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Abstract

Some Mock Theta functions have been interpreted in terms of n-color partition. In this paper we
use a new technique to gain a deeper insight on these interpretations, as well as we employ this new
technique to obtain in a more systematic way similar new interpretations for three other mock theta
functions.
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1 Introduction

In [1] combinatorial interpretations for the mock theta functions

ψ(q) =
∞∑

n=1

qn2

(q; q2)n
, (1.1)

F0(q) =
∞∑

n=0

q2n2

(q; q2)n
, (1.2)

Φ0(q) =
∞∑

n=0

qn2
(−q; q2)n, (1.3)

and

Φ1(q) =
∞∑

n=0

q(n+1)2(−q; q2)n (1.4)

in terms of n-color partition are presented (see definitions and theorems stated below). In [2] a different
combinatorial interpretation for these mock theta functions is given in terms of Bender-Knuth matrices.



Bender-Knuth matrices are infinite matrices with only finitely many non-vanishing entries, which have
been introduced in [5], where a one-to-one correspondence with plane partitions is established.

In this paper we use a new technique to gain a deeper insight on these interpretations, as well as we
employ this new technique to obtain in a more systematic way similar new interpretations for the mock
theta functions

U1(q) =
∞∑

n=0

q(n+1)2(−q ; q2)n

(−q2 ; q4)n+1
, (1.5)

V1(q) =
∞∑

n=0

q(n+1)2(−q ; q2)n

(q ; q2)n+1
, (1.6)

and

V0(q) = −1 + 2
∞∑

n=0

qn2
(−q ; q2)n

(q ; q2)n
. (1.7)

In [8], one of us, Santos, in a joint work with Mondek and Ribeiro, introduced a new combinatorial
interpretation for partitions in terms of two-line matrices. In that paper a new way of representing, as
two-line matrices, a number of identities from Slater’s list ([9]) including Rogers-Ramanujan Identities,
unrestricted partitions and Lebesgue’s Partition Identity is described. In [6] we were able to provide a
number of bijective proofs for several identities including a new bijective proof for the Lebesgue Identity.
In that paper a combinatorial proof for an identity related to three-quadrant Ferrers graphs, given by
Andrews (see [4]), was presented based on the two-line matrix representation. Even though our interpre-
tation has not the same generality as that of Bender-Knuth, in [7] we have obtained interpretation for
all the mock theta functions of [10] in terms of two-line matrices.

Our technique seems to be much more transparent than previous methods. As an application of our
two-line matrix interpretation we were led in a natural way to new interpretations in terms of n-color
partitions for the mock theta functions (1.5), (1.6), and (1.7).

Below we recall some definitions and state the interpretations obtained by Agarwal in [1] because
they will be reobtained later as applications of our method. With this objective in mind, in Section 2
we obtain an equivalent characterization for n-color partitions. In Section 3, we introduce parameters
and study a more general generating function including (1.1) and (1.2) as particular cases. We finish
Section 3, by reobtaining Theorems 1.1 and 1.2 below. Our main goal in Section 4 is to provide new
proofs for Theorems 1.3 and 1.4 based on representation by two-line matrices. In Section 5 we continue
our investigation along the same lines and obtain a new combinatorial interpretation for the mock theta
function (1.5) in terms of n-color partitions. In Section 6 we obtain new combinatorial interpretations for
the mock theta functions (1.6) and (1.7) in terms of n-color partitions. Finally, in Section 7 we consider
a family of generating functions containing several parameters and including as particular cases some of
the generating functions studied before.

Definition 1.1 An n-color partition (also called a partition with ‘n copies of n’) of a positive integer ν
is a partition in which a part of size n can come in n different colors denoted by subscripts: n1, n2, . . . , nn

and the parts satisfy the order 11 < 21 < 22 < 31 < 32 < 33 < 41 < 42 < 43 < 44 < · · · .

Example 1.1 The n-color partitions of 2 and 3 are, respectively,

21, 22, 11 + 11 and 31, 32, 33, 21 + 11, 22 + 11, 11 + 11 + 11.

Definition 1.2 The weighted difference of two parts mi, nj ,m ≥ n is defined by m− n− i− j.

Agarwal’s interpretations of ψ(q) and F0(q) are stated below.

Theorem 1.1 (see [1]) For ν ≥ 1, let A1(ν) denote the number of n-color partitions of ν such that even
parts appear with even subscripts and odd parts with odd, for some k, kk is a part, and the weighted
difference of any two consecutive parts is 0. Then,

∞∑
ν=1

A1(ν)qν = ψ(q). (1.8)
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Example 1.2 A1(8) = 3 : 88, 75 + 11, 62 + 22.

Remark 1. It is important to mention that in the theorem above and in the next, the condition “for
some k, kk is a part” can be replaced by “the smallest part k has subscript k”. It is equally important to
mention that in Theorem 1.1 the statement that even parts appear with even subscripts and odd parts
with odd is not really a conclusion of the theorem. It holds automatically for any n-color partition for
which the smallest part k has subscript k and such that the weighted difference of consecutive parts is 0.

Theorem 1.2 (see [1]) For ν ≥ 1, let A2(ν) denote the number of n-color partitions of ν such that even
parts appear with even subscripts and odd parts with odd greater than 1, for some k, kk is a part, and the
weighted difference of any two consecutive parts is 0. Then,

∞∑
ν=1

A2(ν)qν = F0(q). (1.9)

Theorem 1.3 (see [1]) For ν ≥ 1, let A3(ν) denote the number of n-color partitions of ν such that only
the first copy of the odd parts and the second copy of the even parts are used, that is, the parts are of the
type (2k− 1)1 or (2k)2, the minimum part is 11 or 22, and the weighted difference of any two consecutive
parts is 0. Then,

∞∑
ν=0

A3(ν)qν = Φ0(q). (1.10)

Theorem 1.4 (see [1]) For ν ≥ 1, let A4(ν) denote the number of n-color partitions of ν such that only
the first copy of the odd parts and the second copy of the even parts are used, the minimum part is 11,
and the weighted difference of any two consecutive parts is 0. Then,

∞∑
ν=0

A4(ν)qν = Φ1(q). (1.11)

2 An equivalent characterization of n-color partitions

In this section we give two equivalent characterization for n-color partitions with no mention of subscripts.
Throughout this section we consider n-color partitions λ = (λ1)α1 + (λ2)α2 + · · ·+ (λs)αs such that

λs = αs ; (2.1)

λt − λt+1 − αt − αt+1 = 0 , ∀t (i.e., the weighted difference (2.2)

of consecutive parts is 0).

Remark 2. The subscripts αt are completely determined by (2.1) and (2.2). Indeed,

αs = λs ; (2.3)

αt = λt − 2λt+1 + 2λt+2 − · · ·+ (−1)s−t2λs , ∀t < s. (2.4)

Proposition 2.1 Let λ = (λ1, λ2, . . . , λs) be a partition of n such that the sequence (α1, α2, . . . , αs)
defined by

αs = λs;

αt = λt − 2λt+1 + · · ·+ (−1)s−t2λs, ∀t < s.
(2.5)

satisfies
αt ≥ 1 , ∀t. (2.6)
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Then, λ = (λ1)α1 + · · ·+ (λs)αs
is an n-color partition of n satisfying the conditions (of Theorem 1.1)

αs = λs; (2.7)

1 ≤ αt ≤ λt , ∀ t; (2.8)

λt ≡ αt (mod 2), ∀ t; (2.9)

λt − λt+1 = αt + αt+1 , ∀ t < s. (2.10)

Conversely, any n-color partition of n satisfying conditions (2.7)– (2.10) satisfies also equalities (2.5)
above.

