, 1, 1).

qqq
qqq
qqq
q

qqq
qqq
qq

qqq
qq

qqq
qq qqq qq qq q

d1

d2

d4

j1j2j3

We now undertake the construction of a second bijection between unrestricted partitions and two-line
matrices. Again, our motivation is a result presented in [8].

Theorem D. (Theorem 9, [8]) The generating function for matrices of the form(
c1 × k c2 × k · · · cs × k
d1 × j d2 × j · · · ds × j

)
,

where dt 6= 0, ct ≥ 1 + ct+1 + dt+1 and the sum of all entries is equal to n, is given by the LHS of the
identity

∞∑
n=0

qkn2+(j−k)n

(qj ; qk)n(qk; qk)n
=

1
(qj ; qk)∞

. (2.12)

In the particular case k = j = 1, using (2.4), the following result follows.

Theorem E. (Theorem 10, [8]) The number of unrestricted partitions of n is equal to the number of
two-line matrices of the form (

c1 c2 · · · cs

d1 d2 · · · ds

)
(2.13)

where

dt 6= 0,

ct ≥ 1 + ct+1 + dt+1,

n =
∑

ct +
∑

dt .

(2.14)

In [8], the equinumerability expressed in Theorem E is established by a generating function technique,
but a natural bijection between the two sets is not presented.

Construction of a second bijection. We now construct a natural bijection between the set of un-
restricted partitions of n and the set of matrices of the form (2.13) with non-negative integer entries
satisfying (2.14). We rewrite the condition ct ≥ 1 + ct+1 + dt+1 as

ct = 1 + jt + ct+1 + dt+1 ∀t < k , (2.15)

ck = jk , (2.16)

jt ≥ 0. (2.17)

In this case we also take s = k and define a bijection between the set of unrestricted partitions of n with
Durfee square of side k and the set of matrices of the form (2.13) satisfying (2.15), (2.16) and (2.17), in
addition to (2.14), with k columns.
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For example, if k = 3, then(
c1 c2 c3

d1 d2 d3

)
=

(
2+j1+j2+j3+d2+d3 1+j2+j3+d3 j3

d1 d2 d3

)
(2.18)

=

(
2 1 0
0 0 0

)
+

(
0 0 0
d1 0 0

)
+

(
d2 0 0
0 d2 0

)
+

(
d3 d3 0
0 0 d3

)

+

(
j1 0 0
0 0 0

)
+

(
j2 j2 0
0 0 0

)
+

(
j3 j3 j3

0 0 0

)
.

qqq
qqq
qqq
q

qqq
qqq
qq qqq

q qqq qq qq q q
@

@
@

@
@

@

@
@

d1

d2

d3

j1j2j3
Compare (2.18) with the picture to the left. The en-
tries d1, d2, and d3 in the second row of the matrix are
all non-vanishing and indicate the sizes of the subsets
of the Ferrers’ graph in the picture. The elements in
the first row of the matrix, in turn, indicate the num-
ber of units still necessary to complete the hooks. The
jt’s can vanish, but dt 6= 0 for any t.

In the picture to the left, we show the example
of the partition λ = (8, 6, 4, 3, 2, 2, 2, 2, 1, 1), for which
d1 = 3, d2 = 5, d3 = 2, j1 = 2, j2 = 2 and j3 = 1. The
matrix associated to this partition is(

14 6 1
3 5 2

)
.

The correspondence described by (2.18) or, alternatively, in a pictorial manner in the above picture,
provides a new representation of unrestricted partitions by matrices. As with the representation obtained
previously from (2.10), the number of columns in the matrix is equal to the side of the Durfee square of
the partition.

Note that by composition, we obtain a bijection between the set of matrices of the form (2.1) satisfying
(2.5) and those satisfying (2.14). The bijection simply takes(

c1 c2 · · · ck

d1 d2 · · · dk

)
7−→

(
c1 − 1 c2 − 1 · · · ck − 1
d1 + 1 d2 + 1 · · · dk + 1

)
.

3 A combinatorial proof for an identity involving three-quadrant
Ferrers graphs

In [1], G. E. Andrews presented the three-quadrant Ferrers graphs as an extension of the two-quadrant
Ferrers graphs. The three-quadrant Ferrers graphs of a positive integer n are constructed by placing n
points in the first, second and fourth quadrants of the plane observing that each point must have at least
one positive coordinate. We also require that the points on the x-axis and on the y-axis form the longest
row and the tallest column among all rows and all columns in the set with positive x-coordinates and
y-coordinates, respectively.

For example:
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We recall from [1] that the self-conjugate three-quadrant Ferrers graphs are the ones that are un-
changed by the mapping (x, y) 7→ (y, x). Let s3(n) denote the number of self-conjugate three-quadrant
Ferrers graphs of n.

For example, the next two three-quadrant Ferrers graphs are self-conjugate:

In [1] the following identity is proved

∞∑
n=0

s3(n)qn =
∞∏

n=0

(1 + q2n+3)
(1− q2n+2)

. (3.1)

The RHS of (3.1) is the generating function for partitions in which the odd parts are distinct and greater
than 1. We present in this section a bijective proof of (3.1) by using a two-line matrix representation for
these partitions.

We now recall from [8] and [9] that we can represent a partition of n in which the odd parts are
distinct and greater than 1 as a two-line matrix of the form(

c1 c2 · · · cs

d1 d2 · · · ds

)
, (3.2)

where ct and dt satisfy cs = 2 or 3, dt ≡ 0 (mod 2) and

• if ct ≡ 0 (mod 2) and ct+1 ≡ 0 (mod 2), then ct = ct+1 + dt+1;

• if ct ≡ 0 (mod 2) and ct+1 ≡ 1 (mod 2), then ct = 1 + ct+1 + dt+1;

• if ct ≡ 1 (mod 2) and ct+1 ≡ 0 (mod 2), then ct = 1 + ct+1 + dt+1;

• if ct ≡ 1 (mod 2) and ct+1 ≡ 1 (mod 2), then ct = 2 + ct+1 + dt+1,

with the sum of all entries equal to n. This same class of matrices is used in Section 4 with a different
purpose.

We associate to each two-line matrix(
c1 c2 · · · cs

d1 d2 · · · ds

)
,

a partition λ1 + · · ·+ λs by just adding up the elements of the columns: λt = ct + dt. For example, the

matrix
(

3 2 2
2 0 0

)
is associated to 5 + 2 + 2.
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As the entries in the second line are even numbers, the parity of each part is determined by the
corresponding entry of the first line. Then, it is impossible to have two equal consecutive odd parts
λt = ct + dt and λt+1 = ct+1 + dt+1, since we have ct = 2 + ct+1 + dt+1 in this case. As we begin with
cs = 2 or 3, each part, obtained by adding up the entries in corresponding column, is grater than 1.

