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Abstract

We consider an identity relating Fibonacci numbers to Pascal’s triangle discovered by
G. E. Andrews. Several authors provided proofs of this identity, most of them rather involved
or else relying on sophisticated number theoretical arguments. We present a new proof,
quite simple and based on a Riordan array argument. The main point of the proof is the
construction of a new Riordan array from a given Riordan array, by the elimination of
elements. We extend the method and as an application we obtain other identities, some
of which are new. An important feature of our construction is that it establishes a nice
connection between the generating function of the A−sequence of a certain class of Riordan
arrays and hypergeometric functions.

1 Introduction

In this article we provide a new proof of an identity of Andrews, based on Riordan arrays.
Several authors have already proved this identity using different types of argument (references
are given below). Our reason to give a further proof is that we believe our idea is new and
interesting on its own.

In our approach we establish a nice connection between the generating function of the
A−sequence of a certain class of Riordan arrays and hypergeometric functions. This new con-
nection with hypergeometric functions is probably in itself interesting and is one of the main
features of this work. Our method involves constructing a new Riordan array from a given
Riordan array by eliminating entire rows and parts of the remaining rows. In the proof of the
identity of Andrews, this construction is applied to Pascal’s triangle, but for the sake of illus-
trating the usefulness of our method, we make additional applications to Pascal’s triangle as
well as to other Riordan arrays, for example Catalan’s triangle, obtaining a few more identities.

As a generalization of Pascal’s, Catalan’s, Motzkin’s, and other triangles, D. G. Rogers
introduced in 1978 ([16]) the concept of renewal array, which was further generalized to Riordan
array by Shapiro et al. in 1991 ([19]). Among other applications Riordan arrays turned out to
be an extremely powerful tool in dealing with combinatorial identities. R. Sprugnoli in [20] used
Riordan arrays to find several combinatorial sums in closed form and also to determine their
asymptotic value. For additional applications of Riordan arrays to the evaluation in closed form
of sums involving binomial, Stirling, Bernoulli, and harmonic numbers, see [23]. The Riordan
array technique has also been employed to show that two combinatorial sums are equivalent,
regardless of whether they have a closed form expression or not (see [24]). An important problem
that has occupied mathematicians for a long time is the inversion of combinatorial sums (see
[15]). The concept of Riordan array provided a powerful tool to prove a large class of inversions
(see, for example, [4] and [22]).



The paper is organized as follows. In the introduction we recall some basic results needed in
the sequel. In Section 2 we develop our method of extracting new Riordan arrays from a given
one. We also establish a connection between a certain class of Riordan arrays and hypergeometric
functions. The ideas of Section 2 are applied in Section 3 to give a new proof of the identity of
Andrews. Section 4 is devoted to additional applications of our method. As an illustration of
our ideas, further identities are obtained. Identities of this type can often be proved directly,
using generating functions and Lagrange’s Inversion Formula. To show how this can be done,
in Section 5 we give a direct proof of one of the identities obtained previously.

We begin by recalling Lagrange’s Inversion Theorem, which is an important element needed
in our study. Several forms of Lagrange’s Inversion Formula exist (see [14]). We summarize
some of them below.

Theorem 1.1 (Lagrange’s Inversion Theorem [14]) Suppose that a formal power series w = w(t)
is implicitly defined by the relation w = tφ(w), where φ(t) is a formal power series such that
φ(0) 6= 0. Then,

[tn]
(
w(t)

)k =
k

n
[tn−k]

(
φ(t)

)n
. (1)

Equivalently, for any formal power series F (t),

[tn]F (w(t)) =
1
n

[tn−1]F ′(t)
(
φ(t)

)n
. (2)

In terms of generating functions,

G(
[tn]F (t)(φ(t))n

)
=

[
F (w)

1− tφ′(w)

∣∣∣∣ w = tφ(w)
]
. (3)

The above notation, i.e., [f(w)|w = g(t)], means replacing w by g(t) in f(w), and given any
sequence (bn), G(bn) stands for its generating function G(bn) =

∑∞
n=0 bntn.

A Riordan array is an infinite lower triangular array D = {dn,k}n,k≥0 defined by a pair of
formal power series D =

(
d(t), h(t)

)
, for which

dn,k = [tn] d(t)
(
th(t)

)k
, ∀n, k ≥ 0. (4)

Here [tn]g(t) denotes the coefficient of tn in g(t). Pascal’s triangle is an example of a Riordan
array. In this case, d(t) = h(t) = 1/(1− t) and dn,k =

(
n
k

)
. One of the main results of the theory

of Riordan arrays is the following theorem.