The proof is simple, noting that solving (2.5) for λt yields

λs = αs;

λt = αt + 2αt+1 + · · ·+ 2αs, ∀t < s.
(2.11)

Remark 3. Condition (2.11) above shows that for the admissible partitions in Theorem 2 a more strict
inequality holds, namely

1 ≤ αt ≤ λt − 2(s− t), ∀ t ≤ s. (2.12)

We now give an interpretation in terms of modular Ferrers diagrams. It is easier to explain the idea
by an example. Consider, for example, the partition λ = (21, 14, 8, 3). By (2.5), we have α1 = 3, α2 = 4,
α3 = 2, and α4 = 3 and, hence, λ satisfies the conditions (2.6). We represent the parts of λ as the sums
of the elements of the columns of the following diagram

1
1
1
2
2
2
2
2
2
2
2
2

1
1
1
1
2
2
2
2
2

1
1
2
2
2

1
1
1

α4 = 3

α3 = 2

α2 = 4

α1 = 3

It follows easily that the numbers αt defined by (2.5) count the groups of 1s in the above diagram.
Therefore, partitions satisfying condition (2.6) are precisely those that can be represented by vertical

lines in a diagram as above. We see immediately that the sums of the elements in the horizontal lines
of the same diagram represent partitions of n into odd parts with no gaps. Therefore, we obtain the
following theorem.

Theorem 2.1 There is a bijection between the set of partitions of n satisfying (2.6) and the set of
partitions of n into odd parts with no gaps. In other words, there is a bijection between the set of n-color
partitions of n satisfying (2.1) and (2.2) and the set of partitions of n into odd parts with no gaps. Given
an n-color partition λ = (λ1)α1 + · · ·+ (λs)αs of n satisfying (2.1) and (2.2), the corresponding partition
µ of n into odd parts with no gaps is the partition containing αt parts equal to 2t− 1, ∀t ∈ {1, . . . , s}.

In addition, there is a bijection between each set of partitions above and the set of two-line matrices
of the form

A =

(
c1 c2 · · · cs

d1 d2 · · · ds

)
(2.13)

with non-negative integer entries satisfying

cs = 1 ; (2.14)

dt ≥ 0 , ∀t; (2.15)

ct = 2 + ct+1 + 2dt+1 , ∀t < s; (2.16)

n =
∑

ct +
∑

dt. (2.17)
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Given a matrix A of the form (2.13), satisfying (2.14)– (2.17) above, the associated n-color partition λ
satisfies λt = ct + dt and αt = 1 + dt, and the corresponding partition µ into odd parts with no gaps
contains 1 + dt parts equal to 2t− 1, for any t ≤ s.

Furthermore, if λ is a partition of n and we define αt by (2.5), then the weaker condition αt ≥ 0, ∀t
is satisfied if and only if λ corresponds to a partition µ of n into odd parts in the way described above,
possibly µ having some gaps.

The connection between partitions and matrices stated in Theorem 2.1 is not proved here, since it
will be generalized in Theorem 3.1 in Section 3.

As in Theorem 2.1, given a partition µ of n into odd parts, possibly having some gaps, we can
still associate a partition λ to it, even though λ may not be an n-color partition. As an important
particular case, we may consider the set of all partitions of n into odd parts and determine to which set
of “generalized” n-color partitions of n it corresponds.

Let µ be any partition of n into odd parts. Let 2s−1 be its largest part. Suppose µ contains dt copies
of 2t− 1, for any t ≤ s (dt ≥ 0, ds ≥ 1). Then,

n = 1d1 + 3d2 + 5d3 + · · ·+ (2s− 1)ds

or, equivalently, n can be expressed as the sum of the elements of the matrix

A =

(
2d2 + · · ·+ 2ds · · · 2ds−1 + 2ds 2ds 0

d1 · · · ds−2 ds−1 ds

)
. (2.18)

We have the following result.

Proposition 2.2 There is a bijection between the set of all partitions of n into odd parts and the set of
two-line matrices of the form

A =

(
c1 c2 · · · cs

d1 d2 · · · ds

)
, (2.19)

with non-negative integer entries satisfying

cs = 0 , ds ≥ 1 ; (2.20)

dt ≥ 0 , ∀t < s; (2.21)

ci = ci+1 + 2di+1 , ∀i < s; (2.22)

n =
∑

ci +
∑

di. (2.23)

Given a matrix A the corresponding partition µ of n into odd parts is the partition µ containing dt parts
equal to 2t− 1, ∀t ∈ {1, . . . , s}.

There is also a bijection between the set of partitions λ of n satisfying

αt ≥ 0, ∀t, (2.24)

i.e.
λt − 2λt+1 + 2λt+2 − · · ·+ (−1)s−t2λs ≥ 0 , ∀t < s (2.25)

and the same set of matrices of the form (2.19) with non-negative integer entries satisfying (2.20)– (2.23).
Given a matrix A the corresponding partition λ of n is obtained adding up the elements of each of the
columns of A.

Example 3. For example, the partition µ = (11, 11, 9, 3, 3, 3, 1, 1, 1, 1) into odd parts corresponds to a
matrix A of the form (2.19) in which the second row is (4, 3, 0, 0, 1, 2). Hence, the matrix is

A =

(
12 6 6 6 4 0

4 3 0 0 1 2

)
. (2.26)

Adding up the elements in each column of (2.26), we obtain the partition λ = (16, 9, 6, 6, 5, 2), which
satisfies (2.24) or, equivalently, (2.25). The partition λ can also be obtained adding up the elements of
each of the columns of the modular Ferrers diagram of µ:
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1
1
1
1
2
2
2
2
2
2

1
1
1
2
2
2

2
2
2

2
2
2

1
2
2

1
1

Example 4. Below we construct a table showing the correspondence between partitions µ of n into odd
parts and partitions λ of n satisfying (2.25) in the case n = 10. In this case there are 10 partitions of
each type.

µ matrix λ µ matrix λ

(1, 1, 1, . . . , 1)

(
0
10

)
(10) (3, 1, 1, 1, 1, 1, 1, 1)

(
2 0
7 1

)
(9, 1)

(3, 3, 1, 1, 1, 1)

(
4 0
4 2

)
(8, 2) (3, 3, 3, 1)

(
6 0
1 3

)
(7, 3)

(5, 1, 1, 1, 1, 1)

(
2 2 0
5 0 1

)
(7, 2, 1) (5, 3, 1, 1)

(
4 2 0
2 1 1

)
(6, 3, 1)

(5, 5)

(
4 4 0
0 0 2

)
(4, 4, 2) (7, 1, 1, 1)

(
2 2 2 0
3 0 0 1

)
(5, 2, 2, 1)

(7, 3)

(
4 2 2 0
0 1 0 1

)
(4, 3, 2, 1) (9, 1)

(
2 2 2 2 0
1 0 0 0 1

)
(3, 2, 2, 2, 1)

3 Generalization of Theorems 1 and 2

Theorem 3.1 For fixed integers i, k, r ≥ 1, consider the generating function
∞∑

n=0

qrn2

(qi ; qk)n
. (3.1)

Then, the coefficient of qn in the expansion of (3.1) is the number of matrices of the form

A =

(
c1 c2 · · · cs

d1 d2 · · · ds

)
, (3.2)

with non-negative integer entries satisfying

cs = r ; (3.3)

dt are multiples of i ; (3.4)

ct = 2r + ct+1 +
k

i
dt+1 , ∀t < s ; (3.5)

n =
∑

ct +
∑

dt . (3.6)
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Proof. For any s, the general term of (3.1),

qr(1+3+5+···+(2s−1))

(1− qi)(1− qi+k) · · · (1− qi+(s−1)k)
,

generates the partitions into parts of two colors1, say blue and green, containing

(i) exactly r blue parts equal to each one of the odd numbers 1, 3, 5, . . . , 2s− 1;

(ii) any number of green parts from i, i + k, i + 2k, · · · , i + (s− 1)k.

Accordingly, we decompose n as

n = ie1 + (i + k)e2 + · · ·+ (i + (s− 1)k)es + r(1 + 3 + 5 + · · ·+ (2s− 1)) ,

with et ≥ 0, or, equivalently, as the sum of the entries of the matrix

A =

(
(2s−1)r+ke2+· · ·+kes · · · 5r+kes−1+kes 3r + kes r

ie1 · · · ies−2 ies−1 ies

)
.