We describe next how to go from a partition where the odd parts are distinct and greater than 1 to
a two-line matrix satisfying the conditions above:

1. we start at the end of the first line, placing 2 or 3 if λs is even or odd, respectively. Then, we
complete the column with an even number ds such that the sum of the entries of this column is
equal to λs. So the last column is uniquely determined.

2. in order to create the column just before the last one, we must observe the parity of λs−1 and λs,
because cs−1 and cs have to satisfy the conditions above. For example, if cs−1 and cs are both odd,
then cs−1 = 2 + cs + ds and we complete this column by choosing an even number ds−1 such that
λs−1 = cs−1 + ds−1. It is not difficult to see that there is only one way to fill the column up.

3. to build the previous column we observe the parity of λt−1 and λt and follow the procedure described
in item 2.

For example, the table below presents the matrices and the partitions having odd parts distinct and
greater than 1 for n = 8.

(
2
6

)
8

(
2 2
4 0

)
6+2

(
5 3
0 0

)
5+3

(
4 2
0 2

)
4+4

(
2 2 2
2 0 0

)
4+2+2

(
2 2 2 2
0 0 0 0

)
2+2+2+2

Table 1: The matrices and partitions for n = 8

8



The bijective proof

It is convenient to rewrite the matrices of the form (3.2) as(
c1 c2 · · · cs

2d1 2d2 · · · 2ds

)
, (3.3)

where ct and dt satisfy cs = 2 or 3 and

• if ct ≡ 0 (mod 2) and ct+1 ≡ 0 (mod 2), then ct = ct+1 + 2dt+1;

• if ct ≡ 0 (mod 2) and ct+1 ≡ 1 (mod 2), then ct = 1 + ct+1 + 2dt+1;

• if ct ≡ 1 (mod 2) and ct+1 ≡ 0 (mod 2), then ct = 1 + ct+1 + 2dt+1;

• if ct ≡ 1 (mod 2) and ct+1 ≡ 1 (mod 2), then ct = 2 + ct+1 + 2dt+1.

Due to the restrictions on ct, we have ct = it + ct+1 + 2dt+1, where it ∈ {0, 1, 2}, for t = 1, 2, . . . , s− 1
and cs = 2 + is, where is = 0, 1. We can split (3.3) as the sum(

2+i1+· · ·+is+2d2+· · ·+2ds · · · 2+is−1+is+2ds 2+is

2d1 · · · 2ds−1 2ds

)

=

(
2+i1+· · ·+is · · · 2+is−1+is 2+is

0 · · · 0 0

)
+ 2

(
d2+· · ·+ds · · · ds 0

d1 · · · ds−1 ds

)

Note that the numbers 2 + i1 + · · ·+ is, . . . , 2 + is−1 + is, 2 + is form a non increasing sequence ending in
either 2 or 3 and that there is no gap in the odd numbers in this sequence (if 2k + 1 is in the sequence,
then so is every odd integer between 3 and 2k + 1).

For example, the matrix (
26 22 19 11 8 3
2 4 2 6 2 4

)
can be split as (

8 8 7 5 4 3
0 0 0 0 0 0

)
+ 2

(
9 7 6 3 2 0
1 2 1 3 1 2

)
. (3.4)

We will use this example to show how to associate a matrix like (3.3) and a three-quadrant Ferrers
graph. The arguments in this example can be directly extended to the general case. We associate the
matrix (

9 7 6 3 2 0
1 2 1 3 1 2

)
to the partition having one part equal to 1, two parts equal to 2, one part equal to 3, three parts equal
to 4, one part equal to 5, and two parts equal to 6 (6 + 6 + 5 + 4 + 4 + 4 + 3 + 2 + 2 + 1), whose Ferrers
graph is

The pair of Ferrers graphs obtained from the second matrix in (3.4) can be placed in the plane in the
following way

9



Now we describe how to place the contribution from the first matrix in (3.4) in the plane in order
to obtain a self-conjugate three-quadrant Ferrers graph. To do this, we consider first the odd numbers
in the first line: 7, 5, and 3. These numbers are represented in the first quadrant of the plane in the
following way

The even numbers, 8, 8 and 4, are represented in the first quadrant after the odd numbers in a non
increasing sequence as follows

10



Note that the first even number after the greatest odd number, if there is one, is 1 plus the greatest
odd number. Therefore, the construction of the three-quadrant Ferrers graph described above can always
be done. It is clear that this procedure can be reversed in order to obtain the two-line matrix representing
a partition in which the odd parts are disctinct and greater than 1.

The same argument applies in general and we have a bijection. Hence, identity (3.1) is proved.

4 Three identities and related bijections between certain classes
of partitions

In this section we prove three partition identities ((4.1), (4.14), and (4.26) below) using combinatorial
arguments and we establish bijections between several classes of partitions related to these identities. Our
main tool is constructing bijections between certain classes of partitions and sets of two-line matrices.
As an application of our results proved by combinatorial arguments, we obtain a straightforward proof
of an identity about Ramanujan’s ψ function (see (4.29) below), which is similar to dozens of identities
for partial theta functions obtained by Ramanujan in his notebooks (see, for example, [3] and chapter 9
of [4]).

Our first objective is to study the identity

1 +
∞∑

k=1

(1 + q)(1 + q3) · · · (1 + q2k−1)
(1− q2)(1− q4) · · · (1− q2k)

q2k =
∞∏

n=1

1 + q2n+1

1− q2n
. (4.1)

We provide two combinatorial proofs for identity (4.1). As a matter of fact, we consider a slight improve-
ment of (4.1).

Theorem 4.1 The following identity holds

1 +
∞∑

k=1

(1 + zq)(1 + zq3) · · · (1 + zq2k−1)
(1− q2)(1− q4) · · · (1− q2k)

q2k =
∞∏

n=1

1 + zq2n+1

1− q2n
. (4.2)

Proof: We introduce two classes of partitions

Pn, the set of all partitions λ of n such that

– the odd parts of λ are distinct;
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– the largest part of λ is even;

and

Qn, the set of all partitions µ of n such that

– the odd parts of µ are distinct;

– 1 is not a part of µ.