Theorem 1.2 ([20],Theorem 1.1) Let D =
(
d(t), h(t)

)
be a Riordan array and f(t) =

∑
fkt

k a
formal power series. Then,

∞∑

k=0

fkdn,k = [tn] d(t)f
(
th(t)

)
. (5)

A Riordan array D =
(
d(t), h(t)

)
is called proper if h0 = h(0) 6= 0. In [16], D. Rogers pointed

out that proper Riordan arrays can be alternately characterized by a pair d(t) =
∑

n dn,0t
n, the

generating function of the first column, and A(t) =
∑

akt
k, the generating function of the

A−sequence, such that

dn+1,k+1 = a0dn,k + a1dn,k+1 + a2dn,k+2 + · · · , ∀n, k ≥ 0. (6)
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If D =
(
d(t), h(t)

)
is a proper Riordan array, then ord

(
(th(t))k

)
= k, for every k, where for any

non-zero formal power series g(t) the order ord
(
g(t)

)
is the index of the first non-zero coefficient

of g(t). Therefore, there exists a unique sequence (ak), called the A−sequence of the Riordan
array, such that

h(t) = a0 + a1th(t) + a2

(
th(t)

)2 + · · ·
[i.e., the formal power series A(t) = a0 + a1t + a2t

2 + · · · , refered to as the generating function
of the A−sequence, is such that h(t) = A

(
th(t)

)
]. Multiplying by d(t)

(
th(t)

)k, we obtain

t−1d(t)(th(t))k+1 = a0d(t)(th(t))k + a1d(t)(th(t))k+1 + a2d(t)(th(t))k+2 + · · ·

and applying [tn] to both sides, (6) follows.
The converse is also true and we state it as the following theorem.

Theorem 1.3 ([20], Theorem 1.3) Let D = {dn,k}n≥k≥0 be an infinite triangle such that d0,0 6= 0
and for which (6) holds for some sequence (ak) with a0 6= 0. Then D is a proper Riordan array(
d(t), h(t)

)
, where d(t) =

∑∞
n=0 dn,0t

n is the generating function of the first column and h(t) is
the unique solution of

h(t) = A
(
th(t)

)
, (7)

for A(t) = G(ak) =
∑

akt
k the generating funtion of the sequence (ak). Moreover,

[tn−1]h(t) =
1
n

[tn−1]
(
A(t)

)n
. (8)

Proof. Since a0 6= 0, by Lagrange’s Inversion Formula (1) with w := th(t), k = 1 and φ = A,
(7) defines a unique formal power series h(t), for which (8) holds. We have to verify that given
n,

dn,k = [tn]d(t)
(
th(t)

)k
,

for all k. By induction, suppose this holds for some n. Then,

dn+1,k+1 =
∑

j≥0

ajdn,k+j =
∑

j≥0

aj [tn]d(t)
(
th(t)

)k+j = [tn]d(t)
(
th(t)

)k
A

(
th(t)

)

= [tn]d(t)
(
th(t)

)k
h(t) = [tn+1]d(t)

(
th(t)

)k+1
. ¤

2 Construction of a new Riordan array

We now describe a process of obtaining new Riordan arrays from a given Riordan array, which
corresponds to eliminating rows from the original array, eliminating the first elements from the
remaining rows, and shifting them to the left. For a fixed p we keep one of every p rows.

Theorem 2.1 Given a proper Riordan array {dn,k}n,k≥0, for any integers p ≥ 2 and r ≥ 0,
d̃n,k = dpn+r,(p−1)n+r+k (n, k ≥ 0) defines a new Riordan array. Moreover, the generating
function of the A−sequence of the new array is

(
A(t)

)p, where A(t) is the generating function
of the A−sequence of the given Riordan array.
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Proof. Let A(t) = a0 + a1t + a2t
2 + · · · be as in (6). If p = 2, for r = 0, 1 we have

d̃n+1,k+1 = d2n+2+r, n+k+2+r =
∞∑

i=0

aid2n+1+r, n+k+i+1+r

=
∞∑

i=0

∞∑

j=0

aiajd2n+r, n+k+i+j+r

and, therefore,

d̃n+1,k+1 =
∞∑

ν=0

ν∑

i=0

aiar−id2n+r,n+k+ν+r,

i.e.,

d̃n+1,k+1 =
∞∑

ν=0

ν∑

i=0

aiar−id̃n,k+ν .

Hence,

d̃n+1,k+1 =
∞∑

r=0

brd̃n,k+r, where
∞∑

k=0

bkt
k =

(
A(t)

)2
.

By Theorem ??, {d̃n,k}n,k≥0 is a Riordan array and B(t) =
(
A(t)

)2 is the generating function
of its A−sequence. If p ≥ 3 an iteration of the argument applies. ¤

For example, beginning with Pascal’s triangle, for p = 3 and r = 1, we obtain the Riordan
array

1
4 1
21 7 1
120 45 10 1
715 286 78 13 1
2002 1001 560 120 16 1
27132 11628 3876 969 171 19 1

· · · · · ·

in which dn,k =
(

3n+1
2n+k+1

)
and, by Theorem 2.1,

dn+1,k+1 = dn,k + 3dn,k+1 + 3dn,k+2 + dn,k+3.

In what follows we use the generalized hypergeometric series, defined by

pFq

(
a1, . . . , ap

c1, . . . , cq

∣∣∣∣ t

)
=

∞∑

n=0

(a1)n · · · (ap)n

(c1)n · · · (cq)n
· tn

n!
,

where (a)n stands for the Pochhammer symbol

(a)n =
Γ(a + n)

Γ(a)
=

{
1, if n = 0
a(a + 1) · · · (a + n− 1), if n ≥ 1

The hypergeometric series is characterized by the fact that its constant term is 1 and, setting
An = (a1)n···(ap)n

(c1)n···(cq)n
tn, the ratio of consecutive terms is

An+1

An
=

(a1 + n) · · · (ap + n)
(c1 + n) · · · (cq + n)

· t

n + 1
.
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In order to apply Theorem 2.1 we need the following result, which establishes an interesting
connection between Riordan arrays and hypergeometric functions.