Then, the theorem follows, with dt = iet.

We now specialize to the case in which k = 2i.

Corollary 3.1 Given integers r, i ≥ 1, the coefficient of qn in the expansion of the generating function

∞∑
n=0

qrn2

(qi ; q2i)n
. (3.7)

is the number of matrices of the form

A =

(
c1 c2 · · · cs

d1 d2 · · · ds

)
(3.8)

with integer entries satisfying

cs = r ; (3.9)

dt ≥ 0 is a multiple of i; (3.10)

ct = 2r + ct+1 + 2dt+1 , ∀t < s ; (3.11)

n =
∑

ct +
∑

dt . (3.12)

Remark 5. It follows from (3.9)– (3.11) that the matrix A is of the form

A =

(
(2s−1)r+2ie2+· · ·+2ies · · · 5r+2ies−1+2ies 3r + 2ies r

ie1 · · · ies−2 ies−1 ies

)
.

Proposition 3.1 To any matrix of the form (3.8) satisfying (3.9)– (3.12) we associate a partition with
subscripts λ = (λ1)α1 + (λ2)α2 + . . . + (λs)αs by adding up the columns of the matrix, with

λt = ct + iet with a subscript αt = r + iet .

Then, the partition λ has the following properties:

(i) αt ≡ r (mod i) , ∀t; (3.13)

1strictly speaking it is not really necessary to consider two different colors, it just provides a nice setting for the argument
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(ii) The smallest part λs coincides with its subscript

αs = λs; (3.14)

(iii) The weighted difference of any two consecutive parts is 0,

λt − λt+1 − αt − αt+1 = 0. (3.15)

(iv) r ≤ αt ≤ λt and λt ≡ 2r(s− t) + αt (mod i). (3.16)

The proof will not be given here and follows from the same type of argument as Proposition 2.2.
We now state without proof a result giving a different characterization of partitions satisfying (3.13)–

(3.16).

Proposition 3.2 Let λ = (λ1)α1 + (λ2)α2 + · · · + (λs)αs
be a partition of n with subscripts satisfying

(3.13)– (3.16). Then,

0 ≤ λs − r ≡ 0 (mod i);

0 ≤ λt − 2λt+1 + · · ·+ 2(−1)s−tλs − r ≡ 0 (mod i), ∀t < s.
(3.17)

Application 1. There is a bijection between the following sets of partitions of n:

(i) Partitions with subscripts λ = (λ1)α1 + (λ2)α2 + · · ·+ (λs)αs satisfying (3.13)–(3.16);

(ii) Partitions λ = (λ1, λ2, . . . , λs) satisfying (3.17);

(iii) Partitions into parts of two colors, say blue and green, in which

(a) the blue parts are all odd, with no gaps, and there are exactly r copies of each one of them;
(b) the green parts are of the form iδ, with δ an odd number less than or equal to the largest blue

part.

Also there is a bijection between any one of these classes of partitions of n and the set of matrices of
the form (3.8) satisfying (3.9)– (3.12).

The generating function for any one of the above classes of partitions or matrices is (3.7).

In the particular case i = 1, the congruences mod i become trivial and we have that (3.7) is the
generating function for the number of partitions of n such that

(i) The smallest part λs coincides with its subscript αs and is equal to r;

(ii) For any other subscript αt, we have r ≤ αt ≤ λt;

(iii) The weighted difference between any two consecutive parts is 0, i.e., λt− λt+1−αt−αt+1 = 0, ∀t.
These results in the particular case r = 1 and r = 2 have been obtained by Agarwal in [1] and are the
results referred to in the Introduction as Theorems 1.1 and 1.2. We rephrase this in the next theorem.

Theorem 3.2 (Generalization of Theorems 1 and 2) If r ≥ 1 is an integer, then the coefficient of
qn in the expansion of the generating function

∞∑
n=0

qrn2

(q ; q2)n
. (3.18)

is the number of elements in the set M(n, r) of all matrices of the form (3.8) with non-negative integer
entries satisfying

cs = r ; (3.19)

dt ≥ 0 ; (3.20)

ct = 2r + ct+1 + 2dt+1 , ∀t < s. (3.21)
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There is a bijection between the set M(n, r) and the set of the partitions λ = (λ1, . . . , λs) of n satisfying

λs ≥ r;

λt − 2λ2 + · · ·+ 2(−1)s−tλs ≥ r, ∀t < s.
(3.22)

Given any matrix A ∈ M(n, r), the corresponding partition λ is obtained by adding up the elements of
each column of A.

Finally, there is also a bijection between the set M(n, r) and the set of the partitions µ of n into odd
parts, with no gaps, such that each part has multiplicity at least r and the largest part is 2s − 1. Given
any matrix A ∈ M(n, r), the corresponding µ is the partition containing r + dt copies of 2t− 1, for any
t ∈ {1, 2, . . . , s}.

4 Revisiting Theorems 3 and 4 of Agarwal

At the end of Section 3, we proved Theorem 3.2, containing as particular cases Theorem 1.1 and Theorem
1.2 of Agarwal, stated in the Introduction. In this section we apply the method of two-line matrices to
obtain new proofs for Theorem 1.3 and Theorem 1.4.

Consider the mock theta function Φ0(q) of order 5 already defined in (1.3)

Φ0(q) = 1 +
∞∑

s=1

(1 + q)(1 + q3) · · · (1 + q2s−1) q1+3+5+···+(2s−1) .

It is clearly the generating function for the partitions of n into odd parts with no gaps and such that any
part appears at most twice. Hence, using Theorem 2.1, Theorem 1.3 follows.

To get a better understanding, write out

n = (1 + j1)·1 + (1 + j2)·3 + (1 + j3)·5 + · · ·+ (1 + js)·(2s− 1) ,

with jt ∈ {0, 1}, or, in matrix form, n is the sum of the entries of the matrix

A =

(
(2s− 1) + 2j2 + · · ·+ 2js · · · 3 + 2js 1

j1 · · · js−1 js

)
. (4.1)

Therefore (1.3) is the generating function for the set of two-line matrices of the form

A =

(
c1 c2 · · · cs

d1 d2 · · · ds

)
(4.2)

with non-negative integer entries satisfying

cs = 1 ; (4.3)

dt ∈ {0, 1} ; (4.4)

ct = 2 + ct+1 + 2dt+1 , ∀t < s ; (4.5)
∑

ct +
∑

dt = n . (4.6)

There is a bijection between the set of two-line matrices satisfying (4.3)– (4.6) and the set of partitions
into odd parts, with no gaps, containing at most two copies of any part. The matrix A has s columns if
and only if the largest part of the corresponding partition is 2s− 1. Furthermore, for any entry dt in the
second line we have that dt = 0 or dt = 1 according to the fact that 2t − 1 appears once or twice as a
part of the partition.
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Adding up the elements in each column of (4.1), we obtain a partition λ = (λ1, . . . , λs) of n satisfying:

λs ∈ {1, 2} (4.7)

λt − λt+1 =





2, if λt and λt+1 are both odd;

3, if λt and λt+1 have different parity;

4, if λt and λt+1 are both even.

(4.8)

We obtain the following theorem.

Theorem 4.1 The mock theta function of order 5 (1.3)

Φ0(q) =
∞∑

n=0

(−q ; q2)nqn2

is the generating function for the number of two-line matrices with non-negative integer entries satisfying
(4.3)– (4.6). Furthermore, there is a bijection between this set of matrices and each one of the sets of

(i) partitions λ of n satisfying (4.7) and (4.8);

(ii) partitions µ of n into odd parts, with no gaps, containing at most two copies of any part.