Identity (4.1) is equivalent to the statement that, for any n, Pn and Qn have the same number of
elements, or, in other words, there is a bijection between these two classes of partitions. Identity (4.2)
suggests that it is possible to find such a bijection that preserves the number of odd parts of the partitions.

Denote by Pn,k,m the subset of all λ ∈ Pn such that λ contains exactly m odd parts and its largest
part is a(λ) = 2k. Consider also the subset Qn,k,m of all µ ∈ Qn such that µ has exactly m odd parts
and its largest part is a(µ) = 2k or 2k + 1.

The coefficient of zmqn on the left-hand-side and on the right-hand-side of (4.2) are, respectively, the
number of elements of the sets

Pn,m :=
⋃
k

Pn,k,m and Qn,m :=
⋃
k

Qn,k,m. (4.3)

Hence, to prove (4.2), it suffices to construct a bijection between the two classes of partitions Pn,k,m and
Qn,k,m.

We now define a bijection ϕ : Pn,k,m → Qn,k,m. Given any partition λ ∈ Pn,k,m, we define ϕ(λ) ∈
Qn,k,m by:

– if 1 is not a part of λ, ϕ(λ) = λ;
– if 1 is a part of λ, ϕ(λ) is the partition obtained by removing 1 from λ and adding one unit

to its largest part a(λ). If λ contains more than one copy of a(λ), we add 1 to one of them only. Since
a(λ) is even, the number of odd parts is not altered.

Then, ϕ is a bijection with an inverse ϕ−1 defined by:
– if µ ∈ Qn,k,m is such that its largest part is even, then ϕ−1(µ) = µ;
– if µ ∈ Qn,k,m and its largest part a(µ) is odd, ϕ−1(µ) is obtained by removing from µ one

part equal to a(µ) and adding one part equal to a(µ)− 1 and one part equal to 1. 2

Of course, ϕ defined above can be extended to bijections from ϕ : Pn,m → Qn,m or from ϕ : Pn → Qn.

Example. For n = 11, the two classes Pn = Pn,1 and Qn = Qn,1 defined in (4.3) and the correspondence
ϕ constructed in Theorem 4.1 are given by

(10, 1) 7−→ (11)

(8, 3) 7−→ (8, 3)

(8, 2, 1) 7−→ (9, 2)

(6, 5) 7−→ (6, 5)

(6, 4, 1) 7−→ (7, 4)

(6, 3, 2) 7−→ (6, 3, 2)

(6, 2, 2, 1) 7−→ (7, 2, 2)

(4, 4, 3) 7−→ (4, 4, 3)

(4, 4, 2, 1) 7−→ (5, 4, 2)

(4, 3, 2, 2) 7−→ (4, 3, 2, 2)

(4, 2, 2, 2, 1) 7−→ (5, 2, 2, 2)

(2, 2, 2, 2, 2, 1) 7−→ (3, 2, 2, 2, 2)

We now present another proof for identity (4.2) based on a two-line matrix representation for par-
titions. The idea of the proof is to introduce a certain class of two-line matrices and to interpret it in
terms of partitions in two different ways. Consider the set M(2,3)

n,k,m of 2× k matrices of the form

A =

(
c1 c2 · · · ck

d1 d2 · · · dk

)
(4.4)
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with non-negative integer entries, having exactly m odd entries in the first row, and satisfying

ck ∈ {2, 3}, dt ≡ 0 (mod 2) , ∀t; (4.5)

ct ≡ 0 (mod 2), ct+1 ≡ 0 (mod 2) =⇒ ct = ct+1 + dt+1; (4.6)

ct ≡ 0 (mod 2), ct+1 ≡ 1 (mod 2) =⇒ ct = 1 + ct+1 + dt+1; (4.7)

ct ≡ 1 (mod 2), ct+1 ≡ 0 (mod 2) =⇒ ct = 1 + ct+1 + dt+1; (4.8)

ct ≡ 1 (mod 2), ct+1 ≡ 1 (mod 2) =⇒ ct = 2 + ct+1 + dt+1; (4.9)∑
ct +

∑
dt = n . (4.10)

This class of matrices was introduced in [9].

We now introduce a notation needed in the next theorem. Let A ∈ M(2,3)
n,k,m. If, for example, k = 4

and

A =

(
c1 c2 c3 c4

d1 d2 d3 d4

)
∈M(2,3)

n,4,m

then considering the restrictions (4.5) – (4.10) it is not difficult to verify that we can write in a unique
manner c4 = 2 + j4, c3 = 2 + d4 + j3 + 2j4, c2 = 2 + d3 + d4 + j2 + 2j3 + 2j4, c1 = 2 + d2 + d3 + d4 + j1 +
2j2 + 2j3 + 2j4 , with jt ∈ {0, 1}, i.e., A is of the form

A=

(
2+d2+d3+d4+j1+2j2+2j3+2j4 2+d3+d4+j2+2j3+2j4 2+d4+j3+2j4 2+j4

d1 d2 d3 d4

)

with jt ∈ {0, 1}. In the general case of a 2× k matrix A ∈M(2,3)
n,k,m, we can express in a unique way

c1 = 2 + d2 + d3 + · · ·+ dk + j1 + 2j2 + · · ·+ 2jk

c2 = 2 + d3 + d4 + · · ·+ dk + j2 + 2j3 + · · ·+ 2jk
...

ck−1 = 2 + dk + jk−1 + 2jk

ck = 2 + jk

(4.11)

where jt ∈ {0, 1}.

Theorem 4.2 For any (n, k,m), with 0 ≤ m ≤ n and k ≥ 1, there is a bijection

ψ :M(2,3)
n,k,m −→ Pn,k,m ,

where Pn,k,m is the set of all partitions λ of n such that

– λ has exactly m odd parts and the odd parts are distinct;

– the largest part of λ is a(λ) = 2k .

Precisely, given A ∈M(2,3)
n,k,m, λ = ψ(A) is the partition containing:

– 1
2 dt parts equal to 2t, for any t ∈ {1, 2, . . . , k};

– jt parts equal to 2t− 1, for any t ∈ {1, 2, . . . , k};
– one part equal to 2k,

where the jt ∈ {0, 1} are defined by (4.11).

Proof: Let jt ∈ {0, 1} as above. From (4.10) and (4.11) it follows that

n = 2k+ (d1+2d2+3d3+ · · ·+kdk) + (j1+3j2+5j3+ · · ·+(2k − 1)jk). (4.12)

We define a partition λ = ψ(A) containing:
13



– 1
2 dt parts equal to 2t, for any t ∈ {1, 2, . . . , k};

– jt parts equal to 2t− 1, for any t ∈ {1, 2, . . . , k};
– one part equal to 2k.