Theorem 2.2 If the generating function of the A−sequence of a proper Riordan array is A(t) =
(1 + t)q, with q ∈ N, then h is the hypergeometric function

h(t) = qFq−1

(
q
q , q+1

q , . . . , 2q−1
q

q+1
q−1 , q+2

q−1 , . . . , 2q−1
q−1

∣∣∣∣∣
qqt

(q−1)q−1

)
, (9)

also given by

h(t) =
∞∑

n=1

1
(q − 1)n + 1

(
qn

n

)
tn−1 =

∞∑

n=1

1
qn + 1

(
qn + 1

n

)
tn−1. (10)

Moreover,
(
h(t)

)s = qFq−1

(
sq
q , sq+1

q , . . . , (s+1)q−1
q

sq+1
q−1 , sq+2

q−1 , . . . , (s+1)q−1
q−1

∣∣∣∣∣
qqt

(q−1)q−1

)
(11)

for every s ∈ R. Consequently,

(
h(t)

)s =
∞∑

n=0

qs

(q − 1)n + qs

(
q(n + s)− 1

n

)
tn

and, therefore,

[tj ]
(
th(t)

)s = [tj−s]
(
h(t)

)s =
qs

(q − 1)j + s

(
qj − 1
j − s

)
. (12)

Proof. If A(t) = (1 + t)q, by (8), Theorem 1.3,

[tn−1]h(t) =
1
n

[tn−1](1 + t)qn =
1
n

(
qn

n− 1

)
=

(qn)!(
(q−1)n + 1

)
!n!

.

Therefore,

h(t) =
∞∑

n=1

1
(q − 1)n + 1

(
qn

n

)
tn−1 =

∞∑

n=0

1
(q − 1)n + q

(
qn + q

n + 1

)
tn. (13)

The series (13) is hypergeometric as its constant term is 1 and, setting An = (qn+q)!
(n+1)!((q−1)n+q)! t

n,
the ratio of consecutive terms is

An+1

An
=

(qn + q + 1)(qn + q + 2) · · · (qn + 2q)(
(q−1)n+q+1

)(
(q−1)n+q+2)

) · · · ((q−1)n+2q−1
) · t

n + 2

=

(
n + q+1

q

)(
n + q+2

q

) · · · (n + 2q
q

)
(
n + q+1

q−1

)(
n + q+2

q−1

) · · · (n + 2q−1
q−1

) ·n + 1
n + 2

· t

n + 1
· qq

(q − 1)q−1

=

(
n + q

q

)(
n + q+1

q

) · · · (n + 2q−1
q

)
(
n + q+1

q−1

)(
n + q+2

q−1

) · · · (n + 2q−1
q−1

) · 1
n + 1

· qqt

(q − 1)q−1
.

Thus, (9) follows immediately.
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Note that h(t) = Bq(t)−1
t , where Bq is the generalized binomial series, given by

Bq(t) =
∞∑

n=0

1
qn + 1

(
qn + 1

n

)
tn,

for which we have
(Bq(t)

)r =
∞∑

n=0

r

qn + r

(
qn + r

n

)
tn, (14)

for any real r (see [6], page 201, and also [14], where in Theorem 2.1 this is obtained from
Lagrange’s Inversion Theorem, using (3)). From (14), by the same argument used for the series
(13), it follows that, for any r ∈ R,

(Bq(t)
)r = qFq−1

(
r
q , r+1

q , . . . , r+q−1
q

r+1
q−1 , r+2

q−1 , . . . , r+q−1
q−1

∣∣∣∣∣
qqt

(q−1)q−1

)
. (15)

On the other hand, since h(t) = A
(
th(t)

)
=

(
1 + th(t)

)q =
(Bq(t)

)q, replacing r by qs in (15),
we have (11) for any s ∈ R and, therefore, (12) holds. ¤

Remark. From (15), we obtain the remarkable identity
[

qFq−1

(
1
q , 2

q , . . . , q
q

2
q−1 , 3

q−1 , . . . , q
q−1

∣∣∣∣∣
qqt

(q − 1)q−1

)]r

= qFq−1

(
r
q , r+1

q , . . . , r+q−1
q

r+1
q−1 , r+2

q−1 , . . . , r+q−1
q−1

∣∣∣∣∣
qqt

(q−1)q−1

)
(16)

for powers of a hypergeometric function, which is essentially contained in (5.60) of [6] but is
not explicitly stated in the literature. Indeed, the literature does not refer to many instances
in which a product of hypergeometric functions is also hypergeometric. In Section 5 we obtain
two more identities involving a product of hypergeometric functions.