(iii) n-color partitions λ = (λ1)α1 + . . . + (λs)αs satisfying:

(a) the weighted difference of consecutive parts is 0, i.e., λt − λt+1 − αt − αt+1 = 0;
(b) the smallest part λs is 1 or 2;
(c) αt = 1 if λt is odd and αt = 0 if λt is even.

Given any matrix A, the corresponding partition λ is obtained by adding up the entries in each of the
columns of A and µ is the partition into odd parts containing one (respectively, two) copies of a number
2t− 1 if dt = 0 (respectively, dt = 1) for any t ≤ s = number of columns of A.

Example 5. For example, n = 17 has two partitions into odd parts with no gaps having at most two
copies of each part, 17 = 1 + 1 + 3 + 5 + 7 and 17 = 1 + 3 + 3 + 5 + 5. The coefficient of q17 in the
expansion of (1.3) is 2.

(7, 5, 3, 1, 1) 7−→
(

7 5 3 1
1 0 0 0

)
7−→ (8, 5, 3, 1),

(5, 5, 3, 3, 1) 7−→
(

9 5 1
0 1 1

)
7−→ (9, 6, 2).

Remark 6. With the notation of the Theorem 4.1, the number of repeated parts in the partition µ
equals the number of even parts in the partition λ. This fact can be easily observed in the example
above.

Proof of Theorem 1.3. Theorem 1.3 (of Agarwal) follows directly from Theorem 4.1. 2

For Theorem 1.4 the argument is similar and there is no need to give it in detail. The general term

(1 + q)(1 + q3) · · · (1 + q2s−1)q1+3+5+···+(2s+1)

of the mock theta function Φ1(q) of order 5 defined in (1.4) generates the partitions containing exactly
one part equal to 2s+1 and one or two parts equal to each one of the numbers 1, 3, 5, . . . , 2s−1. Hence,
we now express n as

n = j1 + 3j2 + 5j3 + · · ·+ (2s− 1)js + 1 + 3 + 5 + · · ·+ (2s + 1)
10



with jt ∈ {0, 1}, or as the sum of the elements of the matrix

A =

(
(2s + 1) + 2j2 + · · ·+ 2js · · · 5 + 2js 3 1

j1 · · · js−1 js 0

)
.

Theorem 4.2 (Agarwal) The mock theta function of order 5 (1.4)

Φ1(q) =
∞∑

n=0

(−q ; q2)nq(n+1)2 ,

is the generating function for the number of two-line matrices of the form

A =

(
c1 c2 · · · cs+1

d1 d2 · · · ds+1

)
(4.9)

with non-negative integer entries satisfying

cs+1 = 1 , ds+1 = 0; (4.10)

dt ∈ {0, 1} , ∀ t ≤ s; (4.11)

ct = 2 + ct+1 + 2dt+1 , ∀t ≤ s; (4.12)

n =
∑

ct +
∑

dt. (4.13)

Furthermore, there is a bijection between this set of matrices and each one of the following two sets of
partitions:

(i) partitions λ of n satisfying

λs = 1; (4.14)

λt − λt+1 =





2, if λt and λt+1 are both odd;

3, if λt and λt+1 have different parity;

4, if λt and λt+1 are both even;

(4.15)

(ii) partitions µ of n into odd parts, with no gaps, containing at most two copies of any part and such
that the largest part has multiplicity 1.

(iii) n-color partitions λ = (λ1)α1 + . . . + (λs)αs satisfying:

(a) the weighted difference of consecutive parts is 0, i.e., λt − λt+1 − αt − αt+1 = 0;

(b) the smallest part λs is 1;

(c) αt = 1 if λt is odd and αt = 0 if λt is even.

Given any matrix A, the corresponding partition λ is obtained by adding up the entries in each of the
columns of A and µ is the partition into odd parts containing one (respectively, two) copies of a number
2t− 1 if dt = 0 (respectively, dt = 1) for any t ≤ s = number of columns of A.

Example 6. For example, n = 61 has 4 partitions of this type,

61 = 1 + 1 + 3 + 3 + 5 + 5 + 7 + 7 + 9 + 9 + 11

61 = 1 + 3 + 5 + 5 + 7 + 7 + 9 + 11 + 13

61 = 1 + 3 + 3 + 5 + 7 + 9 + 9 + 11 + 13

61 = 1 + 1 + 3 + 5 + 7 + 9 + 11 + 11 + 13

Using a package like Maple, we find that the coefficient of q61 in the expansion of (1.4) is 4. The
corresponding partitions and two-line matrices are listed below.
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(11, 9, 9, 7, 7, 5, 5, 3, 3, 1, 1) 7→
(

19 15 11 7 3 1

1 1 1 1 1 0

)
7→ (20, 16, 12, 8, 4, 1)

(13, 11, 9, 7, 7, 5, 5, 3, 1) 7→
(

17 15 11 7 5 3 1

0 0 1 1 0 0 0

)
7→ (17, 15, 12, 8, 5, 3, 1)

(13, 11, 9, 9, 7, 5, 3, 3, 1) 7→
(

17 13 11 9 5 3 1

0 1 0 0 1 0 0

)
7→ (17, 14, 11, 9, 6, 3, 1)

(13, 11, 11, 9, 7, 5, 3, 1, 1) 7→
(

15 13 11 9 7 3 1

1 0 0 0 0 1 0

)
7→ (16, 13, 11, 9, 7, 4, 1)

Remark 7. As with Theorem 4.1, with the notation of Theorem 4.2, the number of repeated parts in
the partition µ equals the number of even parts in the partition λ. This fact can be easily observed in
the example above.

Proof of Theorem 1.4. Theorem 1.4 of Agarwal, mentioned in the Introduction, follows directly from
Theorem 4.2. 2

5 A new result of Agarwal-type

In this section we obtain a new result that belongs to the same family of results of Agarwal mentioned
in the Introduction (Theorem 1.1 – Theorem 1.4). Consider the mock theta function of order 8 U1(q)
defined in (1.5), which is number 40 in [10]. Its general term

q(s+1)2(−q ; q2)s

(−q2 ; q4)s+1
=

(1 + q)(1 + q3) · · · (1 + q2s−1) q1+3+5+···+(2s+1)

(1 + q2)(1 + q6) · · · (1 + q4s+2)
,

apart from the signs, is the generating function for partitions containing:

(i) each of the odd numbers 1, 3, 5, · · · , 2s− 1 as a part, with multiplicity 1 or 2 ;

(ii) exactly one part equal to 2s + 1 ;

(iii) any number of even parts which are not multiples of 4 and are less than or equal to 4s + 2.

Concerning condition (iii) above, note that each part that is not a multiple of 4 is of the form 4t−2 and,
hence, is equivalent to two parts equal to 2t− 1. Therefore, (i), (ii), and (iii) are equivalent to

(i)′ each one of the odd numbers 1, 3, 5, · · · , 2s− 1 as a part, with multiplicity at least 1;

(ii)′ 2s + 1 is a part with multiplicity odd.

Hence, it follows from Theorem 2.1 that there is a representation in terms of n-color partitions. Indeed,
if we decompose n as

n=(1 + j1)1 + (1 + j2)3 + · · ·+ (1 + js)(2s− 1) + (2s + 1) + 2e1 + 6e2 + · · ·+ (4s + 2)es+1,

with et ≥ 0 and jt ∈ {0, 1} or, equivalently, as the sum of the entries of the 2× (s + 1)-matrix

A =

(
(2s+1)+j1+

∑s
t=2 2jt+

∑s+1
t=2 4et · · · 3+js+4es+1 1

2e1 · · · 2es 2es+1

)
.