Note that, for any t ≤ k,

jt =

{
0, if ct is even
1, if ct is odd

Therefore the number of odd parts in λ is equal to the number of odd elements in the first row of A.
It is easy to see that ψ defined above is a bijection between the set of matricesM(2,3)

n,k,m and the set of
partitions Pn,k,m. 2

Denote by Q̃n,k,m (0 ≤ m ≤ n, k ≥ 1) the set of partitions µ of n such that

– µ contains exactly k parts, m of these being odd;

– the odd parts of µ are distinct;

– 1 is not a part of µ.

Note that, for Qn,m defined by (4.3), we have

Qn,m =
⋃
k

Qn,k,m =
⋃
k

Q̃n,k,m . (4.13)

Our next result establishes a bijection between Q̃n,k,m and the same class of matrices as before.

Theorem 4.3 There is a natural bijection θ :M(2,3)
n,k,m → Q̃n,k,m. Given any matrix A ∈ M(2,3)

n,k,m of the

form (4.4), the corresponding partition µ = θ(A) is obtained adding up the entries in each column of A,

µ = (c1 + d1, c2 + d2, . . . , ck + dk) .

Corollary 4.1 Identity (4.2) holds true.

Proof: As mentioned above, the cardinalities of the sets Pn,m and Qn,m, defined by (4.3), are, respec-
tively, equal to the coefficient of zmqn on left-hand-side and on the right-hand-side of (4.2). Since, by
Theorem 4.2 and Theorem 4.3, Pn,k,m and Q̃n,k,m are both in one-to-one correspondence with the same
set of matrices M(2,3)

n,k,m, using (4.13) we obtain identity (4.2). 2

Application. We can construct a bijection θ ◦ ψ−1 : Pn,k,m → Qn,k,m, or θ ◦ ψ−1 : Pn,m → Qn,m, if
we want, which is different from the bijection constructed in the proof of Theorem 4.1. For example, if
n = 11 the bijection θ ◦ ψ−1 is described below.

14



(2, 2, 2, 2, 2, 1) 7−→
(

3
8

)
7−→ (11)

(4, 3, 2, 2) 7−→
(

4 3
4 0

)
7−→ (8, 3)

(4, 4, 3) 7−→
(

6 3
0 2

)
7−→ (6, 5)

(4, 2, 2, 2, 1) 7−→
(

3 2
6 0

)
7−→ (9, 2)

(4, 4, 2, 1) 7−→
(

5 2
2 2

)
7−→ (7, 4)

(6, 2, 2, 1) 7−→
(

3 2 2
4 0 0

)
7−→ (7, 2, 2)

(6, 4, 1) 7−→
(

5 2 2
0 2 0

)
7−→ (5, 4, 2)

(6, 3, 2) 7−→
(

4 3 2
2 0 0

)
7−→ (6, 3, 2)

(6, 5) 7−→
(

4 4 3
0 0 0

)
7−→ (4, 4, 3)

(8, 2, 1) 7−→
(

3 2 2 2
2 0 0 0

)
7−→ (5, 2, 2, 2)

(8, 3) 7−→
(

4 3 2 2
0 0 0 0

)
7−→ (4, 3, 2, 2)

(10, 1) 7−→
(

3 2 2 2 2
0 0 0 0 0

)
7−→ (3, 2, 2, 2, 2)

We now study a second identity (see (4.14) below) that, surprisingly, has the same right-hand-side as
(4.1).

Theorem 4.4 The following identity holds

1
1− q2

+
∞∑

k=2

(1 + q)(1 + q3) · · · (1 + q2k−3)
(1− q2)(1− q4) · · · (1− q2k)

q2k−1 =
∞∏

n=1

1 + q2n+1

1− q2n
, (4.14)

or, multiplying both sides by 1 + q,

1
1− q

+
∞∑

k=2

(1 + q)2(1 + q3) · · · (1 + q2k−3)
(1− q2)(1− q4) · · · (1− q2k)

q2k−1 =
∞∏

n=1

1 + q2n−1

1− q2n
. (4.15)

The proof of (4.14) depends on a relationship between two classes of partitions established in Theorem 4.5
below.

In addition to Qn, the set of partitions of n such that the odd parts are distinct and 1 is not a part,
introduced in the proof of Theorem 4.1, we consider the following class of partitions:

Rn, the set of all partitions λ of n such that
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– the odd parts of λ are distinct;

– λ contains at least one odd part;

– if ao(λ) denotes the largest odd part, then ao(λ) + 1 ≥ any even part.

Our next result resembles the Euler Pentagonal Number Theorem.

Theorem 4.5 Let Rn and Qn be the two classes of partitions defined above. Then,

|Qn| − |Rn| = (−1)n . (4.16)

Proof of Theorem 4.5: We construct a correspondence φ, which associates φ(λ) ∈ Qn to any given
λ ∈ Rn:

– if 1 is a part of λ, we define φ(λ) as the partition obtained by removing 1 from λ and adding
1 to its largest odd part;

– if 1 is not a part of λ, we take φ(λ) = λ.
Then, φ is a one-to-one, with an inverse φ−1 defined by:

– if µ ∈ Qn is such that its largest odd part ao(µ) and largest even part ae(µ) satisfy ao(µ)+1 ≥
ae(µ), then φ−1(µ) = µ;

– if µ ∈ Qn contains no odd parts or if ao(µ) + 1 < ae(µ), we construct φ−1(µ) by removing
from µ one part equal to ae(µ) and add one part equal to ae(µ)− 1 and one part equal to 1.