3 The Identities of Andrews

We now apply the procedure described in Theorem 2.1 of extracting new Riordan arrays from
a given one to provide a new proof of some identities obtained by G. E. Andrews in [1], namely

Fn =
∞∑

k=−∞
(−1)k

(
n− 1⌊

1
2(n− 1− 5k)

⌋
)

(17)

and

Fn =
∞∑

k=−∞
(−1)k

(
n⌊

1
2(n− 1− 5k)

⌋
)

, (18)

where (Fn) is the sequence of Fibonacci numbers, defined by F0 = 0, F1 = 1, and Fn+2 =
Fn+1 + Fn. Different proofs of (17) and (18) were given by H. Gupta in [7] and by M. D.
Hirschhorn in [9] and [10]. They are all rather involved, though elementary, and they are
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specifically designed to deal with the case of Pascal’s triangle. As indicated in [7] and [9],
identities (17) and (18) are equivalent to

F2n+1 =
∞∑

j=−∞

[(
2n + 1
n− 5j

)
−

(
2n + 1

n− 5j − 1

)]
, (19)

F2n+2 =
∞∑

j=−∞

[(
2n + 2
n− 5j

)
−

(
2n + 2

n− 5j − 1

)]
(20)

and

F2n+2 =
∞∑

j=−∞

[(
2n + 1
n− 5j

)
−

(
2n + 1

n− 5j − 2

)]
, (21)

F2n+1 =
∞∑

j=−∞

[(
2n

n− 5j

)
−

(
2n

n− 5j − 2

)]
, (22)

respectively. In [2] G. E. Andrews proves these identities in the context of identities of the
Rogers–Ramanujan type (see also [11]). In [3], identities (19) through (22), as well as several
other similar identities for trinomial coefficients and Catalan’s triangle, have been proved in a
very elementary and direct way.

We now prove (20) to illustrate how identities (19) through (22) can be obtained by a Riordan
array technique. Replacing n by n− 1 in (20), it suffices to show that

F2n =
∞∑

j=−∞

[(
2n

n− 5j − 1

)
−

(
2n

n− 5j − 2

)]
. (23)

We start with a visualization of Pascal’s triangle in which alternate rows have been removed
and only non-vanishing binomial numbers are represented:

1
+1 2 1

–1 +4 6 4 1
1 –6 +15 20 15 6 –1

1 8 –28 +56 70 56 28 –8 +1
1 10 45 –120 +210 252 210 120 –45 +10 1

+1 12 66 220 –495 +792 924 792 495 –220 +66 12 1
· · · · · ·

Identity (23) corresponds to adding in each row the elements marked with a plus sign and
subtracting the ones marked with a minus. By symmetry, we can represent this sum using only
the right-hand side of the above table, which by Theorem 2.1 is the following Riordan array
d̃n,k =

(
2n

n+k

)
with marked plus and minus entries

1
2 +1
6 +4 –1
20 +15 –6 –1
70 +56 –28 –8 +1
252 +210 –120 –45 +10 1
924 +792 –495 –220 +66 12 +1

· · · · · ·
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In order to prove (23), we wish to evaluate the sum

Sn =
∞∑

j=−∞

[(
2n

n− 5j − 1

)
−

(
2n

n− 5j − 2

)]
,

i. e.,

Sn =
∞∑

k=0

[(
2n

n+5k+1

)
−

(
2n

n+5k+2

)
−

(
2n

n+5k+3

)
+

(
2n

n+5k+4

)]
.

In terms of the Riordan array d̃n,k =
(

2n

n + k

)
, n, k ≥ 0, we have

Sn =
∞∑

k=0

fkd̃n,k , (24)

where

f(t) =
∑

fkt
k = t− t2 − t3 + t4 + t6 − t7 − t8 + t9 + · · · = t− t2 − t3 + t4

1− t5
.

For Pascal’s triangle the generating function of the A−sequence is 1+t, since
(
n+1
k+1

)
=

(
n
k

)
+

(
n

k+1

)
.

Hence, by Theorem 2.1, the generating function of the A−sequence for {d̃n,k} is

A(t) = (1 + t)2. (25)

Either using Theorem 2.2 or noting that it follows from (7) that h(t) satisfies

t2h2 + (2t− 1)h + 1 = 0, (26)

we obtain h(t) = 1−2t−√1−4t
2t2

. Therefore, {d̃n,k} is the Riordan array characterized by the pair(
d(t), h(t)

)
, where

d(t) =
∞∑

n=0

(
2n

n

)
tn =

1√
1− 4t

and

h(t) =
1− 2t−√1− 4t

2t2
. (27)

By Theorem 1.2, Sn given by (24) satisfies Sn = [tn] d(t)f(th(t)). Note that

f(t) =
t−t2−t3+t4

1−t5
=

t(1− t)(1− t2)
(1−t)(1+t+t2+t3+t4)

=
t−1 − t

t−2 + t−1 + 1 + t + t2
.

Setting w := th(t), by (26) w and w−1 are the roots of the equation

y2 +
2t− 1

t
y + 1 = 0.