Then, n is the sum of the entries of a matrix of the form

A =

(
c1 c2 · · · cs+1

d1 d2 · · · ds+1

)
(5.1)
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with non-negative integer coefficients satisfying

cs+1 = 1 ; (5.2)

dt is even , dt ≥ 0 , ∀t ; (5.3)

ct ≡ 1, ct+1 ≡ 1 (mod 2) =⇒ ct = 2 + ct+1 + 2dt+1 ; (5.4)

ct ≡ 0, ct+1 ≡ 1 (mod 2) =⇒ ct = 3 + ct+1 + 2dt+1 ; (5.5)

ct ≡ 1, ct+1 ≡ 0 (mod 2) =⇒ ct = 3 + ct+1 + 2dt+1 ; (5.6)

ct ≡ 0, ct+1 ≡ 0 (mod 2) =⇒ ct = 4 + ct+1 + 2dt+1 ; (5.7)

n =
∑

ct +
∑

dt . (5.8)

Each matrix is to be counted with a weight that reflects the parity of the number of even parts in (iii).
More precisely,

w = (−1)e1+···+es+1 = (−1)(d1+···+ds+1)/2 .

Note that adding up the elements in each column of the above matrix A, we obtain a partition
λ = (λ1, . . . , λs+1) of n satisfying

λs+1 ≡ 1 (mod 2) (5.9)

λt−λt+1 =





2 + dt + dt+1, if λt and λt+1 are both odd;

3 + dt + dt+1, if λt and λt+1 have different parity;

4 + dt + dt+1, if λt and λt+1 are both even.

(5.10)

This is equivalent to assigning to each part λt the subscript

αt =

{
1 + dt, if λt is odd;

2 + dt, if λt is even,
(5.11)

and requiring that the weighted difference of consecutive parts be 0.

We have the following results.

Theorem 5.1 The mock theta function U1(q), given by (1.5), is the generating function for the weighted
matrices of the form (5.1) with non-negative integer coefficients satisfying (5.2)– (5.8). Each matrix is
counted with the weight

w = (−1)e1+···+es+1 = (−1)(d1+···+ds+1)/2 .

Theorem 5.2 There is a bijection between the following three sets:

(i) the set of matrices of the form (5.1) with non-negative integer entries satisfying (5.2)– (5.8);

(ii) the set of partitions µ of n into odd parts with no gaps such that the largest part has multiplicity
odd;

(iii) the set of n-color partitions of n λ = (λ1)α1 + (λ2)α2 + · · · + (λs+1)αs+1 such that λs+1 is odd,
and, as a consequence of Remark 1, odd parts appear with odd subscripts and even parts with even
subscripts.

Proof. Given a matrix A of the form (5.1) with non-negative integer entries satisfying (5.2)– (5.8), the
partition λ is obtained by adding up the elements in each column of A, with subscripts given by (5.11).
As is Theorem 2.1, the partition µ is obtained in the following way:

– µ contains 1 + dt copies of 2t− 1;
13



– whenever ct is even, µ contains an additional copy of 2t− 1.

Example 7. Considering the beginning of the expansion

U1(q) =

∞∑
n=0

q(n+1)2(−q ; q2)n

(−q2 ; q4)n+1
=q−q3+q4+2q5−q6−2q7+q8+3q9−q10−4q11+2q12

+5q13 −2q14−6q15+3q16+8q17− 4q18−9q19+4q20

+11q21−5q22−14q23+ · · ·

and of its unsigned version

∞∑
n=0

q(n+1)2(−q ; q2)n

(q2 ; q4)n+1
=q + q3 + q4 + 2q5 + q6 + 2q7 + q8 + 3q9 + 3q10 + 4q11 + 4q12

+ 5q13+4q14+6q15+7q16+8q17+8q18+11q19+10q20+13q21

+15q22+ · · ·

we see that for n = 20, for example, there are 10 matrices, and the sum of their weights is 4, i.e., there
are seven matrices with weight +1 and three with weight −1. Indeed, we can construct the following
table. In the table below, for example, (3, 117) denotes a partition in which 1 appears seventeen times as
a part and 3 appears with multiplicity one.

matrix λ µ w

(
3 1

16 0

)
(1917, 11) (3, 117) +1

(
7 1

10 2

)
(1711, 33) (3, 3, 3, 111) +1

(
11 1

4 4

)
(155, 55) (3, 3, 3, 3, 3, 1, 1, 1, 1, 1) +1

(
6 3 1

10 0 0

)
(1612, 31, 11) (5, 3, 112) −1

(
10 3 1

4 2 0

)
(146, 53, 11) (5, 3, 3, 3, 1, 1, 1, 1, 1, 1) −1

(
10 7 1

0 0 2

)
(102, 71, 33) (5, 5, 5, 3, 1, 1) −1

(
7 4 1

8 0 0

)
(159, 42, 11) (5, 3, 3, 19) +1

(
11 4 1

2 2 0

)
(133, 64, 11) (5, 3, 3, 3, 3, 1, 1, 1) +1

(
7 5 3 1

4 0 0 0

)
(115, 51, 31, 11) (7, 5, 3, 1, 1, 1, 1, 1) +1

(
10 6 3 1

0 0 0 0

)
(102, 62, 31, 11) (7, 5, 3, 3, 1, 1) +1

14



It is interesting to point out that, except for a displacement n 7→ n+1, the mock theta function (1.5)
is a member of the 3-parameter family

∞∑
n=0

(−qi; q2i)nqrn2

(qj ; q2j)n
. (5.12)

In the study of the generating function (5.12), we have to distinguish two cases, the case in which i is not
a multiple of j, and the case in which it does. For the first case we have the theorem below. In the second
case, if i is a multiple of j (in particular, if i = j), instead of being the generating function for a class of
n-color partitions, (5.12) can generate pairs of n-color partitions, as we will see in the next section.

Theorem 5.3 Let i, j, and r be positive integers and suppose that i is not a multiple of j. Then, the
coefficient of qn in the expansion of (5.12) is equal to the number of elements in each one of the sets

(i) the set of partitions µ of n into odd parts with no gaps and such that, for each t ∈ {1, 2, 3, . . . , s},
the number 2t− 1 is a part of µ with a multiplicity of the form r + jk or r + i + jk, where k ≥ 0;

(ii) the set of n-color partitions λ = (λ1)α1 + · · ·+ (λs)αs
of n satisfying

αt ∈ {r + jk | k ≥ 0} ∪ {r + i + jk | k ≥ 0}, ∀t ;
λs = αs ;

λt − λt+1 = αt + αt+1, ∀t < s.

Theorem 5.3 can be proved using the same argument employed in the proofs of Theorems 5.1 and 5.2
above. It suffices to note that the general term

(1 + qi)(1 + q3i) · · · (1 + q(2s−1)i) qr(1+3+···+(2s−1))

(1− qj)(1− q3j) · · · (1− q(2s−1)j)

of (5.12) generates the partitions µ into odd parts with no gaps such that, for any t ∈ {1, 2, . . . , s}, the
number 2t− 1 is a part of µ with a multiplicity αt of the form r + kj or r + i + kj, with k ≥ 0. Then, it
suffices to take λ as the conjugate to µ with respect to the modular Ferrers diagram, taking αt defined
above as the subscript of λt.

The argument outlined above works only when i is not a multiple of j.

Example 8. Consider the particular case in which i = 5, j = 3, and r = 2 in (5.12). Using a package
like Maple, we see that the coefficient of q37 in the expansion of

∞∑
n=0

(−q5; q10)nq2n2

(q3; q6)n
=1+q2+q5+q7+2q8+· · ·+10q35+5q36+7q37+12q38+· · ·

is 7. This means that there are 7 partitions of 37 of each one of the two types described in Theorem 5.3.
We have

αt ∈ {2, 5, 8, 11, . . .} ∪ {7, 10, 13, 16, . . .} := N

To construct the partition µ, it suffices to express

37 = 1 · αs + 3 · αs−1 + 5 · αs−2 + · · · , with αt ∈ N.