The correspondence φ defines a bijection except for the following two special features:
– when n is even, there is one element µ = (2, 2, . . . , 2) ∈ Qn without a corresponding φ−1(λ) ∈

Rn;
– when n is odd, there is one element λ = (2, 2, . . . , 2, 1) ∈ Rn without a corresponding

φ(λ) ∈ Qn.
Therefore, (4.16) holds. 2

Proof of Theorem 4.4: It is easy to see that the generating function of Rn is

1
1− q2

q +
∞∑

k=2

(1 + q)(1 + q3) · · · (1 + q2k−3)
(1− q2)(1− q4) · · · (1− q2k)

q2k−1 . (4.17)

From (4.16) and (4.17), we obtain

1
1 + q

+
1

1− q2
q +

∞∑
k=2

(1 + q)(1 + q3) · · · (1 + q2k−3)
(1− q2)(1− q4) · · · (1− q2k)

q2k−1 =
∞∏

n=1

1 + q2n+1

1− q2n
,

from which (4.14) follows immediately. 2

In order to construct a bijection between certain classes of partitions, we consider the set M(1)
n,k,m of

all 2 × k matrices of the form (4.4), with non-negative integer entries, having exactly m odd entries in
the first row, and satisfying

ck = 1, dt ≡ 0 (mod 2) , ∀t; (4.18)

ct ≡ 0 (mod 2), ct+1 ≡ 0 (mod 2) =⇒ ct = ct+1 + dt+1 (4.19)

ct ≡ 0 (mod 2), ct+1 ≡ 1 (mod 2) =⇒ ct = 1 + ct+1 + dt+1 (4.20)

ct ≡ 1 (mod 2), ct+1 ≡ 0 (mod 2) =⇒ ct = 1 + ct+1 + dt+1 (4.21)

ct ≡ 1 (mod 2), ct+1 ≡ 1 (mod 2) =⇒ ct = 2 + ct+1 + dt+1 (4.22)∑
ct +

∑
dt = n . (4.23)
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Let A ∈ M(1)
n,k,m. As before, if, for example, k = 4, then it is easy to verify that A is expressed in a

unique way as

A =

(
2+d2+d3+d4+j1+2j2+2j3 2+d3+d4+j2+2j3 2 + d4 + j3 1

d1 d2 d3 d4

)
,

with jt ∈ {0, 1}.
In general, for any A ∈M(1)

n,k,m, we can write in a unique way

c1 = 2 + d2 + d3 + · · ·+ dk + j1 + 2j2 + · · ·+ 2jk−1

c2 = 2 + d3 + d4 + · · ·+ dk + j2 + 2j3 + · · ·+ 2jk−1

...

ck−1 = 2 + dk + jk−1

ck = 1 ,

(4.24)

where jt ∈ {0, 1}.
Consider also the set Rn,k,m of partitions λ of n, having exactly m odd parts, such that the odd parts

are distinct, the largest odd part is ao(λ) = 2k − 1, and any even part is less than or equal to 2k.

Theorem 4.6 For any n, k, and m, with 1 ≤ m ≤ n and k ≥ 1, there is a bijection ζ :M(1)
n,k,m → Rn,k,m.

Precisely, given A ∈M(1)
n,k,m, λ = ζ(A) is the partition containing

– 1
2 dt parts equal to 2t, for any t ∈ {1, 2, . . . , k};

– jt parts equal to 2t− 1, for any t ∈ {1, 2, . . . , k − 1};
– one part equal to 2k − 1,

where the jt ∈ {0, 1} are given by (4.24).

Remark. In the case k = 1 (hence, n is necessarily odd) λ contains one part equal to 1 and 1
2d1 parts

equal to 2.

Proof: From (4.23) and (4.24) it follows that

n = (2k−1) + (d1+2d2+3d3+ · · ·+kdk) + (j1+3j2+5j3+ · · ·+(2k − 3)jk−1). (4.25)

To the matrix A we associate a partition λ containing:

– 1
2 dt parts equal to 2t, for any t ∈ {1, 2, . . . , k};

– jt parts equal to 2t− 1, for any t ∈ {1, 2, . . . , k − 1};
– one part equal to 2k − 1.

Note that, since jt = 1 if ct is odd and jt = 0 if ct is even, for any t ≤ k− 1, it follows that the number of
odd parts in λ is equal to the number of odd elements in the first row of A. This completes the argument.
2

Remark. In practice, to deal with the inverse correspondence ζ−1 it is useful to identify integers with
matrices as described below. For simplicity, we consider the case k = 4.

1=
(

1 0 0 0
0 0 0 0

)
, 3=

(
2 1 0 0
0 0 0 0

)
, 5=

(
2 2 1 0
0 0 0 0

)
, 7=

(
2 2 2 1
0 0 0 0

)
,

2=
(

0 0 0 0
2 0 0 0

)
, 4=

(
2 0 0 0
0 2 0 0

)
, 6=

(
2 2 0 0
0 0 2 0

)
, 8=

(
2 2 2 0
0 0 0 2

)
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For example, the partition λ = (8, 7, 4, 4, 4, 3, 1) corresponds to the matrix(
2 2 2 0
0 0 0 2

)
+
(

2 2 2 1
0 0 0 0

)
+
(

6 0 0 0
0 6 0 0

)
+
(

2 1 0 0
0 0 0 0

)
+
(

1 0 0 0
0 0 0 0

)

=
(

13 5 4 1
0 6 0 2

)
In the case of the correspondence ψ considered in Theorem 4.2, the identification is the same, except for
the integer 2k. For example, for k = 4, remember that the largest part of any µ ∈ Pn,4,m is 2k = 8. The
only difference is that the first 8 is identified with the matrix(

2 2 2 2
0 0 0 0

)
and each additional 8 is identified with (

2 2 2 0
0 0 0 2

)
.

We now introduce another class of partitions. Let Sn,k,m denote the set of all partitions π of n such that

– π has exactly k parts and m of these parts are odd;

– the odd parts of π are distinct;

– the smallest part of π is odd.

Theorem 4.7 There is a natural bijection ξ : M(1)
n,k,m → Sn,k,m. Given any matrix A ∈ M(1)

n,k,m, the

corresponding partition π = ξ(A) is defined as

π = (c1 + d1, c2 + d2, . . . , ck + dk) ,

i.e., by adding up the entries in each column of A.

Proof: The proof is straightforward. 2

Corollary 4.2 There is a bijection ξ ◦ ζ−1 : Rn,k,m → Sn,k,m.

Proof: Combining the bijections given in in Theorem 4.6 and in Theorem 4.7, one obtains a bijection
from ξ ◦ ζ−1 : Rn,k,m → Sn,k,m . 2

Example. Let n = 11. For m = k = 1, we have

(2, 2, 2, 2, 2, 1) 7−→
(

1
10

)
7−→ (11)

For m = 1 and k = 2, we have

(3, 2, 2, 2, 2) 7−→
(

2 1
8 0

)
7−→ (10, 1)

(4, 3, 2, 2) 7−→
(

4 1
4 2

)
7−→ (8, 3)

(4, 4, 3) 7−→
(

6 1
0 4

)
7−→ (6, 5)

For m = 1 and k = 3, we have
18



(5, 2, 2, 2) 7−→
(

2 2 1
6 0 0

)
7−→ (8, 2, 1)

(6, 5) 7−→
(

4 4 1
0 0 2

)
7−→ (4, 4, 3)

(5, 4, 2) 7−→
(

4 2 1
2 2 0

)
7−→ (6, 4, 1)

(5, 3, 2, 1) 7−→
(

5 3 1
2 0 0

)
7−→ (7, 3, 1)

As an application of Theorem 4.7, we obtain the following identity.