Hence,

w−1 + w =
1− 2t

t
, w−1 − w =

√
1− 4t

t

and

w2 + w−2 = (w + w−1)2 − 2 =
1− 4t + 2t2

t2
.
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Therefore,

f(th(t)) = f(w) =

√
1−4t
t

1−4t+2t2

t2
+ 1−2t

t + 1
=

t
√

1− 4t

1− 3t + t2

and, finally,

d(t)f
(
th(t)

)
=

t

1− 3t + t2
. (28)

It is well known that both sequences of Fibonacci numbers F2n and F2n+1 satisfy the recurrence
relation xn = 3xn−1 − xn−2 and have generating functions

t

1− 3t + t2
=

∞∑

n=0

F2ntn

and
1− t

1− 3t + t2
=

∞∑

n=0

F2n+1t
n,

respectively (see [12], page 230). Hence, equation (28) implies that

d(t)f
(
th(t)

)
=

∞∑

n=0

F2ntn,

from which (23) and (20) follow.
Identities (19), (21), and (22) can be obtained in a similar way. For (19) and (21) we eliminate

the even-numbered rows of Pascal’s triangle

1 1
1 3 3 1

1 5 10 10 5 1
· · · 35 35 21 7 1

· · · · · 126 84 36 9 1
· · · · · ·

and consider the right-hand side of what remains, obtaining by Theorem 2.1 a Riordan array
for which

d(t) =
∞∑

n=0

(
2n + 1
n + 1

)
tn =

1
2t

(
1√

1− 4t
− 1

)

and

h(t) =
1− 2t−√1− 4t

2t2
.

4 Further Identities

In this section, to illustrate the usefulness of the construction considered in Theorem 2.1, we
apply it to obtain a few more identities via our Riordan array approach. Some of these identities
are well-known, while others are not. We believe that identities (37) and (39) are new. We
need one more property of Riordan arrays, which generalizes a well-known property of Pascal’s
triangle.
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Theorem 4.1 If D =
(
d(t), h(t)

)
is a Riordan array, then for any integers k ≥ s ≥ 1 we have

dn,k =
n∑

j=s

dn−j,k−s[tj ]
(
th(t)

)s
. (29)

Proof. From (4), it follows that dn,k = [tn] d(t)
(
th(t)

)k−s(
th(t)

)s. Hence,

dn,k =
n∑

j=s

(
[tn−j ] d(t)

(
th(t)

)k−s
)(

[tj ]
(
th(t)

)s
)
,

i.e.,

dn,k =
n∑

j=s

dn−j,k−s[tj ]
(
th(t)

)s
. ¤

One particular case of (29), for s = 1, is

dn,k =
n∑

j=1

hj−1dn−j,k−1, (30)

where h(t) =
∑

hkt
k. For example, in the case of Pascal’s triangle, since hk = 1 for all k, we

obtain the well-known identity
n∑

j=1

(
n− j

k − 1

)
=

(
n

k

)
. (31)

More generally, for Pascal’s triangle, we have

[tj ]
(
th(t)

)s = [tj ]
ts

(1−t)s
= [tj−s](1−t)−s =

( −s

j−s

)
(−1)j−1 =

(
j−1
s−1

)

and, therefore, (29) becomes

n∑

j=s

(
n− j

k − s

)(
j − 1
s− 1

)
=

(
n

k

)
,

which is (5.26) of [6], page 169, and contains (31) as a particular case.
We now apply formulas (29) or (30) to Riordan arrays obtained by the method described in

Theorem 2.1.

Example 4.1 For fixed integers p ≥ 2 and r ≥ 0, starting with Pascal’s triangle and deleting
p− 1 rows after each line kept, as described in Theorem 2.1, we obtain the Riordan array

dn,k =
(

pn + r

(p− 1)n + r + k

)
=

(
pn + r

n− k

)
.

Note that dn,0 =
( pn+r
(p−1)n+r

)
=

(
pn+r

n

)
and

d(t) =
∞∑

n=0

(
pn + r

n

)
tn =

∞∑

n=0

(pn + r)!
n!((p− 1)n + r)!

tn. (32)

10



This is a hypergeometric series. By the same argument used for the series (13), we get

d(t) = pFp−1

(
r+1

p , r+2
p , . . . , r+p

p

r+1
p−1 , r+2

p−1 , . . . , r+p−1
p−1

∣∣∣∣∣
ppt

(p−1)p−1

)
.

For p = 2 and r = 0, 1, another expression in closed form for (32) is

d(t) =
∞∑

n=0

(
2n + r

n

)
tn =

1√
1− 4t

(
1−√1− 4t

2t

)r

(see [14], Corollary 2.2).
In this example, the function h is given by (9) or, equivalently, by (10) with q = p. Combining

(29) and (12) it follows that

n∑

j=s

ps

(p− 1)j + s

(
pj − 1
j − s

)(
p(n− j) + r

n− j − k + s

)
=

(
pn + r

n− k

)
. (33)

In the particular case s = 1, (33) becomes

n∑

j=1

p

(p− 1)j + 1

(
pj − 1
j − 1

)(
p(n− j) + r

n− j − k + 1

)
=

(
pn + r

n− k

)
,

or,
n∑

j=1

1
pj + 1

(
pj + 1

j

)(
p(n− j) + r

n− j − k + 1

)
=

(
pn + r

n− k

)

and, finally, adding
(

pn+r
n−k+1

)
to both sides,

n∑

j=0

1
pj + 1

(
pj + 1

j

)(
p(n− j) + r

n− j − k + 1

)
=

(
pn + r + 1
n− k + 1

)
. (34)

It would be nice to find a combinatorial interpretation for (34), since there are several interpre-
tations for the generalized Catalan number 1

pj+1

(
pj+1

j

)
= 1

(p−1)j+1

(
pj
j

)
(see [6], page 360, and

[8]).
Setting j = i + s, x = ps, y = pk − ps + r, and replacing n by n + k, identity (33) becomes

n∑

i=0

x

x + pi

(
x + pi

i

)(
y + p(n− i)

n− i

)
=

(
x + y + pn

n

)
,

which is (5.62) of [6].