By inspection, we construct the following table listing the 7 possibilities (the multiplicities αt for µ are
the subscripts of λ).
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µ λ

(137) (3737)

(32, 131) (3531, 22)

(35, 122) (3222, 55)

(38, 113) (2913, 88)

(37, 116) (3016, 77)

(310, 17) (277, 1010)

(72, 52, 32, 17) (197, 102, 62, 22)

6 Two new results of Agarwal-type for pairs of partitions

In this section, we consider an example of the generating function (5.12) in which i is a multiple of j (i = j,
indeed) and also a variant involving a displacement n 7→ n + 1. We find combinatorial interpretations in
terms of pairs of n-color partitions for the mock theta functions (1.6) and (1.7). Actually, for the second
element of the pair we have to slightly relax the definition. Consider the mock theta function of order 8
V1(q) defined in (1.6), which is number 43 in [10]. Its general term

q(s+1)2(−q ; q2)s

(q ; q2)s+1
=

(1 + q)(1 + q3) · · · (1 + q2s−1)q1+3+5+···+(2s+1)

(1− q)(1− q3) · · · (1− q2s+1)

is the generating function for partitions into parts of two colors, say blue and green, containing

(i) each one of the odd numbers 1, 3, 5, · · · , 2s− 1 as a blue part, with multiplicity 1 or 2 ;

(ii) exactly one blue part equal to 2s + 1 ;

(iii) any number of odd green parts less than or equal to 2s + 1.

Accordingly we decompose n as

n = (1 + j1)1 + (1 + j2)3 + · · ·+ (1 + js)(2s− 1) + (2s + 1)

+ 1d1 + 3d2 + · · ·+ (2s + 1)ds+1,

with dt ≥ 0 and jt ∈ {0, 1} or, equivalently, as the sum of the entries of the 2× (s + 1)-matrix

A =

(
(2s+1)+j1+

∑s
t=2 2jt+

∑s+1
t=2 2dt · · · 3+js+2ds+1 1

d1 · · · ds ds+1

)
. (6.1)

Then, n is the sum of entries of a matrix of the form

A =

(
c1 c2 · · · cs+1

d1 d2 · · · ds+1

)
(6.2)

with non-negative integer coefficients satisfying

cs+1 = 1 ; (6.3)

dt ≥ 0 , ∀t ; (6.4)

ct ≡ 1, ct+1 ≡ 1 (mod 2) =⇒ ct = 2 + ct+1 + 2dt+1 ; (6.5)

ct ≡ 0, ct+1 ≡ 1 (mod 2) =⇒ ct = 3 + ct+1 + 2dt+1 ; (6.6)

ct ≡ 1, ct+1 ≡ 0 (mod 2) =⇒ ct = 3 + ct+1 + 2dt+1 ; (6.7)

ct ≡ 0, ct+1 ≡ 0 (mod 2) =⇒ ct = 4 + ct+1 + 2dt+1 ; (6.8)

n =
∑

ct +
∑

dt . (6.9)
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We have the following result.

Theorem 6.1 The mock theta function V1(q), given by (1.6), is the generating function for the matrices
of the form (6.2) with non-negative integer entries satisfying (6.3)– (6.9).

Unfortunately, if we add up the elements in the columns of a matrix (6.2), the partition we obtain is
not necessarily of the type in the theorems of Agarwal-type. But we still have an interpretation in terms
of pairs of partitions of the Agarwal-type. Indeed, we may express (6.2) as

A ←→ (B,C),

where

B =

(
(2s+1)+

∑s
t=2 2jt · · · 3 1

j1 · · · js 0

)
(6.10)

and

C =

( ∑s+1
t=2 2dt · · · 2ds+1 0

d1 · · · ds ds+1

)
. (6.11)

Then, B and C are matrices of the form

B =

(
b1 · · · bs bs+1

j1 · · · js js+1

)
(6.12)

and

C =

(
f1 · · · fs fs+1

d1 · · · ds ds+1

)
(6.13)

with non-negative integer entries satisfying

bs+1 = 1 , js+1 = 0; (6.14)

jt ∈ {0, 1} , ∀t ; (6.15)

bt = 2 + bt+1 + 2jt+1 ; (6.16)

fs+1 = 0 ; (6.17)

dt ≥ 0 , ∀t ; (6.18)

ft = ft+1 + 2dt+1 ; (6.19)

n =
∑

bt +
∑

jt +
∑

ft +
∑

dt . (6.20)

Adding up the elements of each of the columns of the matrices (6.12) and (6.13), we obtain partitions
λ = (λ1, . . . , λs+1), λt = bt +jt, and π = (π1, π2, . . .), πt = ft +dt (we have to consider only non-vanishing
πt and, hence, it is possible to obtain the empty partition). Then, λ = (λ1)α1 + · · · + (λs+1)αs+1 and
π = (π1)β1 + (π2)β2 + · · · are n-color partitions, with subscripts defined by

αt = 1 + jt ; (6.21)

βt = dt . (6.22)

Indeed,

λt − λt+1 = 2 + jt + jt+1 = αt + αt+1 ;

πt − πt+1 = dt + dt+1 = βt + βt+1 .

Therefore, the weighted difference of consecutive parts is 0 in λ as well as in π. Also, the smallest part of
λ is λs+1 = αs+1. The smallest part of π is also equal to its subscript. We then have the theorem below
establishing a bijection between the set of matrices of the form (6.2) with entries satisfying (6.3)– (6.9)
and a set of pairs (λ, π) of n-color partitions. However, we need to consider as admissible, for the second
element of the pair, the empty partitions and also partitions having vanishing subscript. We require that
the subscript of the smallest part must be non-zero.
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Theorem 6.2 There is a bijection between the set of matrices of the form (6.2) with non-negative integer
entries satisfying (6.3)– (6.9) and the set of pairs (λ, π) of n-color partitions such that

(i) λ = (λ1)α1 + · · · + (λs+1)αs+1 is an n-color partition, such that even parts have subscript 2, odd
parts have subscript 1, the weighted difference of consecutive parts is 0, and the smallest part 11;

(ii) π = (π1)β1 + (π2)β2 + · · · is an n-color partition (possibly empty) such that the number of parts of
π is less than or equal to the number of parts of λ, the weighted difference of consecutive parts is
0, and if π is non-empty the smallest part is equal to its subscript (the other parts πt may have a
subscript βt = 0, but we still require 0 ≤ βt ≤ πt);

(iii) n = |λ|+ |µ|.
If A is a matrix (6.2) with non-negative integer entries satisfying (6.3)– (6.9), then the parts of λ are

λt = ct − (2dt+1 + · · ·+ 2ds+1) , ∀t ≤ s;

λs+1 = 1,

with subscripts given by

αt =
{

1, if ct is odd;
2, if ct is even.

The parts of π are the non-vanishing elements in the list

πt = dt + 2dt+1 + · · ·+ 2ds+1 , ∀t ≤ s;

πs+1 = ds+1,

with subscripts given by
βt = dt .

Example 9. Considering the beginning of the expansion

V1(q)=

∞∑
n=0

q(n+1)2(−q ; q2)n

(q ; q2)n+1
=q+q2+q3+2q4+3q5+3q6+4q7+5q8+6q9+8q10+9q11

+11q12+14q13+16q14+19q15+23q16+27q17+ · · ·

we see that for n = 13, for example, there are 14 matrices. The following table shows the correspondence
between matrices and pairs of partitions in this particular case.

matrix λ π matrix λ π

(
1

12

)
(11) (1212)

(
3 1

9 0

)
(31, 11) (99)

(
4 1

8 0

)
(42, 11) (88)

(
5 1

6 1

)
(31, 11) (86, 11)

(
6 1

5 1

)
(42, 11) (75, 11)

(
7 1

3 2

)
(31, 11) (73, 22)

(
8 1

2 2

)
(42, 11) (62, 22)

(
9 1

0 3

)
(31, 11) (60, 33)

(
5 3 1

4 0 0

)
(51, 31, 11) (44)

(
6 3 1

3 0 0

)
(62, 31, 11) (33)

(
7 4 1

1 0 0

)
(71, 42, 11) (11)

(
8 4 1

0 0 0

)
(82, 42, 11) ∅

(
7 3 1

1 1 0

)
(62, 31, 11) (31, 11)

(
8 3 1

0 1 0

)
(62, 31, 11) (20, 11)
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A similar result holds for the mock theta function V0(q), given by (1.7) (Number 41 in [10]). It suffices
to examine the series ∞∑

n=0

qn2
(−q ; q2)n

(q ; q2)n
. (6.23)

By looking at its general term

qs2
(−q ; q2)s

(q ; q2)s
=

(1 + q)(1 + q3) · · · (1 + q2s−1) q1+3+5+···+(2s−1)

(1 + q)(1 + q3) · · · (1 + q2s−1)

it is easy to see that the coefficient of qn counts the number of ways to express n as the sum of the entries
of the (2× s)−matrix

A=




(2s−1)+j1+
∑s

t=2 2jt+
∑s

t=2 2dt · · · 3+js−1+2js+2ds 1+js

d1 · · · ds−1 ds


 , (6.24)

with dt ≥ 0 and jt ∈ {0, 1}. As in the previous case, we have the following result.