Theorem 4.8 The following identity holds

q

1− q2
+
∞∑

n=2

(1 + q)(1 + q3) · · · (1 + q2n−3)
(1− q2)(1− q4) · · · (1− q2n)

q2n−1 =
∞∑

n=1

q2n−1
∞∏

i=0

1 + q2n+2i+1

1− q2n+2i
. (4.26)

Remark. Indeed a slightly stronger version of (4.26) holds true, namely

zq

1− q2
+
∞∑

k=2

(1 + zq)(1 + zq3) · · · (1 + zq2k−3)
(1− q2)(1− q4) · · · (1− q2k)

zq2k−1 =
∞∑

k=1

zq2k−1
∞∏

i=0

1 + zq2k+2i+1

1− q2k+2i
. (4.27)

Proof: The proof follows from Theorem 4.7 and Corollary 4.2. On one hand, the coefficient of zmqn

in the expansion of (1+zq)(1+zq3)···(1+zq2k−3)
(1−q2)(1−q4)···(1−q2k)

zq2k−1 is the number of elements of Rn,k,m. Therefore, the
coefficient of zmqn in the left-hand-side of (4.27) is the number of elements in the union ∪kRn,k,m.

On the other hand, if we denote by Sn,m the set of all partitions π of n such that
– the odd parts of π are distinct;
– π has exactly m odd parts;
– the smallest part of π is odd,

then the class Sn,k,m, defined immediately before the statement of Theorem 4.7, consists of the partitions
π ∈ Sn,m with exactly k parts. We consider also the class

S̃n,k,m = {π ∈ Sn,m| the smallest part of π is 2k − 1 }.

Clearly,
Sn,m =

⋃
k

Sn,k,m =
⋃
k

S̃n,k,m,

with the above unions being of pairwise disjoint sets.
The coefficient of zmqn in the expansion of zq2k−1

∏∞
i=0

1+zq2k+2i+1

1−q2k+2i is the number of elements of
S̃n,k,m. Hence, the coefficient of zmqn in the right-hand-side of (4.27) is the number of elements in the
union Sn,m = ∪kSn,k,m = ∪kS̃n,k,m. Since, by Corollary 4.2 of Theorem 4.7, Rn,k,m and Sn,k,m have the
same number of elements, (4.27) follows. 2

It is important to point out that as a consequence of Theorem 4.8, that has been proved by a
combinatorial argument, we can easily prove a well-known identity about Ramanujan’s partial theta
function

ψ(q) =
∞∑

n=0

q
n(n+1)

2 . (4.28)
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Theorem 4.9 The function ψ, defined by (4.28), satisfies the identity

1 + q +
∞∑

n=1

(1− q2)(1− q4) · · · (1− q2n)
(1− q3)(1− q5) · · · (1− q2n+1)

q2n+1 =
∞∑

n=0

q
n(n+1)

2 . (4.29)

Proof: From (4.26) it follows that

q

1− q2
+
∞∑

n=2

(1 + q)(1 + q3) · · · (1 + q2n−3)
(1− q2)(1− q4) · · · (1− q2n)

q2n−1 =
( ∞∏

i=1

1 + q2i+1

1− q2i

)
· U(q) ,

where U(q) is defined by

U(q) := q +
∞∑

n=2

(1− q2)(1− q4) · · · (1− q2n−2)
(1 + q3)(1 + q5) · · · (1 + q2n−1)

q2n−1 .

Using (4.14), we obtain ( ∞∏
i=1

1 + q2i+1

1− q2i
− 1

1 + q

)
=
( ∞∏

i=1

1 + q2i+1

1− q2i

)
· U(q) . (4.30)

To prove (4.29) it suffices to verify that

1− U(−q) = ψ(q) =
∞∑

n=0

q
n(n+1)

2 . (4.31)

Using the notation

(a; q)∞ :=
∞∏

i=0

(1− aqi) , |q| < 1 ,

we can rephrase (4.30) as

(−q3; q2)∞
(q2; q2)∞

− 1
1 + q

=
(−q3; q2)∞
(q2; q2)∞

·
(
1− ψ(−q)

)
,

which is easily seen to be true, using (see (1.3.4), page 11, in [5])

ψ(q) =
(q2; q2)∞
(q; q2)∞

. 2

Remark. Identity (4.2), and hence identity (4.1) as well, is a particular case of the following identity
(see (1.5) in [2])

1 +
∞∑

k=0

(1 + a)(1 + aq) · · · (1 + aqk−1)
(1− q)(1− q2) · · · (1− qk)

zkqk =
∞∏

j=1

1 + azqj

1− zqj
. (4.32)

Indeed, taking z = 1 in (4.32) and then replacing q by q2 and a by z, one obtains (4.2) as a particular
case.

In [2], (4.32) is proved by a combinatorial argument, but the proof is more involved than our proof of
(4.2).

5 A new bijective proof for the Lebesgue Identity

We now turn our attention to the problem of obtaining a representation of the partitions in which even
parts are not repeated as a certain class of two-line matrices. As a consequence of our ideas, we provide
a new combinatorial proof of the following equality, known as the Lebesgue Identity:

∞∑
r=1

(1 + zq)(1 + zq2) · · · (1 + zqr)
(1− q)(1− q2) · · · (1− qr)

q(
r+1
2 ) =

∞∏
i=1

(1 + zq2i)(1 + qi). (5.1)
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Combinatorial proofs of the Lebesgue Identity have been given by several authors, among them Bessen-
rodt, Bressoud, Little, Sellers, Alladi and Gordon (see [6] and [7]). We believe our bijection is simpler.
It is based on a new way of representing partitions by two-line matrices, introduced by Santos, Mondek,
and Ribeiro in [8].

Let

f(z, q) :=
∞∑

r=1

(1 + zq)(1 + zq2) · · · (1 + zqr)
(1− q)(1− q2) · · · (1− qr)

q(
r+1
2 ) (5.2)

be the left-hand side of (5.1). The general term

(1 + zq)(1 + zq2) · · · (1 + zqk)q1+2+3+···+k

(1− q)(1− q2) · · · (1− qk)

of (5.2) is the generating function of the number of ways of decomposing n as

n = (1 + j1)·1 + (1 + j2)·2 + · · ·+ (1 + jk)·k + d1 + 2d2 + · · ·+ kdk ,

with dt ≥ 0 and jt ∈ {0, 1} or, equivalently, as the sum of the entries of the matrix

A =

(
k+j1+· · ·+jk+d2+· · ·+dk · · · 2+jk−1+jk+dk 1 + jk

d1 · · · dk−1 dk

)
.