Example 4.2 We now consider Catalan’s triangle dn,k =
k + 1
n + 1

(
2(n + 1)
n− k

)
, for n, k ≥ 0,

1
2 1
5 4 1
14 14 6 1
42 48 27 8 1
132 165 110 44 10 1
429 572 429 208 65 12 1

· · · · · ·

11



This array was introduced in [18] and has a nice interpretation in terms of pairs of paths on a
lattice. On the bidimensional lattice Z2, consider all paths that start at the origin, consist of unit
steps and are such that all steps go East or North. The length of a path is the number of steps
in the path. The distance between two paths of length n with end-points (an, bn) and (a′n, b′n),
respectively, is |an−a′n|. Two paths are said to be non-intersecting if the origin is the only point
in common. Let B(n, k), for 1 ≤ k ≤ n, denote the number of pairs of non-intersecting paths of
length n whose distance from one another is k. The array defined by dn,k = B(n + 1, k + 1) is
called Catalan’s triangle. It is shown in [18] that B(n, k) = k

n

(
2n

n−k

)
and that

B(n− 1, k − 1) + 2B(n− 1, k) + B(n− 1, k + 1) = B(n, k).

Therefore, by Theorem 1.3, dn,k = k+1
n+1

(2(n+1)
n−k

)
is a Riordan array and (25) is the generating

function of its A−sequence. The first column of this triangle is formed by

dn,0 =
1

n + 1

(
2(n + 1)

n

)
=

1
n + 2

(
2(n + 1)
n + 1

)
= Cn+1,

where Cn = 1
n+1

(
2n
n

)
=

(
2n
n

)− (
2n

n−1

)
is the nth Catalan number. We then have

d(t) = h(t) =
1− 2t−√1− 4t

4t2
.

For fixed integers p ≥ 2 and r ≥ 0, we consider the Riordan array

d̃n,k = dpn+r,(p−1)n+k+r =
(p− 1)n + r + k + 1

pn + r + 1

(
2(pn + r + 1)

n− k

)
, (35)

for which, by Theorem 2.1, the generating function of the A−sequence is A(t) = (1 + t)2p. By
Theorem 2.2, it follows that for the Riordan array (35) we have

(
h(t)

)s = 2pF2p−1

(
2ps
2p , 2ps+1

2p , . . . , 2p(s+1)−1
2p

2ps+1
2p−1 , 2ps+2

2p−1 , . . . , 2p(s+1)−1
2p−1

∣∣∣∣∣
(2p)2pt

(2p−1)2p−1

)

and

[tj ]
(
th(t)

)s = [tj−s]
(
h(t)

)s =
2ps

(2p− 1)j + s

(
2pj − 1
j − s

)
. (36)

From (29) and (36) it follows that

n∑

j=s

2ps

(2p−1)j+s

(
2pj−1
j−s

)
(p−1)(n−j)+r+k−s+1

p(n− j) + r + 1

(
2(p(n−j)+r+1)

n− j − k + s

)

=
(p−1)n + r + k + 1

pn + r + 1

(
2(pn+r+1)

n− k

)
,

(37)

for every integers s ≤ k ≤ n, p ≥ 1, and r ≥ 0. Identity (37) is probably new.

Example 4.3 In [13] the following variant of Catalan’s triangle arises as an example of the
infinite matrix associated to a generating tree

dn,k =





k + 1
n + 1

(
2n− k

n

)
, if 0 ≤ k ≤ 2n,

0, if 0 ≤ 2n < k.

12



1
1 1
2 2 1
5 5 3 1
14 14 9 4 1
42 42 28 14 5 1
132 132 90 48 20 6 1

· · · · · ·

In this case,
dn+1,k+1 = dn,k + dn,k+1 + dn,k+2 + · · ·+ dn,n

and, thus,

A(t) = 1 + t + t2 + · · · = 1
1− t

.

From (7) it follows that h(t) satisfies th2 − h + 1 = 0 and, therefore, h(t) = 1−√1−4t
2t . But this

is precisely the generating function of the Catalan numbers, which form the first column of the
triangle. Hence,

d(t) = h(t) =
1−√1− 4t

2t
.

Note that
1−√1− 4t

2t
= 2F1

(
1
2 , 2

2
2
1

∣∣∣∣ 4t

)
.

It follows from (16) that

(
h(t)

)s = 2F1

(
s
2 , s+1

2

s + 1

∣∣∣∣ 4t

)
=

∞∑

n=0

s

2n + s

(
2n + s

n

)
tn.