Theorem 6.3 The series (6.23) is the generating function for the matrices of the form

A =

(
c1 c2 · · · cs

d1 d2 · · · ds

)
, (6.25)

with non-negative integer coefficients satisfying

cs ∈ {1, 2} ; (6.26)

dt ≥ 0 , ∀t ; (6.27)

ct ≡ 1, ct+1 ≡ 1 (mod 2) =⇒ ct = 2 + ct+1 + 2dt+1 ; (6.28)

ct ≡ 0, ct+1 ≡ 1 (mod 2) =⇒ ct = 3 + ct+1 + 2dt+1 ; (6.29)

ct ≡ 1, ct+1 ≡ 0 (mod 2) =⇒ ct = 3 + ct+1 + 2dt+1 ; (6.30)

ct ≡ 0, ct+1 ≡ 0 (mod 2) =⇒ ct = 4 + ct+1 + 2dt+1 ; (6.31)

n =
∑

ct +
∑

dt . (6.32)

As in the case of V1(q) considered before, we consider a correspondence

A ←→ (B,C),

where

B =

(
(2s−1)+

∑s
t=2 2jt · · · 3+2js 1

j1 · · · js−1 js

)
(6.33)

and

C =

( ∑s
t=2 2dt · · · 2ds 0

d1 · · · ds−1 ds

)
. (6.34)

By exactly the same argument as before, we obtain the following theorem.

Theorem 6.4 There is a bijection between the set of matrices of the form (6.25) with non-negative
integer entries satisfying (6.26)– (6.32) and the set of pairs (λ, π) of n-color partitions such that

(i) λ = (λ1)α1 + · · · + (λs+1)αs+1 is an n-color partition, such that even parts have subscript 2, odd
parts have subscript 1, the weighted difference of consecutive parts is 0, and the smallest part is 11

or 22;
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(ii) π = (π1)β1 + (π2)β2 + · · · is an n-color partition (possibly empty) such that the number of parts of
π is less than or equal to the number of parts of λ, the weighted difference of consecutive parts is
0, and if π is non-empty the smallest part is equal to its subscript (the other parts πt may have a
subscript βt = 0, but we still require 0 ≤ βt ≤ πt);

(iii) n = |λ|+ |µ|.
If A is a matrix (6.25) with non-negative integer entries satisfying (6.26)– (6.32), then the parts of λ are

λt = ct − (2dt+1 + · · ·+ 2ds) , if t < s;

λs = cs,

with subscripts given by

αt =
{

1, if ct is odd;
2, if ct is even.

The parts of π are the non-vanishing elements in the list

πt = dt + 2dt+1 + · · ·+ 2ds , (t < s);

πs = ds,

with subscripts given by
βt = dt .

Remark 8. Looking at the results of this and the previous sections, we realize that when we have an
interpretation in terms of two-line matrices, the occurrence of 2 in a condition of the form

ct = b + ct+1 + 2dt+1 (6.35)

is an indication that an interpretation in terms of n-color partitions might be possible. Indeed, taking
λt = ct + dt and αt = b/2 + dt, condition (6.35) can be restated as λt − λt+1 − αt − αt+1 = 0.

7 A further generalization

In this section we consider the family of generating functions of the form

∞∑
n=0

(−qi; qk)nqrn2+an

(qj ; q`)n
,

which includes as particular cases some of the generating functions considered before, for example (5.12).
In what follows we consider 2 × s matrices in which the entries in the second row are integers and the
entries in the first row are linear polynomials (polynomials of degree less than or equal to 1) with integer
coefficients. Of course, this is equivalent to using matrices with three rows.

Theorem 7.1 For fixed integers i, k, j, `, r ≥ 1 and a ≥ 0, consider the generating function

∞∑
n=0

(−qi; qk)nqrn2+an

(qj ; q`)n
. (7.1)

Then, the coefficient of qn in the expansion of (7.1) is the number of matrices of the form

A =

(
c1 c2 · · · cs

d1 d2 · · · ds

)
, (7.2)
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with non-negative integer entries satisfying A = A(1), where

A(x) =

(
c1(x) c2(x) · · · cs(x)

d1 d2 · · · ds

)
(7.3)

is a matrix such that the entries in the first row are linear polynomials with integer coefficients and the
elements in the second row are non-negative integers satisfying

cs(x) = (a + r)x + iεs ; (7.4)

dt ≥ 0 are multiples of j ; (7.5)

ct(x)=ct+1(x)+
(
2r+ct+1(0)

k

i
+

`

j
dt+1

)
x+(εt−εt+1) i , ∀t<s ; (7.6)

εt ∈ {0, 1}, ∀t; (7.7)

n =
∑

ct(1) +
∑

dt . (7.8)

Proof. For any s, the general term of (7.1),

(1 + qi)(1 + qi+k) · · · (1 + qi+(s−1)k)
(1− qj)(1− qj+`) · · · (1− qj+(s−1)`)

· qr(1+3+5+···+(2s−1))qa(1+1+1+···+1) ,

is the generating function for partitions into parts of four colors, say blue, green, yellow, and black,
containing

(i) exactly r blue parts equal to each one of the odd numbers 1, 3, 5, . . . , 2s− 1;

(ii) distinct green parts from i, i + k, i + 2k, · · · , i + (s− 1)k, i.e., congruent to i modulus k, and less
than or equal to i + (s− 1)k ;

(iii) any number of yellow parts belonging to the set {j, j + `, j + 2`, . . . , j + (s− 1)`};
(iv) exactly s black parts equal to a.

Accordingly, we decompose n as

n= r
(
1+3+5+· · ·+(2s−1)

)
+as+

(
iε1+(i+k)ε2+· · ·+(i+(s−1)k)εs

)

+
(
je1+(j+`)e2+· · ·+(j+(s−1)`)es

)
,

with εt ∈ {0, 1} and et ≥ 0, or, equivalently, as the sum of the entries of the matrix

A=

(
u1 u2 · · · us

je1 je2 · · · jes

)
, (7.9)

where

u1 = a + (2s− 1)r + iε1 + kε2 + · · ·+ kεs + `e2 + · · ·+ `es

u2 = a + (2s− 3)r + iε2 + kε3 + · · ·+ kεs + `e3 + · · ·+ `es

...
us−1 = a + 3r + iεs−1 + kεs + `es

us = a + r + iεs.

Taking dt = jet we define a matrix

A(x) =

(
c1(x) c2(x) · · · cs(x)

d1 d2 · · · ds

)
, (7.10)
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where the elements in the first row are the linear polynomials

cs(x)=(a+r)x+iεs ;

ct(x)=
(
a+(1+2(s−t))r+kεt+1+· · ·+kεs+`et+1+· · ·+`es

)
x+iεt , ∀t < s.