The exponent of z counts the number of nonvaninhing elements among the jt. Still equivalently, n is the
sum of entries of the matrices of the form

A =

(
c1 c2 · · · ck

d1 d2 · · · dk

)
, (5.3)

with non-negative entries and satisfying

ck = ik ∈ {1, 2} , (5.4)

ct = it + ct+1 + dt+1 , with it ∈ {1, 2} for t < k, (5.5)

n =
∑

ct +
∑

dt . (5.6)

Denote by Mn,k the set of all matrices of the form (5.3) with non-negative integer coefficients satisfying
(5.4), (5.5), and (5.6). Denote by Mn,m,k the subset of all matrices in Mn,k for which it = 2 for exactly
m elements in the first row and let Nn,m :=

⋃
kMn,m,k. The following proposition clearly holds.

Proposition 5.1 For each fixed k the coefficient of zmqn in the expansion of

(1 + zq)(1 + zq2) · · · (1 + zqk)
(1− q)(1− q2) · · · (1− qk)

q(
k+1
2 )

is the number of matrices in the set Mn,m,k. Hence, coefficient of zmqn in the expansion of (5.2) is the
number of elements in Nn,m.

Denote by Pn,m the set of all partitions of n in which even parts are not repeated and having exactly
m even parts. Our main result is the following theorem, from which the Lebesgue Identity will be derived.

Theorem 5.1 There is a natural bijection between the sets Pn,m and Nn,m.

The construction of the bijection stated in Theorem 5.1 is the object of the next section.

Proposition 5.2 The coefficient of zmqn on the right-hand side of (5.1) is the number of elements of
the set Pn,m.
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Proof: It suffices to rewrite the right-hand side of (5.1) as

∞∏
i=1

(1 + zq2i)(1 + qi) =
∞∏

i=1

(1 + zq2i)(1− q2i)
(1− qi)

=
∞∏

i=1

(1 + zq2i)
(1− q2i−1)

.

2

We have interpreted the right-hand side and the left-hand side of the Lebesgue Identity (5.1) as
generating functions of Nn,m and Pn,m, respectively. Hence, to prove the Lebesgue Identity it suffices to
construct a bijection ψ : Nn,m −→ Pn,m. This construction is the object of the next section.

6 Main bijection

In order to prove Theorem 5.1, we now construct a bijection ψ : Nn,m −→ Pn,m. As a matter of fact,
we specialize and, for each k, construct a bijection ψ : Mn,m,k −→ Pn,m,k, where Mn,m,k is the set of
matrices with k columns defined above and Pn,m,k is a subset of Pn,m to be defined below.

The definition of the set Pn,m,k and the bijection ψ is slightly different, according to the case that
the number k of columns is even or odd.

Case 1: k is even. If k = 2s, we take Pn,m,k to be the subset of all partitions in Pn,m with exactly s
parts greater than or equal to k+ 1 = 2s+ 1. Given any matrix A ∈Mn,m,k, using (5.4), (5.5), and (5.6)
and setting it = 1 + jt (t = 1, . . . , k), we have

n = c1 + · · ·+ c2s + d1 + · · ·+ d2s

= (j1+2j2+· · ·+2sj2s) + (d1+2d2+· · ·+2sd2s) + (1+2+· · ·+2s).

Since 1 + 2 + · · ·+ 2s = s(2s+ 1), we have

n =
(
d1+3d3+· · ·+(2s−1)d2s−1

)
+
(
2j2+4j4+· · ·+2sj2s

)
+
(
j1+2s+1+2d2s

)
+
(
3j3+2s+1+2d2s−2+2d2s

)
+ · · ·+

(
(2s−1)j2s−1+2s+1+2d2+· · ·+2d2s

)
.

Based on this decomposition, to the 2× (2s) matrix A we associate the partition π containing

(i) d1 parts equal to 1;

(ii) d3 parts equal to 3;
...

(iii) d2s−1 parts equal to 2s− 1;

(iv) one part equal to 2r, whenever j2r = 1, r ∈ {1, 2, . . . , s};
(v) one part equal to j1 + 2s+ 1 + 2d2s;

(vi) one part equal to 3j3 + 2s+ 1 + 2d2s−2 + 2d2s;
...

(vii) one part equal to (2s− 1)j2s−1 + 2s+ 1 + 2d2 + 2d4 + · · ·+ 2d2s.

It is easy to see that π ∈ Pn,m,2s = Pn,m,k .

The fact that ψ is a bijection from Mn,m,k onto Pn,m,k in Case 1, as well as in Case 2, follows from
the following lemma.

Lemma 6.1 Given k integers such that odd numbers are not repeated, there is a unique way to order
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them in a certain order N1, N2, . . . , Nk and write out

N1 = 2e1 + j1

N2 = 2e2 + 3j3
N3 = 2e3 + 5j5
· · ·

Nk = 2ek + (2k − 1)j2k−1

(6.1)

with

jt ∈ {0, 1} (6.2)

e1 ≤ e2 ≤ · · · ≤ ek . (6.3)

To understand the idea of the proof of the above lemma, we provide an example.

Example. With k = 8, consider the following eight numbers, where odd numbers are not repeated:
(3, 4, 6, 6, 7, 11, 12, 17). First we express the even numbers as

4 = 2 · 2
6 = 2 · 3
6 = 2 · 3

12 = 2 · 6

(6.4)

Then, we consider the least odd number in the set, which is 3. There is a unique way of expressing it,
namely

3 = N1 = 2 · 1 + 1. (6.5)

Adding (6.5) to the array (6.4), we obtain

3 = 2 · 1 + 1
4 = 2 · 2
6 = 2 · 3
6 = 2 · 3

12 = 2 · 6

(6.6)

Then, we take the next odd number in the list, i.e., 7. There is only one way of fitting it into the array
(6.6), namely at the second place, as N2, with j3 = 1,

3 = 2 · 1 + 1
7 = 2 · 2 + 3
4 = 2 · 2
6 = 2 · 3
6 = 2 · 3

12 = 2 · 6

(6.7)

The next odd number in the list is 11 and the only way to fit it into the array (6.7) is between 4 and the
first 6, i.e., as N4, with j7 = 1,

3 = 2 · 1 + 1
7 = 2 · 2 + 3
4 = 2 · 2

11 = 2 · 2 + 7
6 = 2 · 3
6 = 2 · 3

12 = 2 · 6

(6.8)
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Finally, the only way to fit the last odd number 17 into array (6.8) is in the sixth place, as N6, with
j11 = 1,

3 = 2 · 1 + 1
7 = 2 · 2 + 3
4 = 2 · 2

11 = 2 · 2 + 7
6 = 2 · 3

17 = 2 · 3 + 11
6 = 2 · 3

12 = 2 · 6

(6.9)

The proof of the above lemma follows the same argument outlined in the example. First we arrange
an array containing the expressions of the even elements in the list. Then, we begin including the odd
elements one by one, in increasing order.