For fixed integers p ≥ 2 and r ≥ 0, we consider the Riordan array d̃n,k = dpn+r,(p−1)n+k+r. Then,
for n ≥ 0,

d̃n,k =
(p− 1)n + k + r + 1

pn + r + 1

(
(p + 1)n + r − k

pn + r

)

if 0 ≤ k ≤ (p + 1)n + r, and d̃n,k = 0 otherwise. By Theorem 2.1, the generating function of
the A−sequence of {d̃n,k} is Ã(t) = 1/(1− t)p. By (8), the h−function h̃ of {d̃n,k} satisfies

[tn−1]h(t) =
1
n

[tn−1]
(
A(t)

)n =
1
n

[tn−1](1− t)−pn

=
(−1)n

n

(−pn

n− 1

)
=

(pn + n− 2)!
n!(pn− 1)!

and, therefore,

h̃(t) =
∞∑

n=1

1
(p+1)n−1

(
(p+1)n−1

n

)
tn−1 =

∞∑

n=0

(
(p+1)n+p−1

)
!

(n+1)!(pn+p−1)!
tn.

The function h̃ is hypergeometric. By the same argument used for the series (13), we have

h̃(t) = p+1Fp

(
p

p+1 , p+1
p+1 , · · · , 2p

p+1
p+1

p , p+2
p , · · · , 2p

p

∣∣∣∣∣
(p+1)p+1

pp
t

)
.

13



It follows from (16) that

h̃(t) =

[
p+1Fp

(
1

p+1 , 2
p+1 , · · · , p+1

p+1

2
p , 3

p , · · · , p+1
p

∣∣∣∣∣
(p+1)p+1

pp
t

)]p

and also
(
h̃(t)

)s = p+1Fp

(
sp

p+1 , sp+1
p+1 , · · · , sp+p

p+1
sp+1

p , sp+2
p , · · · , sp+p

p

∣∣∣∣∣
(p+1)p+1

pp
t

)
, (38)

for any s ∈ R. It is straightforward from (38) that

(
h̃(t)

)s =
∞∑

n=0

sp

(p + 1)n + sp

(
(p + 1)n + sp

n

)
tn

and, therefore,

[tj ]
(
th̃(t)

)s = [tj−s]
(
h̃(t)

)s =
sp

(p + 1)j − s

(
(p + 1)j − s

j − s

)
.

Thus, by Theorem 4.1,

n−k+s∑

j=s

ps

(p+1)j−s

(
(p+1)j−s

j − s

)
(p−1)(n−j)+k−s+r+1

p(n−j)+r+1

(
(p+1)(n−j)+r−k+s

p(n−j)+r

)

=
(p− 1)n + k + r + 1

pn + r + 1

(
(p + 1)n + r − k

pn + r

)
(39)

for s ≤ k ≤ n. Setting j = i + s, x = ps, y = pk − ps + r, and replacing n by n + k, identity
(39) can be rewritten as

n∑

i=0

x

(p+1)i+x

(
(p+1)i+x

i

)
(p−1)(n−i)+y+1

p(n−i)+y+1

(
(p+1)(n−i)+y

n− i

)

=
(p− 1)n + x + y + 1

pn + x + y + 1

(
(p + 1)n + x + y

n

)
.

(40)

Note that, for fixed n ≥ k ≥ s ≥ 0 and r ≥ 0 integers, our argument only proves (40) for special
values of x and y, namely of the form x = ps and y = p(k − s) + r, with p ≥ 2 an integer. As
usual, this is enough to guarantee that (40) holds for all x and y real, since both sides of (40)
are polynomials in p.

Identity (40) seems to be new, though it resembles the old formula

n∑

i=0

x

zi+x

(
zi+x

i

)
y

z(n−i)+y

(
z(n−i)+y

n− i

)
=

x + y

zn+x+y

(
zn+x+y

n

)
(41)

due to Rothe (1793) and Hagen (1891) (see (3.142), in Gould’s collection [5], or (5.63) in, [6]).
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5 Final comments

Often identities of the same type as the ones obtained in Section 4 can be proved directly employ-
ing generating functions, Lagrange’s Inversion Formula, and standard Riordan array techniques.
Indeed, in [21] Sprugnoli provides this kind of proof to most of the identities appearing in Gould’s
large collection [5]. As an example, we give a direct proof of (40) along these lines. First note
that

(p−1)n+y+ 1
pn+y+1

(
(p+1)n+y

n

)
=

(
1− n

pn+y+1

)(
(p+1)n+y

n

)

=
(

(p+1)n+y

n

)
−

(
(p+1)n+y

n− 1

)
= [tn](1+t)(p+1)n+y − [tn−1](1+t)(p+1)n+y

= [tn](1− t)(1 + t)y(1 + t)(p+1)n.

On the other hand, by Lagrange’s Inversion Formula (3),

G
(
[tn](1−t)(1+t)y

(
(1+t)p+1

)n
)

=
[

(1−w)(1+w)y

1− t(p+1)(1+w)p

∣∣∣∣ w = t(1+w)p+1

]

=
[
(1−w)(1+w)y+1

1− pw

∣∣∣∣ w = t(1+w)p+1

]
.

Hence,

A(p, y; t) :=
∞∑

n=0

(p−1)n+y+ 1
pn+y+1

(
(p+1)n+y

n

)
tn

=
[
(1−w)(1+w)y+1

1− pw

∣∣∣∣w = t(1+w)p+1

]
.