Then, the matrix A in (7.9) satisfies
A = A(1),

with A(x) as in (7.10). Also, (7.10) is characterized by

cs(x) = (a + r)x + iεs ;

dt ≥ 0 are multiples of j ;

ct(x) = ct+1(x) +
(
2r + ct+1(0) · k

i
+

`

j
· dt+1

)
x + (εt − εt+1) i , ∀t < s ;

εt ∈ {0, 1}, ∀t;
n =

∑
ct(1) +

∑
dt .

The proof is complete.

We now consider two important particular cases of the generating function (7.1). First, for k = i we
have the following result.

Corollary 7.1 For fixed integers i, j, `, r ≥ 1 and a ≥ 0, consider the generating function

∞∑
n=0

(−qi; qi)nqrn2+an

(qj ; q`)n
. (7.11)

Then, the coefficient of qn in the expansion of (7.11) is the number of matrices of the form

A =

(
c1 c2 · · · cs

d1 d2 · · · ds

)
(7.12)

with non-negative integer entries satisfying

cs = a + r + iεs ; (7.13)

dt ≥ 0 are multiples of j ; (7.14)

ct = 2r + iεt + ct+1 +
`

j
dt+1 , ∀t < s ; (7.15)

εt ∈ {0, 1}, ∀t; (7.16)

n =
∑

ct +
∑

dt . (7.17)

Proof. It is easy to see that ct(0) = iεt for any t, since it holds for t = s and, if it holds for some t, it
also holds for t− 1. Then, from (7.6) with k = i, it follows that

ct(1) = 2r + iεt + ct+1(1) +
`

j
dt+1 .

Now, the conclusion follows easily.

For the case k = 2i, we have the following result, which can be proved by the same type of argument
as above.
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Corollary 7.2 For fixed integers i, j, `, r ≥ 1 and a ≥ 0, consider the generating function

∞∑
n=0

(−qi; q2i)nqrn2+an

(qj ; q`)n
. (7.18)

Then, for any n, the coefficient of qn in the expansion of (7.18) is the number of matrices of the form

A =

(
c1 c2 · · · cs

d1 d2 · · · ds

)
(7.19)

with non-negative integer entries satisfying

cs = a + r + iεs ; (7.20)

dt ≥ 0 are multiples of j ; (7.21)

ct = 2r + iεt + iεt+1 + ct+1 +
`

j
dt+1 , ∀t < s ; (7.22)

εt ∈ {0, 1}, ∀t; (7.23)

n =
∑

ct +
∑

dt . (7.24)

We now consider the signed version

∞∑
n=0

(qi; qi)nqrn2+an

(qj ; q`)n
, (7.25)

of (7.11) in Corollary 7.1. It is immediate to see that now each matrix is to be counted with a weight
(−1)γ , where γ is the number of εt’s that are equal to 1. Then, the weight of a matrix is

w = (−1)ε1+···+εs .

Looking at the element in the upper left corner of (7.9), we see that

c(1)− a− (2s− 1)r − `

j
(d2 + · · ·+ ds) = i(ε1 + · · ·+ εs) , if k = i.

We have the following result.

Proposition 7.1 For fixed integers i, j, `, r ≥ 1 and a ≥ 0, the generating function

∞∑
n=0

(qi; qi)nqrn2+an

(qj ; q`)n
(7.26)

counts the number of matrices of the form (7.12) with non-negative integer coefficients satisfying condi-
tions (7.13)–(7.17), where each matrix is to be counted with the weight

w = (−1)
1
i

(
c1+a+r+ `

j (d2+···+ds)
)
.

The general case of the signed version of (7.1) in Theorem 18 can be treated by the same type of
argument.

Application 2. Our goal is to find a matrix interpretation for the mock theta function of order 6

γ(q) =
∞∑

n=0

(q ; q)nqn2

(q3 ; q3)n
, (7.27)
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which is number 31 in [10]. This series has positive and negative integer coefficients. We start with the
unsigned version

∞∑
n=0

(−q; q)nqn2

(q3 ; q3)n
. (7.28)

Applying Corollary 7.1 with i = 1, j = ` = 3, r = 1, and a = 0, we obtain the following result.

Proposition 7.2 The coefficient of qn in the expansion of the generating function (7.28)
∞∑

n=0

(−q; q)nqn2

(q3 ; q3)n

counts the number of matrices of the form (7.12) with non-negative integer entries satisfying

cs ∈ {1, 2} ; (7.29)

dt ≥ 0, dt ≡ 0 (mod 3) , ∀t ; (7.30)

ct = 2 + ct+1 + dt+1 or ct = 3 + ct+1 + dt+1 , ∀t < s ; (7.31)

n =
∑

ct +
∑

dt . (7.32)

Remark 9. Note that the general term of (7.28)

(1 + q)(1 + q2) · · · (1 + qs)
(1− q3)(1− q6) · · · (1− q3s)

q1+3+5+···+(2s−1)

generates the two-color partitions of n containing

(i) one blue part equal to each of the numbers 1, 3, 5, . . . , 2s− 1;

(ii) each one of the numbers 1, 2, 3, . . . , s is a green part with multiplicity (possibly 0) 6≡ 2 (mod 3).

Remark 10. There is a bijection between the set of two-line matrices of the form (7.12) with non-
negative integer entries satisfying (7.29)–(7.32) and the partitions λ = (λ1, . . . , λs) of n into distinct
parts satisfying

λs ≡ 1 or 2 (mod 3) ; (7.33)

λt − λt+1 ≡ 0 or 2 (mod 3), ∀ t. (7.34)

The partition λ corresponding to a given matrix A is obtained adding up the elements in each of the
columns of A.

The next result is a particular case of Proposition 7.1.

Corollary 7.3 The mock theta function of order 6 (7.27)

γ(q) =
∞∑

n=0

(q ; q)nqn2

(q3 ; q3)n
,

which is number 31 in [10], is the generating function of the weighted number of matrices of the form
(7.12) satisfying (7.29)–(7.32). Each matrix is to be counted with the weight

w = (−1)1+c1+
∑s

t=2 dt .

Equivalently (7.27) counts the weighted number of partitions into distinct parts satisfying (7.33) and
(7.34), where each partition λ = (λ1, . . . , λs) is to be counted with a weight w = (−1)γ , where γ =
ε1 + · · ·+ εs, with

εt =
{

0, if λt − λt+1 ≡ 2 (mod 3)
1, if λt − λt+1 ≡ 0 (mod 3)

, for t < s ;

εs =
{

0, if λs ≡ 1 (mod 3)
1, if λs ≡ 2 (mod 3)

.
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Example 10. Consider the first few terms of the expansion

γ(q)=1+q−q2+2q4−2q5−q6+3q7−2q8+3q10−4q11−q12+5q13−3q14

−q15+6q16−6q17−2q18+7q19−6q20+9q22−8q23−3q24+· · ·

and its unsigned version

∞∑
n=0

(−q)nqn2

(q3 ; q3)n
=1+q+q2+2q4+2q5+q6+3q7+2q8+2q9+5q10+4q11+5q12+

+7q13+5q14 +7q15+10q16+8q17+12q18+15q19+12q20+

+18q21+21q22+18q23+25q24+· · ·

For n = 15, for example, the above expansions tell us that we have 7 matrices and that the sum of their
weights is −1. In other words, out of 7 matrices, four have weight −1 and three have weight +1. We can
construct the following table.

matrix 1 + c1 +
∑s

t=2 dt w = (−1)1+c1+
∑s

t=2 dt

(
4 2
9 0

)
1 + 4 + 0 = 5 −1

(
7 2
3 3

)
1 + 7 + 3 = 11 −1

(
5 3 1
6 0 0

)
1 + 5 + 0 = 6 +1

(
8 3 1
0 3 0

)
1 + 8 + 3 = 12 +1

(
7 4 1
3 0 0

)
1 + 7 + 0 = 8 +1

(
6 4 2
3 0 0

)
1 + 6 + 0 = 7 −1

(
8 5 2
0 0 0

)
1 + 8 + 0 = 9 −1

The sum of all weights is indeed −1.
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