Case 2: k is odd. If k = 2s + 1, we take Pn,m,k to be the subset of all partitions in Pn,m with at least
s + 1 parts greater than or equal to k = 2s + 1, but at most s of them greater than or equal to 2s + 3.
Given any matrix A ∈Mn,m,k, we have

n = c1 + · · ·+ c2s+1 + d1 + · · ·+ d2s+1

=
(
j1+2j2+· · ·+(2s+1)j2s+1

)
+
(
d1+2d2+· · ·+(2s+1)d2s+1

)
+
(
1+2+· · ·+(2s+ 1)

)
.

Since 1 + 2 + · · ·+ (2s+ 1) = (s+ 1)(2s+ 1), we have

n =
(
d1+3d3+· · ·+(2s+1)d2s+1

)
+ (2s+1+j1) +

(
2j2+4j4+· · ·+2sj2s

)
+
(
3j3+2s+1+2d2s

)
+
(
5j5+2s+1+2d2s−2+2d2s

)
+ · · ·+

(
(2s+1)j2s+1+2s+1+2d2+· · ·+2d2s

)
.

Based on this decomposition, to the 2× (2s+ 1) matrix A we associate the partition π containing

(i) d1 parts equal to 1;

(ii) d3 parts equal to 3;
...

(iii) d2s+1 parts equal to 2s+ 1;

(iv) One part equal to 2s+ 1 + j1;

(v) one part equal to 2r, whenever j2r = 1, r ∈ {1, 2, . . . , k};
(vi) one part equal to 3j3 + 2s+ 1 + 2d2s ;

(vii) one part equal to 5j5 + 2s+ 1 + 2d2s−2 + 2d2s ;
...

(viii) one part equal to (2s+ 1)j2s+1 + 2s+ 1 + 2d2 + 2d4 + · · ·+ 2d2s .

It is easy to see that π ∈ Pn,m,2s+1 = Pn,m,k .
We still have to show that any π ∈ Pn,m belongs to Pn,m,k for some k, i.e., Pn,m =

⋃
k Pn,m,k. Indeed,

given π ∈ Pn,m , let s be the largest integer such that π has at least s parts greater than or equal to
2s+1. If π has exactly s parts greater than or equal to 2s+1, then π ∈ Pn,m,2s, otherwise π ∈ Pn,m,2s+1.
This completes the proof ot Theorem 5.1. 2

The next example illustrates that our bijective proof of the Lebesgue Identity is different from the
ones given in [6] and [7].

Example. Consider now the partition π = (22, 21, 19, 18, 15, 10, 9, 9, 7, 4, 2), which is the same example
as in [7], page 27. There are exactly five parts greater than or equal to 11. Hence, π corresponds to a
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2 × 10 matrix. We first look at parts less than or equal to 10. There is one 7 and two 9’s. Therefore
d1 = d3 = d5 = 0, d7 = 1, and d9 = 2. There is one of each, 2, 4, and 10. Hence, j2 = j4 = j10 = 1 and
j6 = j8 = 0.

The five parts greater than or equal to 11 are 15, 18, 19, 21 and 22. For these five numbers, the
representation given in Lemma 5.1 is

15 = 11 + 2 · 2
18 = 11 + 2 · 2 + 3
22 = 11 + 2 · 3 + 5
19 = 11 + 2 · 4
21 = 11 + 2 · 5

and, hence,

d10 = 2
d8 + d10 = 2

d6 + d8 + d10 = 3
d4 + d6 + d8 + d10 = 4

d2 + d4 + d6 + d8 + d10 = 5

It follows that d2 = 1, d4 = 1, d6 = 1, d8 = 0 and d10 = 2.

We now have all the elements to write out the matrix

A =

(
23 21 19 16 14 11 9 8 5 2
0 1 0 1 0 1 1 0 2 2

)
.

Using the bijection constructed in Section 4, to this 2 × 10 matrix A we associate a pair (λ, µ) of
partitions into distinct parts. We consider jt = ct − ct+1 − dt+1 − 1, if t ≤ k − 1, and jk = ck − 1. In
this concrete example, we have (j1, j2, . . . , j10) = (0, 1, 1, 1, 1, 0, 0, 0, 0, 1). The first element of the pair is
the partition λ formed with the non-vanishing elements in (10j10, 9j9, . . . , 2j2, j1), i.e., λ = (10, 5, 4, 3, 2).
Consider also the second row of A, (d1, d2, . . . , d10) = (0, 1, 0, 1, 0, 1, 1, 0, 2, 2). The second element of the
pair is the partition µ = (µ1, µ2, . . . , µ10) given by

µ10 = d10 + 1

µ9 = d9 + d10 + 2

...

µ1 = d1 + · · ·+ d10 + 10

i.e., µ = (18, 17, 15, 14, 12, 11, 9, 7, 6, 3). This pair (λ, µ) is different from the one obtained in [7].

References

[1] G. E. Andrews, Three-quadrant Ferrers Graphs, Indian Journal of Mathematics 42, 1–7 (2000).

[2] G. E. Andrews, Enumerative proofs of certains q−identities, Glasgow Math. J. 8, 33–40 (1967).

[3] G. E. Andrews, Ramanujan’s “lost” notebook I, Partial θ−functions, Adv. in Math. 41, 137–172
(1981).

[4] G. E. Andrews, and B. C. Berndt, Ramanujan’s Lost Notebook, Part I, Springer, New York (2005).

[5] B. C. Berndt, Number Theory in the Spirit of Ramanujan, AMS, Providence, RI, USA (2006).
25



[6] D. P. Little and J.A. Sellers, New Proofs of Identities of Lebesgue and Göllnitz via Tilings, Journal
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