(42)

By Theorem 2.1 of [14], we have the following identity for the function given by (14)

(Bp+1(t)
)x =

∞∑

n=0

x

(p+1)n + x

(
(p+1)n + x

n

)
tn

=
[
(1+w)x

∣∣w = t(1+w)p+1
]
.

(43)

Combining (42) and (43) yields
(Bp+1(t)

)x · A(p, y; t) = A(p, x + y; t) (44)

and, therefore, applying [tn] to both sides, (40) holds. Identity of Rothe–Hagen (41) mentioned
above follows from the application of [tn] to both sides of the equality

(Bp(t)
)x+y =

(Bp(t)
)x ·(Bp(t)

)y. It is interesting to observe that (44) implies that A(p, y; t) is a function of exponential
type on y, as the ratio A(p, x + y; t)/A(p, y; t) does not depend on y. As a matter of fact, by
(42) and (43),

A(p, y; t) =
(2− Bp+1(t))Bp+1(t)

1 + p− pBp+1(t)
(Bp+1(t)

)y
.

We can restate (44) in terms of hypergeometric functions. If we consider the general term

An =
(p−1)n+y+ 1

pn+y+1

(
(p+1)n+y

n

)
tn
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of the power series in (42) and calculate the ratio of consecutive terms, we find

An+1

An
=

(
n+ y+1

p+1

)(
n+ y+2

p+1

) · · · (n+ y+p+1
p+1

)
(
n+ y+2

p

)(
n+ y+3

p

) · · · (n+ y+p+1
p

) ·
n+ y+p

p−1

n+ y+1
p−1

· 1
n+1

· (p + 1)p+1t

pp
,

from which it follows that

A(p, y; t) = p+2Fp+1

(
y+1
p+1 , y+2

p+1 , . . . , y+p+1
p+1 , y+p

p−1
y+2

p , y+3
p , . . . , y+p+1

p , y+1
p−1

∣∣∣∣∣
(p + 1)p+1t

pp

)
.

Finally, identity (44) can be stated in terms of hypergeometric functions as

p+1Fp

(
x

p+1,
x+1
p+1, . . . ,

x+p
p+1

x+1
p ,x+2

p , . . . ,x+p
p

∣∣∣∣∣
(p+1)p+1t

pp

)
· p+2Fp+1

(
y+1
p+1,

y+2
p+1, . . . ,

y+p+1
p+1 ,y+p

p−1
y+2

p ,y+3
p , . . . ,y+p+1

p ,y+1
p−1

∣∣∣∣∣
(p+1)p+1t

pp

)

= p+2Fp+1

(
x+y+1

p+1 , x+y+2
p+1 , . . . , x+y+p+1

p+1 , x+y+p
p−1

x+y+2
p , x+y+3

p , . . . , x+y+p+1
p , x+y+1

p−1

∣∣∣∣∣
(p+1)p+1t

pp

)
.

Of course this identity looks simpler if we further replace (p + 1)p+1t/pp by t, but then the
coefficients of the corresponding developments in power series are no longer integers.

By a similar argument, (37) can be rephrased as

n∑

i=0

2x

(2p−1)i+2x

(
2pi+2x−1

i

)
(p−1)(n−i)+y+1

p(n−i)+y+1

(
2
(
p(n−i)+y+1

)

n− i

)

=
(p−1)n+x+y+1

pn+x+y+1

(
2(pn+y+1)

n

)
.

(45)

Also as above, we find

C(p, x; t) :=
∞∑

n=0

2x

(2p−1)n+2x

(
2pn+2x−1

n

)
tn

=
[
(1 + w)2x

∣∣ w = t(1 + w)2p
]

D(p, y; t) :=
∞∑

n=0

(p−1)n+y+1
pn+y+1

(
2(pn+y+1)

n

)
tn

=
[
(1− w)(1 + w)2y+2

1 + (1− 2p)w

∣∣∣∣w = t(1 + w)2p

]
.

Hence, C(p, x; t) =
(
φ(t)

)x and D(p, y; t) = ψ(t)
(
φ(t)

)y, where φ(t) = C(p, 1; t) and ψ(t) =
(2− C(p, 1

2 ; t))C(p, 1; t)/(2p + (1− 2p)C(p, 1
2 ; t)). Therefore,

C(p, x; t) · D(p, y; t) = D(p, x + y; t). (46)

Applying [tn] to both sides, (45) follows. Using the same argument as above, we can show that

C(p, x; t) = 2pF2p−1

(
2x
2p , 2x+1

2p , . . . , 2x+2p−1
2p

2x+1
2p−1 , 2x+2

2p−1 , . . . , 2x+2p−1
2p−1

∣∣∣∣∣
(2p)2p t

(2p−1)2p−1

)
=

(B2p(t)
)2x
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and

D(p, y; t) = 2p+2F2p+1

(
2y+3
2p , 2y+4

2p , . . . , 2y+2p+2
2p , y+p

p−1 , y+1
p

2y+3
2p−1 , 2y+4

2p−1 , . . . , 2y+2p+2
2p−1 , y+1

p−1 , y+p+1
p

∣∣∣∣∣
(2p)2p t

(2p−1)2p−1

)
.

Hence, by (46), another identity involving a product of hypergeometric functions can be derived.
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